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IMPRECISE PROBABILITIES Anna Mahtani

Suppose we take a standard, randomly shuffled pack of cards with no
jokers, and ask what the probability is that the top card is a red picture
card. We can calculate the probability of this to be 6/52 = 3/26. And of
course if, as many think, people have degrees of belief, or credences,
then you—knowing only that the pack is normal and has been randomly
shuffled—should have a credence of 3/26 that the top card is a red picture
card.

But many think that you can have credences in all sorts of claims,
and not just claims about random events involving cards, dice or coins.
In particular, classical Bayesian epistemologists think that you have a
credence in every proposition that you can entertain. Thus for example,
there is some number between 0 and 1 that is your credence that it will
snow in London on New Year’s Day 2026; and there is some number
between 0 and 1 that is your credence that I have a cup of tea beside my
computer as I type. But what exactly are your credences in these claims?
Perhaps no particular number springs to mind. Unlike in the playing card
scenario above, here there does not seem to be any obvious way to ‘work
out” what the probability of these events is and so arrive at the precise
credence that you ought to have. Cases like these have led some to reject
the classical Bayesian epistemologist’s claim that people must have precise
credences in every proposition that they can entertain. Instead it is claimed
that people—even rational people—can have imprecise credences in at
least some propositions. Hereafter I will use ‘imprecise probabilism” as
the name for the view that rational people can have imprecise credences.

Imprecise probabilism has some intuitive appeal. Take again the claim
(which we can call ‘NyD’) that it will snow in London on New Year’s
Day 2026. It is hard to put a precise number on your credence—but
there may still be something we can say about your attitude towards
this proposition. For example, perhaps you think the claim is not very
likely, but far from impossible, and certainly more likely than the claim
(which we can call ‘MIDSUMMER’) that it will snow on Midsummer’s day
in London in 2026. We might think that your credences in these claims can
be represented with ranges, rather than points. For example, perhaps your
credence in NYD is the range (0.1,0.4), and your credence in MIDSUMMER is
the range (0.01,0.05). Versions of this idea—of representing credences by
ranges rather than points—can be found in numerous sources, including
R. Bradley (2009), Gardenfors and Sahlin (1982), Jeffrey (1983), Joyce (2005),
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Kaplan (1996), Keynes (1921), Kyburg (1983), Levi (1974), Sturgeon (2008),
van Fraassen (2006), and Walley (1991).

To explain imprecise probabilism in more depth, I must first set out
the classical Bayesian view more precisely. We begin with a set (an event
space) Q) = {w1,wy, ..., w,}. Each w; in () is a state of affairs, or possible
world. We can then see a proposition (or event) A as a subset of set ().
For example, suppose we take the proposition that a particular dice throw
landed on an even number. This proposition obtains at all those possible
worlds where the dice lands on 2, 4, or 6. Thus there will be a set of
possible worlds where the proposition obtains. For the purposes of this
topic, we assume that the proposition can be identified with that set of
possible worlds at which it is true.

Now consider a set F = {A1, Ay, ..., An} of these propositions (which
are themselves each sets of possible worlds). To make this set a sigma
algebra (c-algebra), the set must be closed under union, intersection, and
complementation. For the set to be closed under union, it must be the
case that for two propositions A; and A; in the set, the union (A; U A))
is also in the set; similarly, for the set to be closed under intersection, it
must be the case that for any two propositions A; and A; in the set, the
intersection (A; N A;) must also be in the set; and for the set to be closed
under complementation it must be the case that for any proposition A; in
the set, the proposition () — A; must also be in the set.

Finally we introduce a function p mapping F to [0, 1]. Thus for example,
if F contains some proposition A, then our function p will map that propo-
sition A to some number between 0 and 1. If the function is a probability
function, then it will meet these three conditions (the probability axioms).

1. p(A) >0, for all A in F.

2. p(Q) =1.
3. If AjNAj = @ then p(A; U Aj) = p(A;) + p(4)).

Classical Bayesian epistemologists claim that any rational agent has an
epistemic state that can be represented by such a probability function.
In contrast according to the imprecise probabilist, a rational agent may
have an epistemic state that cannot be represented by a single probability
function. Instead, the imprecise probabilist typically claims that a rational
agent’s epistemic state can be represented by a set of probability functions
P = {p1,p2 ..., pr}. Thus rather than assigning each proposition in F
some unique number, for each proposition A in F there will be some least
number assigned to it by the probabilities in P (the agent’s lower envelope
of A), and some greatest number assigned to A by the probabilities P (the
agent’s upper envelope of A).
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Thus the imprecise probabilist moves away from the classical Bayesian
view by claiming that an agent’s epistemic state is given not by a single
function from propositions to numbers, but by a set of such functions. And
if the agent is rational, then each of the functions in the set that represents
the agent’s epistemic state will be a probability function. In van Fraassen’s
terminology, this set of functions is the agent’s representor (van Fraassen,
1990). On another vivid version of this account, we can see the set as a
group of avatars (R. Bradley, 2009), each of whom has a precise credence
function: these avatars collectively represent the agent’s epistemic state.

This view raises some interesting problems, but before I turn to these, I
will first explore in more depth the central claims of the view.

1 EXPLORING THE VIEW

How can a set of credence functions represent an agent’s epistemic state?
Or, to put the point another way, what must be true of a given agent
for her epistemic state to be correctly represented by some specific set of
credence functions?*

The idea is that what holds across all the credence functions in the set,
holds for the agent’s epistemic state.? Thus for example, suppose that
every credence function in the set assigns the number 0.5 to the claim that
the next fair coin tossed will land heads: then it follows that the agent has
a credence of precisely 0.5 in this claim. Or suppose that every credence
function in the set assigns a number of no more than 0.4 to the claim Nyb:
then it follows that the agent has a credence of no more than 0.4 in this
claim. Or suppose that every credence function in the set assigns a higher
number to NYD than it does to MIDSUMMER: then it follows that the agent
has a higher credence in the claim NYD than she does in MIDSUMMER.

On this picture, there may be some questions we can ask about the
agent’s epistemic state which have no answer. For example, we might
wonder which of a pair of claims is given the highest credence, or whether
they are given equal credence—but there may be no answer to this question
if the credence functions that represent the agent’s epistemic state conflict
over this. Similarly, on learning that an agent has a credence of no more
than 0.4 in NYD, we might ask what exactly the agent’s credence is in this
claim. But there is no answer to this question if the different credence
functions that represent the agent’s epistemic state assign different values
to this claim. In such cases, it is natural to say that the agent’s credence in
a claim is a range rather than a single unique number—where the range
contains all and only those numbers that are assigned to the relevant

1 Richard Bradley argues that for any given epistemic state, there is a unique maximal set of
such functions that represents that epistemic state (R. Bradley, 2009, p. 242).
2 Or perhaps, is determinately true of the agent’s epistemic state (Rinard, 2015).
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proposition by some credence function from the set that represents the
agent’s epistemic state.

I turn now to consider some variations on this view, and some initial
objections and clarifications.

1.1 Variations on the view

Here I contrast two different sorts of imprecise probabilist. All proponents
of imprecise probabilism agree that agents are sometimes permitted to
have imprecise credences in some propositions. They thus stand in con-
trast to the classical Bayesian epistemologists, according to whom rational
agents have precise credences in every proposition which they can enter-
tain. But even amongst those who accept imprecise probabilism, there
is disagreement over whether imprecise credences are ever required by
rationality.

James Joyce, for example, argues that one’s degrees of belief should be
no sharper than the evidence requires (Joyce, 2005): Joyce requires an agent
to have an imprecise credence in a claim where the evidence for that claim
does not justify a more precise credence. Thus for example consider again
the claim NYD, that it will snow in London on New Year’s Day 2026. Given
that the evidence for this is (as yet) slight, an agent who had a precise
credence in this claim (e.g. a credence of exactly 0.35) would be irrational.
In contrast, take the claim that the next fair coin tossed will land heads.
Given that the chance of this event is known to be 0.5, it is rational to have
a credence of exactly 0.5 in this claim.

To clarify this view, we need to explain what determines the correct
imprecise credence for an agent to have in any given situation. One possi-
ble answer to this is the chance grounding thesis: “one’s spread of credence
should cover the range of chance hypotheses left open by the evidence”
(White, 2009, p. 174).3 To see what this means, let us consider a few exam-
ples. First take an agent who knows that a coin is fair, and is contemplating
the claim, HEADS, that on the next toss the coin will land heads. Given
that (s)he knows that the chance of HEADs is 0.5, the chance grounding
thesis requires that every credence function in the set that represents the
agent’s epistemic state must assign 0.5 to HEADs—and so the agent must
herself have a credence of precisely 0.5 in HEADs. Now suppose instead
that the agent has a coin that she does not know to be fair: the chance of
its landing heads (HEADS*) is anywhere within the range (0.2,0.8), for all
she knows. Then the chance grounding thesis requires that for each value
v within the range (0.2,0.8), there must be a credence function in the set
that represents the agent’s epistemic state that assigns v to HEADS*. And

3 White defines this thesis, but does not endorse it.
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furthermore there must be no credence function in the set that assigns to
HEADS* some value v that is outside the range (0.2,0.8).

This chance grounding thesis generates some counterintuitive results,
and Joyce argues that it should be replaced with the less stringent demand
that when your only relevant evidence is that the chance of some event is
within some interval (a, b), then your spread of credence ought to cover
this range (Joyce, 2010, p. 289). So for example suppose that in the case
above, you know not only that the chance of the coin’s landing heads is
within the range (0.2,0.8), but also that the coin was selected at random
from a bag which contained a variety of coins with complementary biases:
i.e. for each coin in the bag that has a chance v of landing heads, the bag
also contained exactly one coin with a chance 1 — v of landing heads. In
this case, because you have this extra piece of evidence, your “spread of
credence” in HEADS is not required to cover the whole range (0.2,0.8), and
a credence of precisely 0.5, say, is permitted. However if you know only
that the chance of the coin’s landing heads is within the range (0.2,0.8),
then your spread of credence in HEADSs is required to cover the whole
range (0.2,0.8).

Now we turn to consider imprecise probabilists who permit, but never
require agents to have imprecise credences. For these theorists, an agent is
free to have a credence of precisely 0.35 in the claim NyD (that it will snow
in London on New Year’s Day 2026). To these theorists, we might ask
whether there are any rational constraints on an agent’s epistemic state, bar
the requirement that their state should be represented by some maximal
set of credence functions that obey the probability axioms. Such a theorist
might require that any rational agent’s epistemic state will conform to the
principal principle—i.e. that the agent’s credence in any claim P conditional
on the chance of P being some value v, is v (Lewis, 1980). From this, it
follows that in the case where an agent is contemplating the claim (HEADS)
that on its next toss a coin known to be fair will land heads, the agent’s
credence in HEADS must be 0.5. But what constraint is placed on the agent
in the case where (s)he is contemplating the claim (HEADs*) that on its
next toss a coin known to have a chance within the range (0.2,0.8) will
land heads? The principal principle here requires that the agent’s credence
should not exceed the range (0.2,0.8), but nothing seems to require that
the agent’s credence should occupy this entire range.

Having explored this variation in the views of imprecise probabilists, I
turn now to contrast the account with an alternative view.

1.2 Dempster-Shafer Theory

An alternative approach to modelling our epistemic state involves belief
functions (Dempster, 1967, 1968; Shafer, 1976). To illustrate this view, we
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can again take the proposition (NyD) that it will snow in London on New
Year’s Day in 2026, and suppose that my belief-function assigns a value of
0.6 to this claim: we represent this by writing Bel(NYD) = 0.6. If my belief
function was a probability function, then it would follow that the value
assigned to the negation of NYD (i.e. to not-NYD) would be 0.4. However a
belief function need not be a probability function, and it might assign any
value less than or equal to 0.4 to not-NYD. Thus for example, it might assign
a value of 0 to not-NyD. This is despite the fact that the value assigned to
the tautology (either NYD or not-NYD) must be 1.

More generally, on this view the value assigned to the disjunction of
two disjoint propositions A and B, Bel(A U B), need not equal the sum of
Bel(A) and Bel(B). The requirement is only that the value assigned to the
disjunction must be at least as great as the sum of the values assigned to
the disjuncts. Thus the belief function is not a probability function, as the
third probability axiom (countable additivity) does not apply.

One way to interpret the idea of a belief function, is as a measure of the
weight of evidence for each proposition. Thus consider again my belief
function that assigns a value of 0.6 to Nyp. We can suppose that I have
asked a friend whether it will snow in London on New Year’s Day 2016,
and (s)he assures me that it will. I consider this friend to be reliable in 60%
of cases of this sort, and this explains why my belief function assigns a
value of 0.6 to this claim. If we suppose that this is all the relevant evidence
that I have, then my belief function assigns a value of 0 to not-NyD simply
because I have no evidence to support not-NyD. In cases where I have
evidence from two different sources (e.g. in a case where I make another
friend who also gives me his or her opinion on NYD), then the belief
functions that result from these different bodies of evidence need to be
combined, and Dempster and others have explored the question of how
this combination should be carried out (Dempster, 1967).

In common with imprecise probabilism—and in apparent contrast with
classical Bayesianism—this theory has resources designed to model severe
uncertainty. To see this, suppose that a coin is about to be tossed, and
that you have no information whatsoever about whether the coin is fair or
how it might be biased. On the classical Bayesian view, in spite of your
severe uncertainty, you will nevertheless have a precise probability that
the coin will land head-side-up. This strikes many as counterintuitive.
Advocates of both imprecise probabilism and Dempster-Shafer theory
take their theories to improve on classical Bayesianism here. According to
imprecise probabilism, in the case where you have no information about
the bias of the coin, a rational agent may—and on some versions of the
theory, must—have a credal range of (0, 1) rather than a precise credence
of 0.5. And according to Dempster-Shafer theory, in a case where you have
no information about the bias of the coin, you have no evidence in favour
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of heads, and no evidence in favour of tails, and so your belief function
will assign a value of 0 to both HEADs and TAILS.

For more on the Dempster-Shafter theory, and how it differs from both
classic Bayesianism and imprecise probabilism, see Halpern (2003) and
Yager and Liu (2008).

1.3 Scoring Rules

I turn now to an issue for those theorists who want to apply the idea of
accuracy scoring rules in the context of imprecise probabilism. I begin by
outlining a standard proposal for measuring the (in)accuracy of a credence
function, and I explain how this sort of scoring rule has been used to
construct an argument for probabilism. I then gesture towards some of the
challenges that arise when we consider these measures of accuracy in the
context of imprecise probabilism.

Let’s begin then with the classical Bayesian picture, according to which
a rational agent’s epistemic state is represented with a single precise
credence function. In this context a variety of scoring rules have been
proposed for measuring a credence function’s (in)accuracy at a given
world. One popular such rule is the Brier score (Brier, 1950) which I outline
here. First we set the truth-value of a proposition at a world to 1 if the
proposition is true there, and 0 if it is false. Now we can measure the
“distance” between the truth-value of the proposition at a world and the
credence assigned to it, by taking the difference between the two and
squaring the result. To illustrate this, suppose that you have a credence of

0.8 in the proposition that the world’s population is over 7 billion in 2016.

In the actual world, this proposition is true, and so has a truth-value of
1. Thus we measure the distance between the credence assigned to this
proposition and its truth-value in the actual world as follows: take the
truth value of the proposition (1), deduct the value assigned to it by the
credence function (0.8), and then square the result (giving 0.04). We get the
inaccuracy score for an entire credence function at a world by calculating
this distance for each proposition that is assigned a value by the credence
function, and summing the lot.

The Brier score is just one suggestion for measuring inaccuracy, and
others have been proposed, along with various claims about conditions
that any scoring rule ought to fulfil. One such requirement is that a scoring
rule ought to be proper, which can be defined as follows: any agent with a
rationally permissible credence function (i.e. one that obeys the probability
axioms), will score her own credence function to be no more inaccurate
than every other credence function, if the scoring rule that she uses is
proper. The Brier score is one example of a scoring rule that meets this
requirement.
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Scoring rules of this sort have been used to argue for probabilism—i.e.
for the claim that a rational agent’s credence function obeys the probability
axioms. The argument works by showing that for any credence function Cr
that does not obey the probability axioms, there is an alternative credence
function Cr* which does obey the probability axioms and which dominates
Cr in the following sense: the inaccuracy of Cr is at least as great as the
inaccuracy of Cr* at every world, and at some world the inaccuracy of Cr
is greater than the inaccuracy of Crx*. Thus, the argument goes, it would be
irrational to have a credence function such as Cr which does not obey the
probability axioms, when an alternative credence function Cr* is available.
Arguments of this sort can be constructed using any scoring rule provided
that it meets certain requirements—including the requirement that it be
proper (Joyce, 1998). Arguments from accuracy for a variety of other
epistemic principles have also been proposed, including an argument for
the principal principle (Pettigrew, 2013), and conditionalization (Greaves
& Wallace, 2006).

We can now consider how these issues are affected by a switch from
precise to imprecise probabilities. If an agent has an imprecise credence
function, then how should the inaccuracy of her credence function be mea-
sured? We can see at once that the original measures of inaccuracy cannot
be straightforwardly carried across—for where an agent’s credence in
some proposition is imprecise, we have no single number which measures
that agent’s credence, and so cannot make sense of the idea of deducting
the agent’s credence in a given proposition from its truth-value at some
world. Thus a new way of measuring inaccuracy is needed.

There is not yet any consensus as to what this new way of measuring
inaccuracy would be like. Some authors have proposed requirements that
any way of measuring the inaccuracy of an imprecise credence function
would need to meet, and some have uncovered difficulties for the project.
Seidenfeld, Schervish, and Kadane argue that there is no strictly proper
scoring rule for imprecise probabilities. See Seidenfeld, Schervish, and
Kadane (2012) and Mayo-Wilson and Wheeler (2016) for further discussion
on this issue. Schoenfield (2017) argues that if the new accuracy scoring
rule meets certain conditions, then the claim that accuracy is all that
matters is incompatible with the claim that imprecise probabilities are
sometimes rationally required—or even permitted. Thus challenges await
those who wish to endorse both imprecise probabilism and accuracy
arguments.

Having explored the account of imprecise probabilities, I turn now to
some of the most discussed objections and problems for the account. I
divide these into two categories: learning and deciding.
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2 LEARNING

On the classic Bayesian picture, an agent’s epistemic state is represented
by a single credence function. If the agent is rational, then she will update
(only) by conditionalization. Thus for example suppose that an agent
is about to run an experiment at the end of which she will have learnt
(just) either E or not-E. At the start of the experiment (at ¢) let’s suppose
that the agent has a credence of 0.2 in E, and a credence of 0.5 in some
hypothesis H. Furthermore, the agent has a conditional credence of 0.9
in H given E: in other words, if we let Crp name the agent’s credence
at to, then Cro(H | E) = Cro(HNE)/Cro(E) = 0.9. Now suppose that
the experiment runs, and at t; the agent discovers E. The agent’s new t;
credence function (Cr;) ought rationally to be her old ¢y credence function
(Crg) conditionalized on the new evidence that she has gained, E. Thus her
new credence in H ought to be her old conditional credence in H given E:
Cri(H) =Cro(H | E) =09.

For the proponent of imprecise probabilities, an agent’s epistemic state
is represented by a set of credence functions. How will a rational agent
adjust her epistemic state in the light of evidence on this account? The
idea standardly endorsed by imprecise probabilists is that each credence
function in the set will be adjusted in the usual way by conditionalization,
and the agent’s new, post-evidence epistemic state can be represented by
this adjusted set of credence functions. Thus for example, to return to our
experiment case above, suppose that every credence function in the set
that represents the agent’s epistemic state at ¢y assigns a number within
the range (0.4,0.6) to H—and every number within this range is assigned
to H by some credence function in the set. And suppose furthermore that
for each of these credence functions, the conditional credence assigned
to H given E is within the range (0.85,0.95)—and every number within
this range is the conditional credence assigned to H given E by some
credence function within the set. Then at t;, when the agent has learnt
(just) E, the agent’s epistemic state will be represented by the original set
of credence functions each conditionalized on E, and thus the agent’s new
credence in H will be given by the range (0.85,0.95). I will now turn to
two problems—both related to learning—for the proponent of imprecise
probabilities.

2.1 Belief Inertia

Let us consider a scenario in which you have just selected a coin from a
bag, knowing only that the bag contains various coins some of which may
be biased to various unspecified degrees. You are going to toss the coin 25
times, and before you begin tossing the coin (a time we can call f() you
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contemplate claim HEADs25—the claim that the coin will land heads on
its 25th toss. According to any proponent of imprecise probabilities, you
are permitted to have an imprecise credence in this claim. Now we can
consider what will happen to your credence in HEADS25 if you toss the
coin a few times, and it lands heads each time. Let HEADS1 be the claim
that the coin lands heads on the first toss, HEADS2 be the claim that the
coin lands heads on its second toss, and so on. Intuitively, your credence
in HEADS25 ought to increase on learning HEADS1, and increase even more
on learning (HEADS1 (N HEADS2), and so on.

For a certain sort of proponent of imprecise probabilism, this scenario
is problematic. In particular, consider the sort of imprecise probabilist
who claims that an agent’s epistemic state should conform to the chance
grounding thesis.# On this view, all and only those credence functions
which are compatible with the known chances must be included in the
set that represents the agent’s epistemic state. In the scenario that we are
considering, at fp you can rule out very few chance hypotheses: for all you
know, the chance of HEADS25 may be any number strictly between 0 and 1.
Thus at ¢y your credence in HEADS ought rationally to be the range (0,1).
What happens if you toss the coin once and it lands heads—i.e. if you learn
HEADS1? For any number n within the range (0, 1), you have not learnt that
the chance of HEADs25 is not n. For example, you have not learnt that the
chance of HEADS25 is not 0.0001. Thus your new credence in HEADS25, after
learning HEADs1, ought still to be the range (0,1). What happens if you
toss the coin again, and it again lands heads—i.e. in addition to HEADs1,
you also learn HEADS2? You cannot then rule out any additional chance
hypotheses. For example, it may still be the case, for all you know, that the
chance of HEADS25 is 0.0001. Thus your credence in HEADS25 after learning
both HEADS1 and HEADS2 remains the range (0,1). This pattern continues:
even if you toss the coin 24 times and it lands heads on each toss, your
credence in HEADS25 should still remain fixed at (0,1). In this sense, your
epistemic state exhibits inertia in the face of evidence. That your epistemic
state should rationally exhibit this inertia is very counterintuitive: surely as
you toss the coin and it lands heads repeatedly, your credence in HEADS25
ought to increase?

To put the point vividly, we can imagine the credence functions that
represent your epistemic state as a group of avatars. The avatars at ty
will assign various precise credences to HEADS25: for every number in
the range (0,1), there will be some avatar who assigns that value to
HEADS25. On learning HEADS1, each avatar ought to update accordingly by
conditionalizing. Take an avatar who had a credence of 0.0001 in HEADS25.

4 A similar problem applies to Joyce’s adjusted version of this principle mentioned earlier.
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It may be> that this avatar’s conditional credence in HEADS25 given HEADS1
is higher than her unconditional credence in HEADS25, in which case this
avatar will increase her credence in HEADS25 on learning HEADS1. But there
will be some avatar (perhaps an avatar whose unconditional credence
in HEADS25 was even lower than 0.0001) whose credence in HEADS25
conditional on HEADs1 is 0.0001. Thus even after learning HEADS1, there
will still be, in the set representing your epistemic state, an avatar whose
credence in HEADS25 is 0.0001. Similarly, even if you learn the conjunction
of the claims HEADs1 through HEADS24, there will still be an avatar in the
set representing your epistemic state whose credence in HEADs1 is 0.0001.
Thus your credence in HEADs25 will not shift from the range (0,1) no
matter how much evidence you amass in favour of HEADS25.

This looks like a problem—at least for those imprecise probabilists who
accept the chance grounding thesis, or something close to it. For some of
the responses available, see R. Bradley (2017), Joyce (2010), Rinard (2013),
and Vallinder (2018).

2.2 Dilation

Here we turn to another problem for the proponent of imprecise probabil-
ism. The phenomenon I discuss here was first noted by early statisticians
of imprecise probabilism Walley (1991) and Seidenfeld and Wasserman
(1993), and has recently been prominently discussed by White (2009). Take
some claim P, that you have no evidence whatsoever for or against, so that
your credence at t( in P is the range [0, 1]. Suppose that I know whether
P is true, and I take a fair coin and paint the heads side over. I write “P’
on this heads side iff P is true, and “not P” on the heads side iff P is not
true. I similarly paint over the tails side of the coin, and write on this side
whichever claim (out of “P” and “not P”) is false. You know that I have
done this. I then toss the coin before your eyes. Your credence before it
lands (i.e. at tp) that it will land head-side up (HEADS), is 0.5. Then at t;
you see it land, with the “P”-side up. What then at ; is your credence in
P and what is your credence in HEADS?

At t; you have learnt that the coin has landed “P”-side up. Thus if P
is true, then HEADS is also true (i.e. it must have landed heads)—for if P
is true then “P” has been painted onto the heads side of the coin, and so
given that it has landed “P”-side up it has also landed heads. Furthermore,
if HEADs is true, then P is also true—for if it has landed heads then given
that it has landed “P”-side up, “P” must have been painted onto the heads
side of the coin, which will have happened only if P is true. Thus at ¢; you

Though it need not be: perhaps some avatars will stubbornly refuse to adjust their credence
in HEADS25 from 0.0001. We might try to avoid this problem by excluding such agents
(Halpern, 2003), though this will not solve the problem discussed in the main text.
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can be certain that P is true iff HEADS is true. Thus at t; you must have the
same credence in P as you have in HEADs. Given that at ty your credence
in HEADS is 0.5, and your credence in P is the range [0, 1], how will your
credence adjust between ty and #1? Will your credence in HEADS become
the range [0,1]? Or will your credence in P become precisely 0.5? Both
options seem counterintuitive.® It seems implausible that your credence in
HEADS should “dilate” to the range [0, 1]: surely (by the principal principle)
your credence that a fair coin has landed heads ought to be 0.5, unless
you have some evidence as to how it has landed. And knowing that it
landed on the “P”-side does not seem to give you any evidence as to
whether it has landed heads or tails. And it also seems implausible that
your credence in P should sharpen to the number 0.5 (White, 2009), for
after all you knew even at f( that the coin would either land “P”-side up,
or “P”-side down, and we cannot say that learning either of these pieces
of information would force your credence in P to become precisely 0.5
without violating van Fraassen’s reflection principle (van Fraassen, 1984).

One popular response made by the imprecise probabilist, is to accept
that at #; your credence in HEADS ought to dilate to [0,1].” Here are two
things that might be said in defence of this position.

o It seems as though learning that the coin landed “P”-side up gives
you no evidence as to whether it has landed head-side up. But this
would not follow if P was a claim that you knew something about.
Suppose as a contrast case, then, that P is the claim that you have
just won the lottery—a claim in which you have a very low credence
indeed. On hearing that I (who know the outcome) am painting the
true claim (out of “P” and “not-P”) on the heads side, and the false
claim on the tails side, you will be almost certain that I am painting
“not-P” on the heads side, and “P” on the tails side. Your credence at
tp in HEADS is 0.5, but when at ¢; you learn that the coin has landed
“P”-side up, you will be almost certain that HEADs is false. Thus
where you have some evidence concerning P, it is natural to suppose
that learning that the coin has landed “P”-side up will alter your
credence in HEADS (see Sturgeon, 2010, Joyce, 2010).

What about in the case where P is a claim about which you have
no evidence? In this case, it is tempting to suppose that learning
that the coin has landed “P”-side up gives you no reason to adjust
your credence in HEADS. But the situation is more complicated than

6 A further option would be for both your credence in HEADS and your credence in P to
adjust, but this is no more appealing than the alternatives.

7 As White acknowledges, some statisticians and philosophers (such as Walley, 1991, and
Seidenfeld and Wasserman, 1993) had noted this result and “taken it in their stride” (White,

2009, p. 177).
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this suggests. Consider again your epistemic state as a set of avatars.
For every number in the range [0, 1], there is some avatar in the set
that represents your epistemic state that assigns this number to P.
Each such avatar, on learning that the coin has landed “P”-side up,
will adjust her credence in HEADS accordingly.® For example, the
avatar whose credence in P is 0.2 will adjust her credence in HEADS
downwards; and the avatar whose credence in P is 0.8 will adjust her
credence in HEADS upwards. More generally after conditionalizing
on the claim that the coin has landed “P”-side up, for every number
in the range [0, 1], there will be an avatar who assigns that number
to HEADS. We can see then that it is not that learning that the coin
has landed “P”-side up gives you no evidence relevant to HEADS, but
rather that you are just very uncertain as to in what direction the
evidence you have received should pull you, and how far. Thus your
credence in HEADS is infected with the imprecision that you assigned
to P, and your credence in HEADs dilates to the range [0, 1] (Joyce,
2010).

o It is tempting to object that it is counterintuitive for an increase in
evidence to leave your credence function more imprecise than it was
before. However it is not obvious that your credence function is more
imprecise at t; than it was at tg. To see this, consider that at ¢y though
your credence in HEADS was precise, your conditional credence in
HEADS given that the coin lands “P”-side up was imprecise. Thus
there was imprecision in your credence function even at t;: this
just was not obvious when we focused only on your unconditional
credence in HEADs (R. Bradley, 2017).

Further discussion of the problem of dilation can be found in R. Bradley
(2017), S. Bradley and Steele (2014), Dodd (2013), Joyce (2010) and Pederson
and Wheeler (2014).

3 DECISION-MAKING

On the classic Bayesian picture, a rational agent has a precise credence
function assigning some number between 0 and 1 to each proposition, and
also a precise utility function assigning some number to each possible
outcome representing in some sense how much the agent values each
outcome. When faced with a decision problem—i.e. a choice between
different actions—on the classic picture the agent must choose an action
that has maximum expected utility. We can calculate the expected utility
of any given action for the agent as follows: for every possible outcome,

8 Those avatars whose credence at ¢ in P is 0.5 need make no adjustment.
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Milk at home (s;) No milk at home (s3)

Cr(s1) =0.5 Cr(sz) =0.5
STOP FOR MILK 9 9
DoN’T sToPr 10 5

Table 1: A decision problem

we multiply the agent’s credence that the outcome will obtain should she
perform the action under consideration, by the utility of that outcome—
and then we sum the lot.?

Here is an example to illustrate this. Sometimes on the way home from
work, I stop to buy a pint of milk, which means that I take a bit longer to
get home, but it is certainly better than getting home and finding that there
is no milk in the house. Suppose that on this occasion, my credence that
there is milk in the house already is 0.5. Table 1 represents my assessment
of the possible outcomes.

We can now calculate the expected utility of each available action. The
expected utility of stopping to buy milk is (0.5)(9) + (0.5)(9) = 9, whereas
the expected utility of not stopping to buy milk is (0.5)(10) + (0.5)(5) =
7.5. On the classic decision rule “maximise expected utility”, I ought to
stop to buy milk, because this is the action with the highest expected
utility.

The maximise expected utility rule works on the assumption that for
every relevant state of the world, the rational agent has a precise credence
that that state of the world obtains. But proponents of imprecise probabili-
ties deny this, and so cannot accept this rule. What alternative rule should
they put in its place? According to the proponent of imprecise probabilities,
what requirements does rationality place on an agent’s choice of action?
Many different answers have been proposed, and I will briefly outline two
of these answers.

PERMISSIVE CHOICE RULES  Recall that we can see an agent’s epistemic
state as represented by a set of avatars, each with a precise credence func-
tion. Thus faced with any decision problem, each avatar will have a view as
to which action—or actions—will maximise expected utility.’® According

This is a rough and ready sketch of Savage’s account (Savage, 1954). Modifications have
been made to that account (e.g. in Jeffrey, 1965) but here I will stick to straightforward
examples so that the modifications should not be relevant.

Here I assume that the agent has a precise utility function which feeds into each avatar’s
calculation. This of course is also up for debate, and some argue that just as a rational
agent can have an imprecise credence function, so (s)he can have an imprecise utility
function. I do not discuss this further here however.
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to the permissive choice rules,’* the agent may rationally perform any
action provided that at least one of her avatars recommends that action.

To illustrate this, suppose that an agent’s credence that it will rain
tomorrow is the range (0.4,0.8). Thus for every number in this range,
there is some avatar who assigns that number to the claim that it will rain
tomorrow. Suppose then that the agent is offered the following bet: she is
to pay out £5, and will get £10 back iff it rains tomorrow. The agent has
to choose whether to accept the bet, or reject it. We can assume that the
agent values only money, and values it linearly. Some of her avatars would
recommend accepting the bet (those whose credence that it will rain is
greater than 0.5), some recommend rejecting it (those whose credence that
it will rain is less than 0.5), and some rate the expected utility of accepting
it equal to the accepted utility of rejecting it (those whose credence that
it will rain is 0.5). Thus according to the permissive choice rules, the
agent is free to either accept or reject the bet: both actions are permissible.
This rule—together with some variations—is discussed under the name
‘Caprice’ by Weatherson (1998).

MAXIMIN The rule maximin works as follows. Where an agent has
an imprecise probability function, we can see her epistemic state as rep-
resented by a set of precise functions, or avatars. When considering a
possible action, there is an expected utility for that action relative to each
precise probability function in the agent’s set. Amongst these expected
utilities for the action, one will be the lowest—and so each action has
a minimum expected utility. According to maximin, when faced with a
choice, a rational agent will carry out whichever action has the maximum
minimum expected utility.

To illustrate this, take again our agent whose credence that it will rain
tomorrow is the range (0.4,0.8): for every number in this range, there
is some avatar who assigns that number to the claim that it will rain
tomorrow. Suppose then that the agent is offered the following bet: she
is to pay out £5, and will get £10 back iff it rains tomorrow. Each avatar
calculates the expected utility of each possible action—i.e. the action of
accepting the bet and the action of rejecting the bet. The avatar who assigns
the lowest expected utility to accepting the bet is the avatar whose credence
that it will rain tomorrow is 0.4: assuming again that the agent values only
money and that linearly, we can represent the expected utility of accepting
the bet from the perspective of this avatar as —5+ (0.4)(10) = —1. Thus the
minimum expected utility of accepting the bet is —1. Now we can calculate
the minimum utility of rejecting the bet. All avatars assign the same
expected utility to this action—namely 0. Thus the minimum expected
utility of rejecting the bet is 0. A rational agent will choose from amongst

11 This is Elga’s (2010) term.
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those actions with the highest minimum expected utility—and as rejecting
the bet has a higher minimum expected utility (0) than accepting the bet
(—1), the agent if rational will reject the bet.

Variations on this rule have been developed by Géardenfors and Sahlin
(1982), Gilboa and Schmeidler (1989), and others. An analogous maximax
rule has been developed by Satia and Lave (1973). Many further rules
have been proposed, including those by Arrow and Hurwicz (1972) and
Ellsberg (1961). See Troffaes (2007) for a discussion and comparison of
some of these rules.

3.1 Applying These Rules

In some scenarios, some of the alternative rules developed by imprecise
probabilists seem to work better than the classical Bayesian’s rule maximise
expected utility. Here is a famous case—the Ellsberg paradox—in which
this holds (Ellsberg, 1961).

You have an urn before you, which contains 150 balls. 50 are black, and
the other 100 are some mixture of red and yellow—but you have no further
information as to what the proportions of red and yellow balls are. For all
you know, there may be 100 red balls and no yellow balls, or 100 yellow
balls and no red balls, or any mixture between these two extremes. Now
a ball will shortly be selected at random from the urn, and you have the
chance to bet on what colour the ball will be. You can either say ‘black’, in
which case you'll win £100 if it is black, and nothing otherwise; or you can
say ‘red’, in which case you'll win £100 if it is red, and nothing otherwise
(Table 2).

Black (B) Red (R) Yellow (Y)

BET BLACK £100 £0 £0
BET RED £0 £100 £0

Table 2: The first scenario in the Ellsberg paradox

Now suppose instead that you have the option of saying ‘black or
yellow’, in which case you'll win £100 if the ball is either black or yellow,
and nothing otherwise; or you can say ‘red or yellow’, in which case you'll
win £100 if the ball is either red or yellow, and nothing otherwise (Table 3).

Typically people choose to say ‘black” in the first scenario, but ‘red
or yellow” in the second. Furthermore, many apparently rational people
exhibit this betting pattern.”? The problem is that if we assume that a
rational agent has precise probabilities and utilities, and chooses only

See Voorhoeve, Binmore, Stefansson, and Stewart (2016) for an analysis and discussion of
the prevalence of this betting pattern.
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Black (B) Red (R) Yellow (Y)

BET BLACK OR YELLOW £100 £0 £100
BET RED OR YELLOW £0 £100 £100

Table 3: The second scenario in the Ellsberg paradox

between those actions that maximise expected utility, then a rational agent
cannot exhibit this betting pattern. To see this, let’s suppose that some
agent who exhibits this betting pattern has precise probabilities, and is
maximising expected utility. We let the agent’s credence in B, R and Y
be given by Cr(B), Cr(R) and Cr(Y) respectively, and we let the utility of
winning £100 be given by u; and the utility of winning £0 be given by u5.
Then—given that our agent chooses ‘black” over ‘red” in the first scenario,
it follows that

Cr(B) -u1 +Cr(R) -up +Cr(Y) -up > Cr(B) - ug + Cr(R) - us + Cr(Y) - up,
and so that
Cr(B) -uy + Cr(R) -up > Cr(B) - ug + Cr(R) - u.

But then the agent chooses ‘red or yellow” over ‘black or yellow” in the
second scenario, and so it follows that

Cr(B) -u1 +Cr(R) -up +Cr(Y)-u; < Cr(B) -up+ Cr(R) - us +Cr(Y) - uy,
and so that
Cr(B) -uy + Cr(R) - up < Cr(B) - up + Cr(R) - u.

This contradicts our earlier result. Thus no agent exhibiting this betting
pattern can have only precise probabilities and utilities and be guided by
the rule maximise expected utility.

What alternative rule might be guiding the agent’s behaviour in Ells-
berg’s scenario? Several of the rules formulated by proponents of imprecise
probabilities can explain the agent’s behaviour, and so Ellsberg’s scenario
can be used to argue both for (some of) the alternative rules, and for
the claim that rational agents can have imprecise probabilities. To illus-
trate how some of these rules might handle Ellsberg’s scenario, I will run
through Ellsberg’s own solution to the problem.

In Ellsberg’s terminology, a situation can be “ambiguous” for an agent.
In an ambiguous situation, more than one probability distribution seems
reasonable to the agent. We can gather these probability distributions
into a set P = {p1, p2, ..., pn}: these are the distributions that the agent’s
information “does not permit him to rule out” (Ellsberg, 1961, p. 661). The
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agent assigns weights to each of these reasonable distributions, and arrives
at a composite “estimated” distribution p; where p; is a member of P. The
estimated pay-off A.s: of a given action A is the expected utility of the action
calculated using p; (Ellsberg, 1961, p. 661). But when faced with a choice of
actions, the rational agent may be guided not just by the expected pay-off
of each action, calculated in terms of p;. The agent may also take into
account the lowest expected utility of each action as calculated using any
member of P. We let A,,;, denote the minimum expected utility of action
A as calculated using any member of P, and we let x denote the agent’s
degree of confidence in p; (the “estimated” distribution). Then the index of
an action A is given by x - At + (1 — x) - Ay Ellsberg’s rule for action,
then, is as follows: choose the action with the highest index.

In Ellsberg’s scenario, the agent is in an ambiguous situation: the agent
can be certain that the probability that a ball randomly drawn from the
urn will be red is 1/3, but the agent cannot be certain of the probability
of the ball’s being yellow or black, because (s)he does not know the
proportion of yellow and black balls in the urn. There are a range of
probability distributions that seem reasonable to the agent: for every
number r between 0 and 2/3, there is a reasonable probability distribution
under which the probability of R is r, the probability of Y is 2/3 — r, and
the probability of B is 1/3. Let us assume for simplicity that the agent
assigns weight evenly across these reasonable probability distributions.
Thus on the composite “estimated” distribution, the probability of R is 1/3,
the probability of Y is 1/3, and the probability of B is 1/3. Thus the expected
payoff of saying ‘black’ in the first scenario (1/3 - u; +2/3 - u) is the same
as the expected payoff of saying ‘red” in that scenario, and the expected
payoff of saying ‘black or yellow” in the second scenario (2/3 - 11 4 1/3 - uy)
is the same as the expected payoff of saying ‘red or yellow’ in that scenario.

However a rational agent need not be guided merely by the estimated
payoff of each action, but also by the lowest expected utility of each action.
For the action of saying ‘red” in the first scenario, the lowest expected
utility is that given by the probability distribution according to which the
probability of R is 0, the probability of Y is 2/3, and the probability of B is
1/3: according to this distribution, the expected utility of saying ‘red” is 0.
In contrast, according to every distribution the expected utility of saying
‘black’ is 1/3, and so of course the lowest expected utility of saying ‘black” is
1/3. The ‘index’ of some action A is given by x - Aest + (1 — x) - Aypin, where
x is the agent’s level of confidence in the ‘estimated distribution’. Thus the
index of saying ‘red” is 1/3- x + 0 (1 — x), and the index of saying ‘black’
is 1/3-x 4+ 1/3- (1 — x). Thus whenever the agent is less than perfectly
confident in the estimated distribution—which a rational agent may well
be—the value x will be less than 1, and the index of saying ‘black” will be
greater than the index of saying ‘red’. Thus any agent for whom x is less
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than 1 will say ‘black’ rather than ‘red” in the first scenario. In the second
scenario, however, the very same agents will choose to say ‘red or yellow’
rather than ‘black or yellow’. For it works out that the expected payoff of
both of these actions is 2/3, but the lowest expected utility of saying ‘black
or yellow” (1/3) is lower than the lowest expected utility of saying ‘red or
yellow” (2/3), and so saying ‘black or yellow” has a lower index than saying
‘red or yellow’.

In short, an agent for whom x is less than 1 is ambiguity averse: all else
being equal, the agent prefers actions where (s)he knows the chances of
the relevant outcomes over actions where (s)he merely estimates those
outcomes. In the first scenario, if the agent says ‘black” then (s)he will
know the chance of winning £100, whereas if she says ‘red” then the chance
of winning will be unknown. In contrast, in the second scenario, if the
agent says ‘red or yellow’ then (s)he will know the chance of winning
£100, whereas if she says ‘black or yellow’, the chance of winning will be
unknown. Thus the betting pattern that is typically displayed in Ellsberg’s
scenario is permissible.

Here the imprecise probabilist seems to have an advantage over
the precise probabilist. The precise probabilist seems forced to claim—
counterintuitively—that the typical betting pattern in Ellsberg’s scenario
is irrational, whereas the imprecise probabilist can account for this betting
pattern well.

I turn now to the problem of sequential decision problems, which seem
to pose a problem for the imprecise probabilist.

3.2 Sequential Decision Problems

Here is a problem posed by Elga (2010)."3 According to the imprecise
probabilist, a rational agent may have a credence of, say, [0.1,0.8] in some
claim H. Now consider the following two bets:

Bet A: If H is true, then you lose £10; otherwise you win £15.
Bet B: If H is false, then you lose £10; otherwise you win £15.

These bets are offered sequentially: first Bet A is offered to the agent, and
then Bet B. The agent knows that she will be offered both bets, and has
the option of taking both, rejecting both, or taking either one. Intuitively, it
would be irrational for an agent to reject both bets, because rejecting both
bets leaves the agent with nothing, whereas accepting both bets leaves the
agent with a sure £5. Surely then a rational agent would not reject both?

The problems that the imprecise probabilist faces over sequential decision problems are
widely discussed in the literature from economics, and a puzzle related to Elga’s can be
found in Hammond (1988).
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The challenge that Elga poses to the imprecise probabilist is to put forward
a plausible decision rule that entails that a rational agent in this scenario
will not reject both bets. Various attempts have been made to meet this
challenge.

It seems at first as though the permissive choice rules will not do. To
see why, consider that if the agent is presented with just Bet A, there
will be avatars who recommend rejection, so it follows that the agent is
rationally permitted to reject Bet A. But then when presented with Bet B,
there will similarly be avatars (different avatars) who recommend that this
bet is rejected. So it follows that the agent is rationally permitted to reject
Bet B. Thus it seems that the permissive choice rules would permit the
agent to reject both bets, and so this rule cannot be used to meet Elga’s
challenge. However defenders of this rule may claim either that a sequence
of actions is permitted only when that sequence is recommended by a
single avatar, or else challenge Elga on his assumption that accepting each
bet is a separate action, rather than parts of a single action (Weatherson,
2003; Williams, 2014).

Similarly, it may seem that maximin, Ellsberg’s rule, and others will be
unable to handle Elga’s scenario, for many of these rules would permit a
rational agent to reject both bets if offered on separate occasions. However
as several authors have pointed out, and as Elga (2012) acknowledges,
once we call on the resources of game theory, we find that several of these
rules do entail that a rational agent in Elga’s scenario (in which the agent
knows that (s)he will be offered both bets) will not reject both bets. See S.
Bradley and Steele (2014), Chandler (2014), and Sahlin and Weirich (2014);
see Mahtani (2018) for a response.

A further way of responding to Elga’s challenge is to argue that when
faced with a series of choices, a rational agent will make a plan and stick
to it—and where an agent has an imprecise credence function, that plan
will be endorsed as maximising expected utility by at least one of the
agent’s avatars. For further discussion of this sort of view, see Bratman
(2012), Gauthier (1986), and McClenen (1990).

Finally, there are authors who reject the assumption that an agent in an
Elga-style scenario who rejects both bets is thereby irrational. For example,
Moss (2015) constructs an account of what it is for an agent with imprecise
credences to “change his or her mind”, and argues that it is permissible
in at least some Elga-style scenarios for an agent to reject Bet A while
identifying with one of her avatars, and then change her mind and reject
Bet B, identifying with a different avatar. Others such as S. Bradley and
Steele (2014) also maintain that a rational agent in an Elga-style scenario
may reject both bets.

Thus there are a range of interesting ways that the imprecise proba-
bilist might respond to the sort of sequential decision problem that Elga
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has raised, and the debate over which rule of rationality the imprecise
probabilist should endorse is still ongoing.

4 SUMMARY

I began with a natural motivation for accepting imprecise probabilism. I
then outlined the most widely discussed account of imprecise probabilities,
and considered how the account should be interpreted. I then turned to
two categories of objections to the account: objections concerning learning,
and objections concerning decision making. Within learning, I discussed
two different objections: firstly the problem of belief inertia, and secondly
the problem of dilation. Within decision making, I focused on the problems
that the imprecise probabilist faces in situations of sequential choice. There
has been recent, lively debate about these objections, and while various
responses have been put forward by the imprecise probabilists, we are
currently far from a consensus.
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