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F U L L & PA RT I A L B E L I E F Konstantin Genin

Philosophers and scientists in allied fields use the term ‘belief’ to refer
roughly to the attitude taken toward a proposition regarded as true. That
first approximation is unlikely to satisfy those in search of a non-circular
definition. Early twentieth-century psychologists and philosophers of mind
attempted to address that difficulty by reducing belief to some sort of
behavioral disposition. Although the behaviorist project is usually taken to
have been a failure, there is broad consensus that belief leaves a distinctive
behavioral footprint: most philosophers would agree that an agent who
believes P can be expected to accept P as a premise in reasoning, planning
and deliberation. If I believe that the A train is running express, I will
plan to take it if going to Harlem, but try to catch the local if going to
the Museum of Natural History. Similarly banal examples can be easily
multiplied.

It is commonly held that belief is not just an all-or-nothing matter, but
admits of degrees. A veteran subway rider may have a higher degree
of belief in the proposition that the A train will run local next weekend
than in the proposition that the A train will run local next rush hour.
Philosophers sufficiently impressed by examples of this sort orient their
activity around the structure of “partial belief” rather than the all-or-
nothing attitude denoted by “full belief,” or belief simpliciter. Although it
is easy to generate plausible examples of partial beliefs, it is harder to say
exactly what is meant by a degree of belief. An agent’s degree of belief in
P may reflect their level of confidence in the truth of P, their willingness to
assent to P in conversation, or perhaps how much evidence is required to
convince them to abandon their belief in P. A venerable tradition, receiving
classical expression in Ramsey (1931) and de Finetti (1937), holds that
degrees of belief are most directly reflected in which bets regarding P an
agent is willing to accept. At least since Pascal, mainstream philosophical
opinion has held that degrees of belief are well-modeled by probabilities
(see Hacking, 1975, for a readable history). To this day, subjective, or
“epistemic,” probability remains one of the dominant interpretations of the
probability calculus.

A parallel tradition, though never as dominant, holds that degrees of
belief are neither so precise, nor as definitely comparable as suggested
by Pascal’s probabilistic analysis. Keynes (1921) famously proposes that
degrees of belief may enjoy only an ordinal structure, which admits of
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qualitative, but not quantitative, comparison. Keynes even suggests that
the strength of some pairs of partial beliefs cannot be compared at all.

Cohen (1980) traces another minority tradition to Francis Bacon’s Novum
Organum. On the usual probability scale a degree of belief of zero in
some proposition implies maximal conviction in its negation. On the
Baconian scale, a degree of belief of zero implies no conviction in either
the proposition or its negation. Thus, the usual scale runs from “disproof
to proof” whereas the Baconian runs from “no evidence, or non-proof to
proof” (Cohen, 1980, p. 224). In the past few decades, Baconian probability
has received increasing attention, resulting in theories approaching the
maturity and sophistication of those in the Pascalian tradition (Spohn,
2012; Huber, this volume).

Formal epistemologists are traditionally interested in both full and
partial belief, although most would probably take partial belief as the
primary object of study. Moss (2018) even argues that there are instances
of probabilistic knowledge that do not involve any full beliefs. On the
other hand, traditional analytic epistemologists and philosophers of mind
routinely study full belief and related all-or-nothing attitudes such as
knowledge and desire, but only rarely show interest in their graded
counterparts. The differential emphasis on partial beliefs, although often
commented upon, may reflect sociological factors more than any essential
difference between the fields. These differences will likely become less
pronounced in the future.

What is less often remarked upon is traditional epistemology’s focus
on individual beliefs, rather than entire systems of belief, as is typical
in formal epistemology. Traditional philosophers are interested in what
it means for an agent S to believe a particular proposition P. Represen-
tationalist philosopher of mind wonder how intentional states, or states
that involve “aboutness” arise at all, especially if the agents involved are
correctly understood as purely physical systems. Formal epistemologists
tend to take matters of mental representation for granted, rarely inquiring
into how the trick is worked. Dispositionalist philosophers of mind are
interested in analyzing an agent’s belief that P into a disposition to reason
or act, although they will disagree about how readily these dispositions
will be observed in behavior. Their focus on individual beliefs gives rise
to certain standard objections. A Muscovite who believes, in the 1930s,
that the Stalinist terror is morally wrong, may not betray her beliefs in her
behavior at all.

Formal epistemologists resolve such difficulties by insisting on a holism
about belief: it is entire systems of belief (and perhaps utility) that are
reflected in deliberation and action, otherwise underdetermined by in-
dividual beliefs. In general, formal epistemologists are interested in the
norms governing the structure and dynamics of whole systems of full or
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partial belief: how individual beliefs must systematically cohere in order to
be rational; how they must be reflected in decision making; and how they
ought to accommodate new evidence. Accordingly, those issues will be the
focus of this article. For a good introduction to belief in the philosophy of
mind, see Schwitzgebel (2015). See Hájek and Lin (2017) for a suggestive
discussion of how mainstream and formal epistemology would benefit
from increased sensitivity to each other’s concerns.

Not everyone agrees that both partial and full beliefs exist—there are
theorists who attempt to eliminate one or the other attitude. But any-
one who admits the existence of both full and partial belief inherits a
thorny problem: how are full beliefs related to partial beliefs? Two answers
immediately suggest themselves. The first claims that full belief is just
the maximal degree of partial belief. The second argues that full belief
is just partial belief above a certain threshold. Both answers give rise to
formidable problems. Other theorists claim that an agent’s partial beliefs
underdetermine their full beliefs in the absence of information about the
agent’s preferences.

In the last few years, the question of how partial and full belief are
related has received considerable attention in formal epistemology, giving
rise to several subtle, elegant and, unfortunately, incompatible solutions.
The debate between these alternatives is the heart of this article and is
presented in Section 5. The preceding sections develop the context and
background necessary to understand and appreciate this debate. Readers
who feel comfortable with these prerequisites, as well as those who are in
a hurry, may skip to the final section and refer back to previous sections
only as necessary.

1 the objects of belief

In the following we will see several proposed models for the structure
of belief. Most of these proposals take the objects of belief to be either
propositions, or sentences in a formalized language. This section reviews
the basic notions required to work with propositions and sentences. If
the reader feels overwhelmed with the technicalities in this section, they
should feel free to postpone them, and refer back to it on-the-fly. Readers
who are accustomed to working with these objects may freely skip this
section.

For our purposes, a possible world is a way the world, or some interesting
aspect of the world, might be. We let W denote the set of all possible
worlds, i.e. the set of all possible ways the world might be. It is not
necessary to think of these as objective, metaphysical realities. More often,
possible worlds are constrained by contextual presuppositions, and their
granularity reflects our interests. Suffice it to say that knowing the true
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possible world w ∈ W would satisfy an agent’s curiosity—she would
thereby settle some interesting matter under discussion. A proposition
P ⊆ W is a set of possible worlds, i.e. it is a partial specification of the
way the world is. To know that P is true is to know that the true world is
among the set of worlds {w : w ∈ P} since P is true in a possible world w
iff w ∈ P.

Propositions enjoy a set-theoretic structure. The relative complement
of P, ¬P = W \ P, is the set of all worlds in which P is false. If P, Q
are arbitrary propositions, then their intersection P ∩ Q is the set of all
worlds in which P and Q are both true. The disjunction P ∪ Q is the set
of worlds in which at least one of P, Q is true. The material conditional
P→ Q is the set of worlds ¬P ∪Q, in which either P is false or Q is true.
If P ⊆ Q we say that P entails Q and also that P is logically stronger than
Q. If P ⊆ Q and Q ⊆ P we write P ≡ Q and say that P and Q are logically
equivalent. The tautological proposition W is true in all worlds and the
contradictory proposition, the empty set ∅, is not true in any world. A set
of propositions A is consistent iff there is a world in which all the elements
of A are true, i.e. if ∩A 6= ∅. Otherwise, we say that A is inconsistent. A
set of propositions A is mutually exclusive iff the truth of any one element
implies the falsehood of all other elements. The set of logical consequences
of A, written Cn(A), is the set {B ⊆W : ∩A entails B}. Note that if A is
inconsistent, then Cn(A) is ℘(W), the set of all propositions over W.

A set of propositions F is a field (sometimes algebra) iff F contains W
and it is closed under intersection, union and complementation. That is
to say that if A, B are both elements of F then W, A ∪ B, A ∩ B, and ¬A
are also elements of F . A set of propositions F is a σ-field (sometimes
σ-algebra) iff it is a field that is closed under countable intersections, i.e. if
S ⊆ F is a countable collection of propositions, then the intersection of
all its elements ∩S is also an element of F . That definition implies that a
σ-field is also closed under countable unions. It is not difficult to prove
that an intersection of σ-fields is also a σ-field. That implies that every
collection of propositions F generates σ(F ), the least σ-field containing
F , by intersecting the set of all σ-fields containing F .

Propositions, although usually expressed by sentences in a language,
are not themselves sentences. That distinction is commonly drawn by
saying that propositions are semantic objects, whereas sentences are syn-
tactic objects. Semantic objects (like propositions) are meaningful, since
they represent meaningful possibilities, whereas bits of syntax must be
“interpreted” before they become meaningful. In a slogan: sentences are
potentially meaningful, whereas propositions already are.

For our purposes, a language Λ is identified with the set of all grammat-
ical sentences it contains. Sentences will be denoted by lowercase letters
p, q, . . .. The language Λ is assumed to contain a set of atomic sentences
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a, b, . . . which are not built out of any other sentences, as well as all the sen-
tences generated by combining the atomic sentences with truth-functional
connectives from propositional logic. In other words: if p, q are sentences
in Λ then ¬p, p∨ q, p∧ q, p→ q, and p↔ q are also sentences in Λ. These
are meant to be read respectively as “not p,” “p or q,” “p and q,” “if p,
then q,” and “p if and only if q.” The symbol ⊥ (pronounced “falsum”)
denotes an arbitrarily chosen contradiction (e.g. p ∧ ¬p) and the symbol
> denotes an arbitrary tautology. Some of the sentences in Λ follow “log-
ically” from others. For example, under the intended interpretation of
the truth-functional connectives, p follows from the sentence p ∧ q and
also from the set of sentences {q, q → p}. To capture the essentials of
logical consequence, we introduce a consequence operator, which maps any
set of sentences Γ to its logical consequences Cn(Γ). The consequence
operator is assumed to satisfy the following properties, which abstract the
characteristic features of deductive logic.

Γ ⊆ Cn(Γ). (Inclusion)

If Γ ⊆ ∆, then Cn(Γ) ⊆ Cn(∆). (Monotony)

Cn(Γ) = Cn(Cn(Γ)). (Idempotence)

Inclusion merely expresses the triviality that any sentence p is a deduc-
tive consequence of itself. Monotony expresses the fact that adding more
premises to a deductive argument allows you to derive all the same con-
clusions as you could with fewer. Idempotence says that Cn(∆) contains all
the deductive consequences of ∆. We use Γ ` p as an alternative notation
for p ∈ Cn(Γ) and Γ 0 p for p /∈ Cn(Γ). We write ` p for p ∈ Cn(∅). The
set of theorems of propositional logic is denoted by Cn(∅) since these can
be derived from the axioms alone, without any additional assumptions.

In the following, we will sometimes assume that the consequence opera-
tor satisfies the following additional property:

q ∈ Cn(∆ ∪ {p}) implies (p→ q) ∈ Cn(∆). (Deduction theorem)

The deduction theorem expresses the fact that you can prove the condi-
tional sentence p→ q by assuming p and then deriving q. Unsurprisingly,
it is possible to prove that this property holds for most deductive logics
one would encounter, including both propositional and first-order logic.

There is, of course, a systematic way to map sentences in a language
to propositions. A valuation function V maps every atomic sentence a in
Λ to a proposition V(a), the set of worlds in which a is true under that
interpretation of the atoms. The valuation function also interprets the
non-atomic sentences in a way that respects the intended meanings of
the logical connectives, i.e. so that V(>) = W, V(¬p) = W \ V(p), and
V(p∧ q) = V(p)∩V(q). In this fashion, each sentence in Λ is mapped to a
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set of possible worlds. Each language Λ and valuation function V generate
the field FΛ,V = {V(p) : p ∈ Λ}. In turn, FΛ,V generates σ(FΛ,V), the
least σ-field containing it.

We write Γ � p if for all valuations V,⋂
q∈Γ

V(q) ⊆ V(p).

Then, Γ � p expresses the fact that no matter how the non-logical vocabu-
lary of Λ are interpreted, p is true in all the worlds in which all sentences
in Γ are true. We say that p is valid iff {>} � p, i.e if W ⊆ V(p) for all
valuation functions. Then, p is valid iff p is true in all possible worlds, no
matter how the non-logical vocabulary are interpreted. For example, the
sentence p ∨ ¬p is valid.

We assume the following property of our deductive consequence rela-
tion.

If Γ ` p, then Γ � p. (Soundness)

Soundness says that if the sentence p is a derivable consequence of the
set of sentences Γ, then no matter how the non-logical vocabulary of
Λ are interpreted, p is true in all the worlds in which all the sentences
in Γ are true. That is to say that from true premises, our consequence
relation always derives true conclusions. Soundness also implies that
every theorem is valid. Soundness is a basic requirement of any deductive
consequence relation, and illustrates the intended connection between
deductive proof and semantic entailment.

Sentences are, in a sense, capable of expressing distinctions that propo-
sitions cannot. For example, the two sentences p and ¬¬p are obviously
distinct. But if p and q are provably equivalent, i.e. if ` p ↔ q, then
{p} ` q and {q} ` p. By Soundness, {p} � q and {q} � p. Therefore,
for any valuation function, V(p) = V(q). So p and q must express the
same proposition. Of course, an agent who is unaware of the equivalence
might believe p without believing q. What’s worse, every sentence p such
that ` p must express the tautological proposition W. Of course, ordinary
agents do not always recognize theorems of propositional logic. For this
reason, some argue that it is sentences, rather than propositions, that are
the appropriate objects of belief. However, most of the proposed models
we will study require that rational agents adopt the same belief attitude
toward logically equivalent sentences. So long as that is required, there
is no significant difference between taking the objects of belief to be sen-
tences or propositions. Still others are not satisfied with either sentences,
or propositions. Perry (1979), Lewis (1979) and Stalnaker (1981) argue
that in order to capture essentially indexical beliefs—beliefs that essentially
involve indexicals such as I, here, or now—the objects of belief must be



full & partial belief 443

centered propositions. We will not take up this helpful suggestion here,
but see Liao (2012) for a discussion of the costs and benefits of centered
propositions.

2 structures for full belief

2.1 Non-monotonic Logic

In Section 1 we introduced the notion of a deductive consequence relation.
The characteristic feature of a deductive consequence relation is that
conclusions are not retracted when premises are added.

If Γ ⊆ ∆, then Cn(Γ) ⊆ Cn(∆). (Monotony)

Of course, all sorts of seemingly rational everyday reasoning violates
Monotony. Reasoning according to typicality seems justified in ordinary
circumstances, but fails to satisfy Monotony. If you were told that Tweety is
a bird, you would be justified in concluding that Tweety flies, since typical
birds fly. You would retract your conclusion however, if you were to learn
that Tweety is a penguin. That does not mean that your original inference
was unreasonable or irrational. Inductive inference is also famously non-
monotonic. After observing one hundred white swans, you might conclude
that all swans are white. Of course, you would retract your conclusion
if you ever came across a black swan. Pace Pyrrhonian skepticism, there
must be at least some justified inductive inferences. Ethical reasoning is
also shot through with non-monotonicities. Ross (1930) discusses prima
facie duties, or defeasible obligations, that are binding unless superseded
by more urgent, and competing obligations. Ullman-Margalit (1983) points
out that legal reasoning routinely relies on presumptions—of innocence,
good faith, sanity, etc.—that may be withdrawn in light of new evidence.
Non-Monotony is simply unavoidable in ordinary human contexts.

Non-monotonic logic studies a defeasible consequence relation |∼ be-
tween premises, on the left of the wavy turnstile, and conclusions on the
right. One may think of the premises on the left as a set Γ of sentences
expressing “hard evidence” that an agent may possesses, and the conclu-
sions on the right to be the defeasible conclusions that are justified on the
basis of Γ. Thus, the expression Γ |∼ p may be read as “if I were to learn
all and only the sentences in Γ, I would be justified in concluding that p.”

Recall from Section 1 that a deductive consequence relation satisfies
Soundness, i.e. Γ ` p only if p is true in all the worlds in which all
sentences in Γ are true. It is clear from the preceding examples that
defeasible reasoning cannot satisfy Soundness. If Γ |∼ p then perhaps p is
true in “typical” worlds in which Γ is true, or in “most” worlds in which
Γ is true, or perhaps p is a sharply testable possibility compatible with Γ.
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We call a consequence relation ampliative if Γ |∼ p, but there are worlds in
which all sentences in Γ are true, but p is false. It is possible to construct
consequence relations that are non-ampliative and non-monotonic, but
ampliativity and non-monotonicity go hand in hand in all paradigmatic
cases.

The field of artificial intelligence has, since its inception, been concerned
with implementing some form of rational, ampliative, non-monotonic
reasoning in artificial agents. For these purposes, deductive consequence
relations are unhelpfully restrictive. That does not preclude the possibility
that there is some other logic that governs good ampliative reasoning. The
past forty years have seen the creation of many logics for non-monotonic
inference, often developed to model a specific kind of defeasible reasoning.
See Strasser and Antonelli (2018) for an excellent overview.

In view of this profusion of specialized logics, non-monotonic logic inves-
tigates which properties a logic of defeasible consequence must have in
order to count as a logic at all.1 Non-monotonic logic provides a crucial
lingua franca for comparing different logics of defeasible inference. It is
also extremely apt for the purposes of this article, because it allows us to
compare different normative theories of how beliefs ought to be updated
in light of new evidence, as well as theories of how full and partial beliefs
ought to relate to each other.

Before we proceed to the technical development, it will be helpful to
introduce an important early critique of nonmonotonic logic due to the
philosopher John Pollock. Pollock (1987) identifies two sources of non-
monotonicity in defeasible reasoning. An agent may believe p, because she
believes q and takes q to be a defeasible reason for p. Pollock distinguishes
two kinds of defeaters for this inference: a rebutting defeater is a defeasible
reason to believe ¬p, whereas an undercutting defeater is a reason to believe
¬q. Either kind of defeater may induce an agent to retract her belief in p.
Pollock’s point is that since nonmonotonic logics typically do not represent
the structure of an agent’s reasons, they often fail to elegantly handle cases
of undercutting defeat. We shall soon see several examples.

2.1.1 Principles for Nonmonotonic Logic

Let Λ be a formal language, and let Cn(·) be a deductive consequence
relation, as discussed in Section 1. There are in fact two closely related
approaches to the study of non-montonic consequence relations. The
finitary approach studies a relation between individual sentences p |∼
q. That approach is taken, for example, in the very influential Kraus,
Lehmann, and Magidor (1990). The infinitary approach studies a relation
Γ |∼ p between an arbitrary set of sentences on the left and individual

1 Gabbay (1985) was the first to suggest this abstract point of view.
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sentences on the right. That approach is taken in the canonical reference
work Makinson (1994) and cannot in general be simulated by the finitary
approach. For the most part we will follow Makinson (1994). However,
some results are known to hold only for the finitary settings. Furthermore,
the more general infinitary principles are sometimes better appreciated
by their finitary consequences. For that reason, we will sometimes switch
back and forth between the infinitary and the finitary approach. We write
C(Γ) for the set {p : Γ |∼ p}. shorthand for Γ ∪ {p} |∼ q.

If defeasible logics fail to satisfy Monotony, which principles ought they
satisfy? Are there some logical principles which ought to be validated by
all rational defeasible reasoning? Almost all consequence relations studied
in the literature satisfy the following principle.

Γ ⊆ C(Γ). (Inclusion)

In its single-premise formulation Inclusion merely says that p |∼ p, which
is surely unexceptionable. The following two principles are also widely
accepted in non-monotonic logic.

Γ ⊆ ∆ ⊆ C(Γ) implies C(∆) ⊆ C(Γ). (Cut)

Γ ⊆ ∆ ⊆ C(Γ) implies C(Γ) ⊆ C(∆). (Cautious Monotony)

As special cases, these two principles entail:

Γ |∼ p and Γ ∪ {p} |∼ q implies Γ |∼ q; (Cut)

Γ |∼ p and Γ |∼ q implies Γ ∪ {p} |∼ q. (Cautious Monotony)

Cut says that adding conclusions inferred from Γ to the set of premises
does not increase inferential power. Cautious Monotony says that it does
not decrease inferential power. If we think of the premises on the left of
|∼ as my set of “hard” evidence, and the set C(Γ) as a theory inductively
inferred on the basis of Γ, then Cautious Monotony is an expression of
hypothetico-deductivism: if I observe a consequence of my theory C(Γ),
I should not thereby retract any previous conclusions. Moreover, Cut
says that I should not add any new conclusions. Taken together the two
principles say that if you observe a consequence of your theory, you should
not change it:

Γ ⊆ ∆ ⊆ C(Γ) implies C(Γ) = C(∆). (Cumulativity)

Gabbay (1985) proposes that (finitary versions of) Inclusion, Cut and
Cautious Monotony are the minimal properties that every interesting non-
monotonic logic must satisfy. That remains the consensus view to this day.
It is easy to show that Inclusion and Cut jointly imply a principle familiar
from Section 1:
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C(Γ) = C(C(Γ)). (Idempotence)

There is also the question of how a non-monotonic consequence relation
C(·) should interact with a classical relation of deductive consequence
Cn(·). The following principle says that defeasible reasoning allows you
to make strictly more conclusions than classical deductive reasoning:

Cn(Γ) ⊆ C(Γ). (Supraclassicality)

That is perhaps unreasonable if we think of C(·) as modeling the defeasible
reasoning of some bounded agent. It begins to sound better if we think of
C(Γ) as modeling the ampliative conclusions that are justified on the basis
of Γ.

Makinson (1994) observes that any supraclassical C(·) that satisfies
Idempotence and Cumulativity also satisfies the following pair of princi-
ples.

Cn(C(Γ)) = C(Γ). (Left Absorption)

C(Γ) = C(Cn(Γ)). (Right Absorption)

Left Absorption says that C(Γ) is closed under deductive consequence.
Right Absorption says that the conclusions that are justified on the basis
of Γ depend only on the logical content of Γ, and not on its mode of
presentation. The conjunction of Right and Left Absorption is called Full
Absorption.

Makinson advocates for one more interaction principle:

C(Γ) ∩ C(∆) ⊆ C(Cn(Γ) ∩ Cn(∆)). (Distribution)

That condition is perhaps too complex to admit of an intuitive gloss. How-
ever, we can better understand its meaning from its finitary consequences.
Any supraclassical consequence relation satisfying Distribution and Full
Absorption also satisfies the following.

Γ ∪ {p} |∼ r and Γ ∪ {q} |∼ r implies Γ ∪ {p ∨ q} |∼ r. (Or)

Γ ∪ {p} |∼ q and Γ ∪ {¬p} |∼ q implies Γ |∼ q. (Case reasoning)

These two principles seem to be very compelling. Any genuine conse-
quence relation ought to enable reasoning by cases. If I would infer q
irrespective of what I learned about p, I should be able to infer q before the
matter of p has been decided. Similarly, if p follows defeasibly from both p
and q, it ought to follow from their disjunction. Any consequence relation
that satisfies Supraclassicality, Left Absorption and Case Reasoning must
also satisfy the following principle:

Γ ∪ {p} |∼ q implies Γ |∼ p→ q. (Conditionalization)
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To prove that entailment suppose that Γ ∪ {p} |∼ q. Since p → q is a
deductive consequence of q, it follows by Left Absorption that Γ ∪ {p} |∼
p → q. Furthermore, since p → q is a deductive consequence of ¬p it
follows by supraclassicality that Γ ∪ {¬p} |∼ p → q. By Case Reasoning,
Γ |∼ p→ q.

Conditionalization says that upon learning new evidence, you never
“jump to conclusions” that are not entailed by the deductive closure of
your old beliefs with the new evidence. That is not an obviously appealing
principle. An agent that starts out with Γ = Cn(∅) will either fail to
validate Conditionalization or never make any ampliative inferences at
all. Suppose that after observing 100 black ravens an agent validating
Conditionalization comes to believe that all ravens are black. Then, at the
outset of inquiry, she must have believed that either all ravens are black,
or she will see the first non-black raven among the first hundred. Such an
agent seems strangely opinionated about when the first counterexample
to the inductive generalization must appear.

For a more realistic example, consider the 1887 Michelson-Morely ex-
periment. After a null result failing to detect any significant difference
between the speed of light in the prevailing direction of the presumed
aether wind, and the speed at right angles to the wind, physicists turned
against the aether theory. If the physicists validated Conditionalization
then, before the experiments, they must have believed that either there is
no luminiferous aether, or the aether wind blows quickly enough to be
detected by their equipment. But why should they have been so confident
that the aether wind is not too slow to be detectable? Even if there is
nothing objectionable about an agent who validates Conditionalization,
there is something very anti-inductivist about the thesis that all justified
defeasible inferences on the basis of new evidence can be reconstructed
as deductive inferences from prior conclusions plus the new evidence.
Schurz (2011) makes a similar criticism, in a slightly different context:

Inductive generalizations as well as abductive conjectures ac-
company belief expansions by new observations, in science as
well as in common sense cognitions. After observing several
instances of a ‘constant conjunction,’ humans almost automat-
ically form the corresponding inductive generalization; and
after performing a new experimental result sufficiently many
times, experimental scientists proclaim the discovery of a new
empirical law . . . [Conditioning]-type expansion is not at all
creative but merely additive: it simply adds the new informa-
tion and forms the deductive closure, but never generates new
(non-logically entailed) hypotheses.
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Schurz objects that, according to Conditionalization, dispositions to form
inductive generalizations must be “programmed in” with material con-
ditionals at the outset of inquiry. Anyone sympathetic to this view must
reject either Supraclassicality, Left Absorption, or Case Reasoning. Finding
such surprising consequences of seemingly unproblematic principles is
one of the boons of studying non-monotonic logic.

We finish this section by introducing one more prominent and con-
troversial principles of non-monotonic logic. The position one takes on
this principle will determine how one feels about many of the theories
which we turn to in the following. Kraus et al. (1990) claim that any ra-
tional reasoner should validate the following strengthening of Cautious
Monotony.

Γ |∼ p and Γ ��|∼ ¬q entails Γ ∪ {q} |∼ p. (Rational Monotony)

Rational Monotony says that so long as new evidence q is logically compat-
ible with your prior beliefs C(Γ), you should not retract any beliefs from
C(Γ). Accepting both Rational Monotony and Conditionalization amounts
to saying that when confronted with new evidence that is logically con-
sistent with her beliefs, a rational agent responds by simply forming the
deductive closure of her existing beliefs with the new evidence. On that
view, deductive logic is the only necessary guide to reasoning, so long
as you do not run into contradiction. Stalnaker (1994) gives the following
well-known purported counterexample to Rational Monotony.

Suppose an agent initially believes the following about the three com-
posers Verdi, Bizet, and Satie.

(Iv) Verdi is Italian;

(Fb) Bizet is French;

(Fs) Satie is French.

Let p be the sentence that Verdi and Bizet are compatriots, i.e. (Fv ∧
Fb) ∨ (Iv ∧ Ib). Let q be the sentence that Bizet and Satie are compatriots.
Suppose that the agent receives the evidence p. As a result, she retracts
her belief in Iv∧ Fb concluding that either Verdi and Bizet are both French
or they are both Italian. She retains her belief that Satie is French. Notice
that after updating on p, she believes it is possible that Bizet and Satie are
compatriots, i.e. p ��|∼ ¬q. Now suppose that she receives the evidence q.
Since q is compatible with all her previous conclusions, Rational Monotony
requires her to conclude that all three composers are French. However, it
seems perfectly rational to suspend judgment and concludes that the three
are either all Italian, or all French.

Kelly and Lin (forthcoming) give the following counterexample to Ratio-
nal Monotony, based on Lehrer’s (1965) no-false-lemma variant of Gettier’s
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famous (1963) scenario. There are just two people in your office, named
Alice and Bob. You are interested in whether one of them owns a certain
Ford. Let p be the sentence that Alice owns the Ford. Let q be the sentence
that Bob has the Ford. You have inconclusive evidence that Alice owns
the Ford—you saw her driving one just like it. You have weaker evidence
that Bob owns the Ford—his brother owns a Ford dealership. Based on
that evidence Γ you conclude p ∨ q, i.e. that someone in the office owns
the Ford, but do not go so far as inferring p, or q. You ask Alice and she
tells you that the Ford she was driving was rented. That defeats your main
reason for p ∨ q, therefore you retract your belief that someone in the office
has a Ford. But since Γ ��|∼ ¬p, Rational Monotony requires you to conclude
that Bob owns the Ford. However, there does not seem to be anything
irrational about how you have reasoned. This seems to be an illustration
of Pollock’s (1987) point: the logic is going wrong because it is ignoring
the structure of the agent’s reasons.

We end this section on a terminological note. It is common in the
literature to use System P (Preferential) to refer to the following set of
single-premise principles, labeled so that the reader can identify their
infinitary analogues. The terminology is due to Kraus et al. (1990).

p |∼ p. (Reflexivity)

` p↔ q and p |∼ r implies q |∼ r. (Left equivalence)

` q→ r and p |∼ q implies p |∼ r. (Right weakening)

p |∼ q and p |∼ r implies p |∼ q ∧ r. (And)

p |∼ r and q |∼ r implies p ∨ q |∼ r. (Or)

p |∼ q and p |∼ r implies p ∧ q |∼ r. (Cautious monotony)

System R (Rational) arises from System P by adding a single-premise
version of Rational Monotony:

p |∼ r and p ��|∼ ¬q implies p ∧ q |∼ r. (Rational monotony)

2.1.2 Preferential Semantics

So far we have considered a non-monotonic consequence relation merely
as a relation between syntactic objects. We can rephrase properties of
non-monotonic logic “semantically,” i.e. in terms of the possible worlds in
which the sentences are true or false. In some cases, this allows us to give
a very perspicuous view on defeasible logic.

Recall from Section 1 that a deductive consequence relation satisfies
Soundness, i.e. that Γ ` p only if p is true in all the worlds in which
all sentences in Γ are true. As we have discussed, non-monotonic logics
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are ampliative, and therefore must violate Soundness. Shoham (1987)
inaugurated a semantics for non-monotonic logics in which Γ |∼ p only if
p is true in a “preferred” set of worlds in which Γ is true. These are usually
interpreted as the “most typical,” or “most normal” worlds in which all
sentences in Γ are true. If Γ is a set of sentences in Λ and V is a valuation
function, we write V(Γ) as shorthand for ∩q∈ΓV(q). See Section 1 if you
need a refresher on valuation functions. Kraus et al. (1990) first proved
most of the results of this section for single-premise consequence relations.
We follow Makinson (1994) in presenting their infinitary generalizations.

A preferential model is a triple 〈W, V,<〉 where W is a set of possible
worlds, V is a valuation function and < is an arbitrary relation on the
elements of W. The relation < is transitive iff x < y and y < z implies
x < z. The relation < is irreflexive iff for all w ∈ W it is not the case that
w < w. A transitive, irreflexive relation is called a strict order. We write
w ≤ v iff w < v or w = v. The strict order < is total iff for w, v ∈W either
w ≤ v or v ≤ w.

If Γ is a set of sentences, we say that w ∈ Min<(Γ) iff w ∈ V(Γ) and
there is no v ∈ V(Γ) such that v < w. In other words, w ∈ Min<(Γ) iff w
is a <-minimal element of V(Γ). Every preferential model gives rise to a
consequence relation by letting

Γ |∼< p iff Min<(Γ) ⊆ V(p),

i.e. Γ |∼< p iff p is true in all the minimal worlds in which all sentences in
Γ are true. Write C<(Γ) for the set {p : Γ |∼< p}.

We say that a preferential model is stoppered iff for every set of sentences
Γ, if w ∈ V(Γ) then there is v ≤ w such that v ∈ Min<(Γ). (Note that
Kraus et al., 1990, called stoppered models smooth models.) Makinson
(1994) proves the following.

Theorem 1 Suppose that M = 〈W, V,<〉 is a preferential model. Then C<(·)
satisfies Inclusion, Cut, Supraclassicality, and Distribution. If M is stoppered,
then C<(·) also satisfies Cautious Monotony.

Makinson (1994) also gives the following two partial converses. The latter
essentially reports a result from Kraus et al. (1990).

Theorem 2 If C(·) satisfies Inclusion, Cut, and Cautious Monotony, there is a
stoppered preferential model M = 〈W, V,<〉 such that C(·) = C<(·).

Theorem 3 If C(·) satisfies Inclusion, Cut, Cautious Monotony, Supraclas-
sicality, and Distribution, then there is a stoppered preferential model M =

〈W, V,<〉 such that for all finite ∆ ⊆ Λ, C(∆) = C<(∆). Moreover, M may be
constructed such that < is a strict order.
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Taken together, Theorem 1 and Theorem 3 say that, at least for finitary
consequences, the consequence relations generated by preferential models
are exactly the consequence relations satisfying Inclusion, Cut, Cautious
Monotonicity, Supraclassicality, and Distribution. In fact, one can always
think of these preferential models as generated by a strict (partial) order.
The question remains whether there are any natural conditions on pref-
erential models that ensure that Rational Monotony is also satisfied. It
turns out that Rational Monotony follows from the requirement that the
preference relation < is a total order.

Say that a preferential model M = 〈W, V,<〉 is modular iff for all
w, u, v ∈ W, if w < u ≈ v then w < v. Here u ≈ v means that u, v
are unordered, i.e. it is not the case that u < v and it is not the case that
v < u. If < is a strict order, modularity is equivalent to the intuitive prop-
erty of rankedness: there is a totally ordered set T and a function ρ : W → T
such that for all u, v ∈ W, u < v iff ρ(u) � ρ(v), where � is the total
ordering of T. Makinson proves the following.

Theorem 4 Suppose that M = 〈W, V,<〉 is a preferential model. If M is mod-
ular, then C<(·) satisfies Rational Monotony.

Kraus et al. (1990) prove the following partial converse.

Theorem 5 If C(·) finitarily satisfies Inclusion, Cut, Cautious Monotony,
Supraclassicality, Distribution, and Rational Monotony, then there is a ranked,
stoppered preferential model M = 〈W, V,<〉 such that for all finite ∆ ⊆ Λ,
C(∆) = C<(∆). Moreover, M may be constructed such that < is a strict order.

The essential difference between preferential models that satisfy Rational
Monotony and those that do not is that the former correspond to those
generated by a ranked partial order. This result is helpful to keep in mind
because in the following we will see several models of belief that can
be understood as arising from a total plausibility order, and some that
arise from a merely partial plausibility order. In light of Theorem 3 and
Theorem 5, we can expect the former to satisfy System R and the latter to
satisfy only the weaker System P.

2.2 AGM Belief Revision Theory

The theory of belief revision is concerned with how to update one’s beliefs
in light of new evidence, especially when new evidence is inconsistent
with prior beliefs. It is especially occupied with the following sort of
scenario, borrowed from Gärdenfors (1992). Suppose that you believe all
the following sentences:

(a) All European swans are white;
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(b) The bird in the pond is a swan;

(c) The bird in the pond comes from Sweden;

(d) Sweden is in Europe.

Now suppose that you were to learn the sentence e that the bird in the
pond is black. Clearly, e is inconsistent with your beliefs a, b, c, d. If you
want to incorporate the new information e and remain consistent, you
will have to retract some of your original beliefs. The problem of belief
revision is that deductive logic alone cannot tell you which of your beliefs
to give up—this has to be decided by some other means. Considering
a similar problem, Quine and Ullian (1970) enunciated the principle of
“conservatism,” counseling that our new beliefs “may have to conflict with
some of our previous beliefs; but the fewer the better.” In his (1990), Quine
dubs this the “maxim of minimal mutilation.” Inspired by these suggestive
principles, Alchourrón, Gärdenfors, and Makinson (1985) develop a highly
influential theory of belief revision, known thereafter as AGM theory, after
its three originators.

In AGM theory, beliefs held by an agent are represented by a set B
of sentences. The set B is called the belief state of the agent. This set is
usually assumed to be closed under logical consequence. Of course, this
is an unrealistic idealization, since it means that the agent believes all
logical consequences of her beliefs. Levi (1991) defends this idealization
by changing the interpretation of the set B—these are the sentences that
the agent is committed to believe, not those that she actually believes.
Although we may never live up to our commitments, Levi argues that we
are committed to the logical consequences of our beliefs. That may rescue
the principle, but only by changing the interpretation of the theory.

AGM theory studies three different types of belief change. Contraction
occurs when the belief state B is replaced by B ÷ p, a logically closed
subset of B no longer containing p. Expansion occurs when the belief state
B is replaced with B + p = Cn(B ∪ {p}), the result of simply adding p to
the set of beliefs and closing under logical consequence. Revision occurs
when the belief state B is replaced by B ∗ p, the result of adding p to B and
removing whatever is necessary to ensure that the resulting belief state
B ∗ p is logically consistent.

Contraction is the fundamental form of belief change studied by AGM.
There is no mystery in how to define expansion, and revision is usually
defined derivatively via the Levi identity (1977): B ∗ p = (B ÷ ¬p) + p.
Alchourrón et al. (1985) and Gärdenfors and Makinson (1988) proceed
axiomatically: they postulate several principles that every rational con-
traction operation must satisfy. Fundamental to AGM theory are several
representation theorems showing that certain intuitive constructions give
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rise to contraction operations satisfying the basic postulates and conversely,
that every operation satisfying the basic postulates can be seen as the out-
come of such a construction. See Lin (this volume) for an introduction to
these results.

AGM theory is unique in focusing on belief contraction. For someone
concerned with maintaining a database, contraction is a fairly natural
operation. Medical researchers might want to publish a data set, but make
sure that it cannot be used to identify their patients. Privacy regulations
may force data collectors to “forget” certain facts about you and, naturally,
they would want to do this as conservatively as possible. However, a
plausible argument holds that all forms of rational belief change occurring
“in the wild” involve learning new information, rather than conservatively
removing an old belief. All the other formalisms covered in the article
focus on this form of belief change. For this reason, we focus on the AGM
theory of revision and neglect contraction.

Before delving into some of the technical development, we mention
some important objections and alternatives to the AGM framework. As
we have mentioned, the belief state of an agent is represented by the
(deductively closed) set B of sentences the agent is committed to believe.
The structure of the agent’s reasons is not represented: you cannot tell of
any two p, q ∈ B whether one is a reason for the other. Gärdenfors (1992)
distinguishes between foundations theories, that keep track of which beliefs
justify which others, and coherence theories, which ignore the structure of
justification and focus instead on whether beliefs are consistent with one
another. Arguing for the coherence approach, Gärdenfors (1992) draws a
stark distinction between the two:

According to the foundations theory, belief revision should
consist, first, in giving up all beliefs that no longer have a satis-
factory justification and, second, in adding new beliefs that have
become justified. On the other hand, according to the coherence
theory, the objectives are, first, to maintain consistency in the
revised epistemic state, and, second, to make minimal changes
of the old state that guarantee overall coherence.

Implicit in this passage is the idea that foundations theory are fundamen-
tally out of sympathy with the principle of minimal mutilation. Elsewhere
(1988), Gärdenfors is more apologetic, suggesting that some hybrid theory
is possible and perhaps even preferable:

I admit that the postulates for contractions and revisions that
have been introduced here are quite simpleminded, but they
seem to capture what can be formulated for the meager struc-
ture of belief sets. In richer models of epistemic states, admit-
ting, for example, reasons to be formulated, the corresponding
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conservativity postulates must be formulated much more cau-
tiously (p. 67).

Previously, we have seen Pollock (1987) advocating for foundationalism. In
artificial intelligence, Doyle’s (1979) reason maintenance system is taken to
exemplify the foundations approach. Horty (2012) argues that default logic
aptly represents the structure of reasons. For a defense of foundationalism,
as well as a useful comparison of the two approaches, see Doyle (1992).

Another dissenting tradition advocates for belief bases instead of belief
states. A belief base is a set of sentences that is typically not closed
under logical consequence. Its elements represent “basic” beliefs that are
not derived from other beliefs. This allows us to distinguish between
sentences that are explicit beliefs, like “Shakespeare wrote Hamlet” and
never thought-of consequences like “Either Shakespeare wrote Hamlet or
Alan Turing was born on a Monday.” Revision and contraction are then
redefined to operate on belief bases, rather than belief sets. That allows for
increased expressive power, since belief bases which have the same logical
closure are not treated interchangeably. For an introduction to belief bases
see Hansson (2017). For a book-length treatment, see Hansson (1999).

Finally, one of the most common criticisms of AGM theory is that it does
not illuminate iterated belief change. In the following, we shall see that the
canonical revision operation takes as input an entrenchment ordering on a
belief state, but outputs a belief state without an entrenchment order. That
severely underdetermines the result of a subsequent revision. For more on
the problem of iterated belief revision, see Huber (2013a).

The treatment in this article is necessarily rather compressed. There are
several excellent survey articles on belief revision. See Hansson (2017),
Huber (2013a, 2013b), and Lin (this volume).

2.2.1 Revision

Alchourrón et al. (1985) propose the following postulates for rational belief
revision.

B ∗ p = Cn(B ∗ p). (Closure)

p ∈ B ∗ p. (Success)

B ∗ p ⊆ Cn(B ∪ {p}). (Inclusion)

If ¬p /∈ Cn(B), then B ⊆ B ∗ p. (Preservation)

B ∗ p is consistent if p is consistent. (Consistency)

If (p↔ q) ∈ Cn(∅), then B ∗ p = B ∗ q. (Extensionality)
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By now, Closure, Success, Consistency, and Extensionality should be
straightforward to interpret. These postulates impose synchronic con-
straints on B ∗ p. Preservation and Inclusion are the only norms that are
really about revision—they capture the diachronic spirit of AGM revision.
Inclusion says that revision by p should yield no more new beliefs than
expansion by p. In other words, any sentence q that you come to believe
after revising by p is a deductive consequence of p and your prior beliefs.
Consider the following principle:

If q ∈ B ∗ p, then (p→ q) ∈ B. (Conditionalization)

In Section 2.1.1, we considered an analogue of Conditionalization for
nonmonotonic logic. All the same objections apply equally well in the
context of belief revision. Recall from Section 1 that a deductive conse-
quence relation admits a deduction theorem iff ∆ ∪ {p} ` q implies that
∆ ` p → q. So long as a deduction theorem is provable for Cn(·), Inclu-
sion and Conditionalization are equivalent. To see this, suppose that the
revision operation ∗ satisfies Inclusion. Then, if q ∈ B ∗ p, it follows that
B ∪ {p} ` q. By the deduction theorem, B ` p → q. For the converse,
suppose that the revision operation ∗ satisfies Conditionalization. Then,
if q ∈ B ∗ p, it follows that p→ q ∈ B and q ∈ Cn(B ∪ {p}). If you found
any of the arguments against Conditionalization convincing, you ought to
be skeptical of Inclusion.

Preservation says that, so long as the new information p is logically con-
sistent with your prior beliefs, all of your prior beliefs survive revision by
p. In the setting of non-monotonic logic, we called this principle Rational
Monotony. All objections and counterexamples to Rational Monotony from
Section 2.1.1 apply equally well in belief revision. As we have seen, Preser-
vation rules out any kind of undercutting defeat of previously successful
defeasible inferences. Accepting both Preservation (Rational Monotonicity)
and Inclusion (Conditionalization) amounts to saying that when con-
fronted with new evidence that is logically consistent with her beliefs, a
rational agent responds by simply forming the deductive closure of her
existing beliefs with the new evidence. On that view, deductive logic is
the only necessary guide to reasoning, so long as you do not run into
contradiction.

Alchourrón et al. (1985) also propose the following supplementary
revision postulates, closely related to Inclusion and Preservation.

B ∗ (p ∧ q) ⊆ (B ∗ p) + q. (Conjunctive Inclusion)

If ¬q /∈ Cn(B ∗ p),
then (B ∗ p) + q ⊆ B ∗ (p ∧ q). (Conjunctive Preservation)
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It is possible to make the connection between belief revision and nonmono-
tonic logic precise. Given a belief set B and a revision operation ∗, we can
define a single-premise consequence relation by setting

p |∼ q iff q ∈ B ∗ p.

Similarly, given a single-premise consequence relation |∼ we can define

B = {p : > |∼ p} and B ∗ p = {q : p |∼ q}.

Then it is possible to prove the following correspondences between AGM
belief revision and the set of single-premise principles we called System R
in Section 2.1.1. It follows, by Theorem 5, that AGM revision can be repre-
sented in terms of a ranked, stoppered preferential model over possible
worlds.

Theorem 6 Suppose that ∗ is a revision operation for B satisfying all eight
revision postulates. Then, the nonmonotonic consequence relation given by p |∼ q
iff q ∈ B ∗ p satisfies all the principles of System R.

Theorem 7 Suppose that |∼ is a consequence relation that satisfies all the prin-
ciples of System R and such that p |∼ ⊥ only if ` ¬p. Then, the revision
operation ∗ defined by letting B = {p : > |∼ p} and B ∗ p = {q : p |∼ q}
satisfies all eight revision postulates.

2.2.2 Entrenchment

Gärdenfors and Makinson (1988) introduce the notion of an entrenchment
relation on sentences.

Even if all sentences in a [. . . ] set are accepted or considered
as facts [. . . ], this does not mean that all sentences are of equal
value for planning or problem-solving purposes. Certain [. . . ]
beliefs about the world are more important than others when
planning future actions, conducting scientific investigations,
or reasoning in general. We will say that some sentences [. . . ]
have a higher degree of epistemic entrenchment than others. The
degree of entrenchment will, intuitively, have a bearing on what
is abandoned [. . . ], and what is retained, when a contraction
or revision is carried out.

To model the degree of entrenchment, Gärdenfors and Makinson (1988)
introduce a relation ≤ holding between sentences of the language Λ. The
notation p ≤ q is pronounced “p is at most as entrenched as q.” Gärdenfors
and Makinson (1988) propose that the entrenchment relation ≤ satisfy the
following postulates.
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If p ≤ q and q ≤ r, then p ≤ r. (Transitivity)

If p ` q, then p ≤ q. (Dominance)

Either p ≤ (p ∧ q), or q ≤ (p ∧ q). (Conjunctiveness)

If B is consistent, then p /∈ B iff p ≤ q for all q. (Minimality)

If q ≤ p for all q, then p ∈ Cn(∅). (Maximality)

Note that, in light of Minimality, an entrenchment relation is defined for
a particular belief set B. It follows from the first three of these postulates
that an entrenchment order is total, i.e. for all p, q either p ≤ q or q ≤ p.

Given a belief set B and an entrenchment relation ≤, it is possible to
define a revision operation directly by setting:

B ∗ p = Cn({q ∈ Λ : ¬p < q} ∪ {p}). (C∗)

The idea behind this equation is that the agent revises by p by first clearing
from her belief set anything less entrenched than ¬p, (by dominance, this
includes everything entailing ¬p) adding p, and then closing under logical
consequence. This illustrates why AGM theory is not a theory of iterated
revision: the revision operation takes as input an entrenchment order and
belief state, but outputs only a belief state. That severely underdetermines
the results of subsequent revisions. Gärdenfors (1988) proves the following.

Theorem 8 If a relation ≤ satisfies the five entrenchment postulates, then the
revision function ∗ determined via (C∗) satisfies the six basic and the two sup-
plementary revision postulates.

Finally, given a belief set B, an entrenchment relation can be recovered
from a revision operation by setting:

p ≤ q iff p /∈ B ∗ ¬(p ∧ q) or ` q. (C∗≤)

The idea is that p is no more entrenched than q if p does not survive a
revision by ¬(p ∧ q) or if q is a tautology. Rott (2003) proves the following.

Theorem 9 If a revision operation ∗ satisfies the six basic and the two supple-
mentary contraction postulates, then the entrenchment relation determined via
(C∗≤) satisfies the five entrenchment postulates.

2.2.3 Sphere Semantics

So far we have thought of belief revision syntactically: a revision operation
∗ takes in a set B of syntactic objects and a sentence p and outputs another
set of sentences B ∗ p. Grove (1988) gives a perspicuous way to represent
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the revision postulates semantically, i.e. in terms of the possible worlds in
which the sentences are true or false.

As before, let W be a set of possible worlds and let V : Λ→ ℘(W) be
a valuation function.2 If Γ is a set of sentences in Λ, we write V(Γ) as
shorthand for ∩q∈ΓV(q). If E is a proposition, we write T(E) as shorthand
for {p ∈ Λ : E ⊆ V(p)}, i.e. the set of all sentences p such that E entails
V(p).

A set of propositions S is a system of spheres centered on V(B) ⊆ W iff
for all E, F ⊆W and all p ∈ Λ, the following conditions hold.

If E, F ∈ S , then E ⊆ F or F ⊆ E. (Nested)

V(B) ∈ S and if E ∈ S then V(B) ⊆ E. (Centered)

W ∈ S . (Maximum)

If p 0 ⊥, then there is E ∈ S such that
E ∩V(p) 6= ∅ and if F ∩V(p) 6= ∅ then E ⊆ F. (Well order)

In other words, a system of spheres centered on V(B) is a nested set
of propositions, all entailed by V(B), with the following property: if p
is a consistent sentence, then there is a logically strongest element of
S consistent with V(p). If p is a consistent sentence, let S(p) be E ∩
V(p), where E is the logically strongest element of S consistent with
V(p). Otherwise, let S(p) = ∅. In other words: S(p) is the set of worlds
compatible with V(p) that is “closest” to V(B) according to the sphere
system. Note that if V(p) ∩ V(B) 6= ∅, then S(p) = V(B) ∩ V(p). If
V(p) ∩ V(B) = ∅ we find the closest sphere compatible with V(p) and
intersect the two. Given a belief set B and a system of spheres S centered
on V(B) we can define a revision operator by setting:

B ∗ p = T(S(p)).

The idea is this: when you revise on a sentence p compatible with your
previous beliefs, then the strongest proposition you believe is V(p)∩V(B).
If p is incompatible with your beliefs, you fall back to E ∩ V(p), where
E is the p-compatible proposition closest to your old belief V(B). Thus,
the system of spheres S can be seen as a set of “fallback positions” for
updating on incompatible propositions. See Figure 1.

Grove (1988) proves the following.

Theorem 10 Let B be a belief set. For each system of spheres S centered on
V(B), there is an operation ∗ satisfying the six basic and the two supplementary
revision postulates such that B ∗ p = T(S(p)). Moreover, for every revision op-
eration ∗ satisfying the six basic and the two supplementary revision postulates,
there is a sphere system S centered on V(B) such that B ∗ p = T(S(p)).

2 See Section 1 if you need a refresher on valuation functions.
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V(B)

V(p)

V(B ∗ p)

Figure 1: A system of spheres centered on V(B). The shaded region is V(B ∗ p).

Finally, the sphere semantics gives a dramatic illustration of the critique
that AGM does not illuminate iterated belief change. A revision maps a
set of spheres S and a sentence p to a set of sentences T(S(p)). It does not
output a new set of spheres centered on the new belief state. That severely
underdetermines the result of future revisions.

2.3 The Paradox of the Preface

The models of full belief that we have seen so far require that beliefs be
consistent and closed under deductive consequence. While it is admitted
that this requirement is not psychologically realistic, or perhaps even
feasible for bounded agents, it is proffered as a normative principle that
we should strive to approximate. After all, consistency and closure are
necessary conditions for achieving the following two related ends: believing
only true sentences (consistency) and believing as many true sentences as
possible without risking error in any more possible worlds (closure).

Nevertheless, the Paradox of the Preface, due to Makinson (1965), chal-
lenges even the normativity of deductive consistency. The story goes like
this. A famous theorist has just finished her latest book. As is custom-
ary for such works, she includes a passage in the preface thanking her
colleagues and students for their help in editing and proofreading, but
accepting sole responsibility for the mistakes that inevitably remain. She
seems to be saying that, despite her best efforts, she believes that not
everything that she asserts in the book is true. Let s1, . . . , sn be the claims
she asserts in the book. Presumably, she believes each of the si or else she
would not have asserted them. Yet in the preface she claims to believe
¬(s1 ∧ . . . ∧ sn), the claim that at least one of the si is false. The theorist
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seems to be behaving perfectly rationally, yet on this reconstruction there
is no way that she can be both consistent and deductively closed.

It is tempting to say that inconsistency in the service of intellectual
humility is no sin. Yet this creates a further difficulty: surely some inconsis-
tencies are vicious and should be eliminated. Others, it seems, are virtuous
and ought to be tolerated. But how do we know which inconsistencies
are which? If we point out an inconsistency in someone’s beliefs, we tend
to think that they are under some pressure to resolve it. But why can’t
everyone respond to such a challenge by claiming that their inconsistency
is a virtue? The Preface Paradox seems to challenge the very normativity
of logical consistency.

There are several ways to respond to this challenge. The first, and
perhaps the most common route, is to claim that belief is fundamentally a
matter of degree. The theorist merely has a high degree of belief in each of
the statements of her book. And there is nothing surprising about having
a high degree of belief in each of the si but not in their conjunction. In fact,
if the structure of partial belief is probabilistic, this would emerge as a
simple consequence of the probability calculus: it is to be expected that the
probability of each of the si exceeds the probability of their conjunction,
so long as the probability of the si falls short of unity. This analysis also
entails something about the relationship between full and partial belief: it
is rationally admissible to fully believe statements that have a high, but not
maximal, degree of belief. These themes will be taken up in subsequent
sections.

A second set of responses to the paradox calls our attention to the variety
of cognitive attitudes that are involved in the story. For example, Cohen
(1992) attributes many confusions and apparent paradoxes to the erroneous
conflation of two related cognitive attitudes: belief and acceptance. Belief
in p, according to Cohen, is a disposition to feel it true that p, whenever
attending to issues raised by the proposition that p. This disposition may
or may not be reflected in speech and action, and is not under direct
volitional control. But to accept that p is to adopt a policy of deeming,
positing, or postulating that p—i.e. of including it among one’s premises
for deciding what to do or think in a particular context, whether or not
one feels it to be true. Acceptance is a volitional matter, and is sensitive to
our cognitive context.

Belief is sometimes not even a prima facie reason for acceptance: in scien-
tific contexts many of our most cherished beliefs are not accepted, as it is
our duty to subject them to criticism and not argue from them as premises.
Cohen claims that a person who accepts nothing that she believes is intel-
lectually paralyzed, but someone who accepts everything she believes is
recklessly uncritical. Furthermore, acceptance may sometimes promote be-
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lief, at least in the long run, but often has no effect: for example, a defense
lawyer may accept that her client is innocent, but believe otherwise.

Cohen claims that acceptance ought to be closed, at least under ac-
cepted deductive consequences. Consistency is also, presumably, a norm
of acceptance. Belief, however, is different:

you are not intellectually pledged by a set of beliefs, however
strong, to each deductive consequence of that set of beliefs,
even if you recognize it to be such. That is because belief that
p is a disposition to feel that p, and feelings that arise in you
[. . . ] through involuntary processes [. . . ] no more impose their
logical consequences on you than do the electoral campaign
posters that people stick on your walls without your consent.
(Cohen, 1992, p. 31)

Armed with the distinction between belief and acceptance, we can
attempt a redescription of the preface paradox. In the context of her
theoretical work, the theorist accepts s1, . . . , sn and is bound to maintain
consistency and accept their (accepted) deductive consequences. In fact, she
would be in dereliction of her duty as theorist if she accepted the preface
sentence in the body of the book. However, the context of the preface is
different: here it is customary to drop the professional exigencies of the
theorist and acknowledge broader features of the author’s cognitive life.
She has fulfilled her duty as theorist and done the utmost to accept only
those claims that are justified by her evidence and arguments. However,
some of these conclusions may not yet be attended with the inner glow
of belief. Perhaps, if the work meets with no devastating objections, she
may eventually cease to believe the humble claim in the preface. Thus
the distinction between belief and acceptance explains why we are not
alarmed by the sentence in the context of the preface, but we would be
shocked if we saw it used as a premise in the body of the text. For a similar
resolution of the paradox, see Chapter 5 of Stalnaker (1984).

It is easy to underestimate the consequences of accepting Cohen’s argu-
ments. For one, we would have to reinterpret all of the theories of rational
belief that we have discussed as theories of rational acceptance. In fact,
there may be no theory of rational belief, but only psychological tricks
and heuristics for coming to believe, similar to those Pascal recommends
for arriving at faith in Christ. Longstanding dogmas about the relation
between belief and knowledge would have to be revisited. Moreover, exces-
sive appeal to the distinction threatens the unity and cohesiveness of our
cognitive lives. For a discussion of these kinds of objections see Kvanvig
(2016). For an overview of the distinction between belief and acceptance,
see Weirich (2004).
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3 structures for partial belief

3.1 Bayesianism

Bayesianism, or subjective probability theory, is by far the dominant
paradigm for modeling partial belief. The literature on the subject is by
now very large and includes many approachable introductions. The sum-
mary provided here will, of necessity, be rather brief. For an article-length
introduction see Huber (2016), Easwaran (2011a, 2011b), or Weisberg (2011).
For a book-length introduction see Earman (1992) or Howson and Urbach
(2006). For an article-length introduction to Bayesian models of rational
action, see Briggs (2017) or Thoma (this volume). For an approachable
book-length introduction to the theory of rational choice see Resnik (1987).

The heart of the Bayesian theory is roughly the following:

1. There is a fundamental psychological attitude called degree of belief
(sometimes called confidence or credence) that can be represented by
numbers in the [0, 1] interval.

2. The degrees of belief of rational agents satisfy the axioms of proba-
bility theory.

3. The degrees of belief of rational agents are updated by some flavor of
probabilistic conditioning.

The first two principles are the synchronic requirements of Bayesian theory;
the third principle concerns diachronic updating behavior. Most Bayesians
would also agree to some version of the following principles, which link
subjective probabilities with deliberation and action:

4. Possible states of the world (sometimes outcomes) are assigned a
utility: a positive or negative real number that reflects the desirability
or undesirability of that outcome.

5. Rational agents perform only those actions that maximize expected
utility, which is calculated by weighing the utility of outcomes by
their subjective probability.

What makes Bayesianism so formidable is that, in addition to providing
an account of rational belief and its updating, it also provides an account
of rational action and deliberation. No other theory can claim a developed,
fine-grained account of all three of these aspects of belief. In the following
we will briefly spell out some of the technical details of the Bayesian
picture.
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3.1.1 Probabilism

In this section we flesh out the details of the synchronic component of the
Bayesian theory. For the purposes of this section we will take propositions
to be the objects of (partial) belief. It is also possible to take a syntactic
approach and assign degrees of belief to sentences in a formal language.
For the most part, nothing hinges on which approach we choose. For
arguments in favor of the syntactic approach, see Weisberg (2011).

As usual, let W be a set of possible worlds. Let F be a σ-field over W.3

A credence function p assigns a degree of belief to every proposition in
F . Probabilism requires that the credence function satisfies the axioms of
probability. For every E, F ∈ F :

p(E) is a positive, real number; (Positivity)

p(W) = 1; (Unitarity)

if E ∩ F = ∅, then p(E ∪ F) = p(E) + p(F). (Additivity)

From these principles it is possible to derive several illuminating theorems.
For example, the degree of belief assigned to the contradictory proposition
is equal to zero. Furthermore, if E entails F, then p(E) ≤ p(F). Finally, for
any proposition E ∈ F we have that 0 ≤ p(E) ≤ 1.

In the standard axiomatization of probability theory due to Kolmogorov
(1950), additivity is strengthened to Countable Additivity.

If E1, E2, . . . are mutually exclusive,
then p(

⋃∞
i=1 Ei) = ∑∞

i=1 p(Ei). (Countable Additivity)

This requirement is not as innocent as it looks: it rules out the possibility
that any agent is indifferent over a countably infinite set of mutually
exclusive possibilities. De Finetti (1970, 1972) famously argued that we
ought to reject countable additivity since it is conceivable that God could
pick out a natural number “at random” and with equal (zero) probability.
For another example, suppose you assign 50% credence to the proposition
¬B that not all ravens that will ever be observed are black. Let ¬Bi be
the proposition that the ith observed raven is the first non-black raven
to appear. Then ¬B =

⋃∞
i=1 ¬Bi. Countable additivity entails that for all

ε > 0 there is a finite n such that p(
⋃n

i=1 ¬Bi) = 1/2− ε. So you must be
nearly certain that if all ravens are not black, the first non-black raven will
appear among the first n ravens. The only way to assign equal probability
to all ¬Bi is to violate countable additivity by setting p(¬Bi) = 0 for all i.
This solution has its own drawbacks. On all standard models of Bayesian
update it will be impossible to become convinced that the ith raven is

3 Refer to Section 1 if you need to refresh yourself on the definition of a σ-field.
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indeed non-black, even if you are looking at a white one. For more on
countable additivity, see Chapter 13 in Kelly (1996).

Now that we have defined probabilism, it is natural to ask how to justify
it: why should a rational agent’s degrees of belief obey the probability
axioms? There are roughly two kinds of answers to this question current
in the Bayesian canon.

The traditional answer is that an agent that violates the axioms of
probability opens herself up to systems of bets that, although fair from the
agent’s perspective, guarantee a sure loss. Answers of this flavor are called
Dutch book arguments and they require positing some connection between
degrees of belief and fair betting quotients. Some epistemologists find
Dutch book arguments to be unconvincing either because they disavow any
tight connection between degrees of belief and betting quotients, or they
deny that any facts about something so pragmatic as betting could have
normative epistemic force. These epistemologists tend to prefer accuracy
arguments, which purport to show that any agent violating the probability
axioms will have beliefs which are less accurate, or “further from the truth,”
than agents that satisfy the axioms. We will briefly review the traditional
Dutch book-style arguments. For the original articulation of the accuracy
perspective see Joyce (1998). For an article-length overview of accuracy-
style arguments see Pettigrew (2016b). For a book-length treatment see
Pettigrew (2016a).

Dutch book arguments require specifying some connection between
degrees of belief and fair betting quotients. For de Finetti (1937) the
connection was definitional: an agent’s degree of belief in a proposition
A simply is her fair odds ratio for a bet that pays $1 if A is true and
nothing otherwise. If you are willing to pay at most $.50 for a bet that
pays $1 if A is true and nothing otherwise, then it must be that your
degree of confidence in A is 50%. It is easy to see what is wrong with this
kind of definition: there may be factors other than the subject’s degree of
belief which affect her fair betting quotient. She may be risk averse, or
risk-loving; she may abhor gambling, or love showing off. Ramsey (1931)
avoids some of these problems by pricing bets in utility, rather than money,
and appealing to the existence of an “ethically neutral” proposition that is
considered equally likely to be true and false. For more on the connection
between degrees of belief and betting ratios see Eriksson and Hájek (2007).

Supposing that a suitable connection between degrees of belief and fair
betting quotients exists, it is possible to construct a “Dutch book” against
an agent violating the axioms of probability. To get such an argument
going we suppose that if the agent’s degree of belief in A is p(A), then
she considers fair a bet that costs $p(A) ·Y and pays $Y if A is true and
$0 otherwise. Note that we allow Y to take positive and negative values.
This means that the agent is willing to assume the role of the bookie and
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sell a bet that “costs” −$p(A) · Y and “pays” −$Y if A is true and $0
otherwise. Now suppose that such an agent violates finite additivity. One
way this may happen is if for A, B such that A ∩ B = ∅, we have that
p(A ∪ B) > p(A) + p(B). Then, the agent considers fair

1. a bet that costs −$p(A) and pays −$1 if A is true and $0 otherwise;

2. a bet that costs −$p(B) and pays −$1 if B is true and $0 otherwise;

3. a bet that costs $p(A ∪ B) and pays $1 if A ∪ B is true and $0
otherwise.

There are three possible scenarios: either A and B are both false or exactly
one of them is true. The reader should confirm that in any of these
scenarios the agent is left with exactly $p(A) + $p(B)− $p(A∪ B) < 0. By
reversing which bets the agent buys and sells, we can construct a Dutch
book against an agent that violates additivity by having p(A∪ B) < p(A)+

p(B). Similar strategies work to construct Dutch books against agents that
violate Positivity, Unitarity, and Countable Additivity. Furthermore, it is
possible to show that if your degrees of belief validate the probability
axioms, then no Dutch book can be made against you (Kemeny, 1955). For
more on Dutch book arguments see Section 3.3 in Hájek (2012).

3.1.2 Updating by Conditioning

We have discussed the synchronic content of the Bayesian theory, but we
still need to talk about how degrees of belief are updated upon receiving
new information. There are two standard models of partial belief update:
strict conditionalization and Jeffrey conditionalization. Strict condition-
alization assumes that the information received acquires the maximal
degree of belief. Jeffrey conditionalization allows for the situation in which
no proposition is upgraded to full certainty when new information is
acquired.

For all propositions A, B ∈ F such that p(A) > 0, the conditional
probability of B given A is defined as:

p(B | A) :=
p(A ∩ B)

p(A)
.

Conditionalization by A restricts all possibilities to those compatible with
A and then renormalizes by the probability of A to ensure that unitarity
holds. By far the most standard modeling of partial belief update holds
that degrees of belief ought to be updated by conditionalization. In other
words, if pt is your credence function at time t and A is a proposition
expressing the total new information acquired by t′ > t, then pt′ ought to
equal pt(· | A), whenever pt(A) > 0.
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What if new information does not render any proposition certain, but
merely changes the subjective probability of some propositions? Jeffrey
(1983) proposes the following update rule. Suppose that pt is your credence
function at time t. Suppose that the total evidence that comes in by time
t′ updates your degrees of belief in partition {Ai}1≤i≤n (and in no finer
partition) setting each respectively to ai with ∑i ai = 1. Then your new
credence function pt′ ought to be ∑i p(· | Ai)ai.

Why should a rational agent update by strict or Jeffrey conditionaliza-
tion? Dutch-book style arguments for strict conditionalization are given in
Teller (1973) and Lewis (1999) and extended to Jeffrey conditionalization
in Armendt (1980). For more see Skyrms (2009). For an accuracy-style
argument in favor of strict conditionalization and against Jeffrey condi-
tionalization, see Leitgeb and Pettigrew (2010).

For our purposes it is important to point out that conditional probability
is always a lower bound for the probability of the material conditional. In
other words, for all E, H ∈ F ,

p(H | E) ≤ p(E→ H),

whenever p(E) > 0. We can see this as a quantitative version of the
qualitative principle of Conditionalization we discussed in Section 2.1.1:
however confident a Bayesian agent becomes in H after updating on E,
she must have been at least as confident that H is a material consequence
of E. Popper and Miller (1983) took this observation to be “completely
devastating to the inductive interpretation of the calculus of probability.”
For the history of the Popper-Miller debate see Chapter 4 in Earman (1992).
A similar property can be demonstrated for Jeffrey conditioning (Genin,
2017).

Both strict and Jeffrey conditionalization are defined in terms of con-
ditional probability. The probability of B conditional on A is standardly
defined as the ratio of the unconditional probabilities p(A ∩ B) and p(A).
Clearly, this ratio is undefined when p(A) = 0. Some theorists would
like conditional probability to be defined even when conditioning on
propositions of probability zero. The standard approach in mathematical
statistics, due to Kolmogorov (1950), is via the conditional expectation. On
that approach, conditional probability remains dependent on uncondi-
tional probability. An alternative approach, adopted by Popper (1955) and
Renyi (1955), takes conditional probability as a primitive, rather than a
derivative, notion. For a defense of the conditional expectation, see Gyenis,
Hofer-Szabó, and Rédei (2017). For an introduction to primitive conditional
probabilities, see Easwaran (this volume). For a critique of the standard
notion of conditional probability, see Hájek (2003).
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States

Good Rotten

Acts Outcomes

Break into Bowl 6-Egg Omelet No Omelet

+10 0

Break into Saucer 6-Egg Omelet, 5-Egg Omelet,

extra washing extra washing

+8 +4

Table 1: A payoff table for the morning chef

3.1.3 Deliberation and Action

One of the signal advantages of the Bayesian model of partial belief is that
it is ready-made to plug into a prominent model of practical deliberation.
Decision theory, or rational choice theory, is too large and sprawling a
subject to be effectively covered here, although it will be presented in
cursory outline. For an excellent introduction, see Briggs (2017) or Thoma
(this volume). For our purposes, it is enough to note that a well-developed
theory exists and that no comparable theory exists for alternative models
of belief.4

Suppose you would like to make a six egg omelet. You’ve broken 5 fresh
eggs into a mixing bowl. Rooting around your fridge, you find a loose
egg of uncertain provenance. If you are feeling lucky you can break the
suspect egg directly into the mixing bowl; if you are wary of the egg, you
might break it into a saucer first and incur more dishwashing.

There are four essential ingredients to this sort of decision-theoretic sit-
uation. There are outcomes, over which we have defined utilities measuring
the desirability of the outcome. In the case of the omelet the outcomes are
a ruined omelet or a 5–6 egg omelet, with or without extra washing. There
are states—usually unknown to and out of the control of the actor—which
influence the outcome of the decision. In our case the states are exhausted
by the possible states of the suspect egg: either good or rotten. Finally,
there are acts which are under the control of the decision maker. In our case
the acts include breaking the egg into the bowl or the saucer. Of course
there are other conceivable acts: you might throw the suspect egg away
and make do with a 5-egg omelet; you might even flip a coin to decide
what to do. We omit these for the sake of simplicity. These four elements
are usually summarized in a payoff table (see Table 1). To fit this into the

4 However, recent work such as Lin (2013) and Spohn (2017, 2019) may remedy that inade-
quacy in the case of qualitative belief.
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framework of partial belief we assume that the set of acts A1, A2, . . . , An

partition W. We also assume the set of states S1, S2, . . . , Sm partition W. We
assume that the credence function assigns a probability to every outcome.
We assume that acts and states are logically independent, so that no state
rules out the performance of any act. Finally, we assume that given a state
of the world Sj and an act Ai there is exactly one outcome Oij, which is
assigned a utility U(Oij). The ultimate counsel of rational choice theory is
that agents ought to perform only those acts that maximize expected utility.
The expected utility of an act is defined as:

EU(Ai) =
m

∑
j=1

pAi(Sj)U(Oij),

where pAi(Sj) is roughly how likely the agent considers Sj given that
she has performed act Ai. Difficulties about how this quantity should be
defined give rise to the schism between evidential and causal decision
theory (see Section 3.3 in Thoma, this volume). However, in many sit-
uations, including the dilemma of the omelet, the act chosen does not
affect the probabilities with which states obtain. This is called “act-state
independence” in the jargon of rational choice theory. In cases of act-state
independence there is broad consensus that pAi(Sj) should be equal to the
unconditional degree of belief p(Sj).

Central to the literature on decision theory are a number of representation
theorems showing that every agent with qualitative preferences satisfying
a set of rationality postulates can be represented as an expected utility
maximizer (von Neumann & Morgenstern, 1944; Savage, 1954). These
axioms are controversial, and are subject to intuitive counterexamples.
Allais (1953) and Ellsberg (1961) give examples in which seemingly rational
agents violate the rationality postulates and therefore cannot, even in
principle, be represented as expected utility maximizers. For more on this
subject, see Sections 2 and 3 in Briggs (2017).

3.1.4 Modifications and Alternatives

Dissatisfaction with various aspects of the Bayesian theory has spawned
a number of formal projects. Many epistemologists reject the notion that
rational agents must have precise credences in every proposition that they
can entertain; instead they claim that rational agents may have imprecise
credences representable by intervals of real numbers. For an introduction to
imprecise probability, see Mahtani (this volume). The theory of Dempster-
Shafer belief functions (Dempster, 1968; Shafer, 1976) rejects the tight
connection between degrees of belief and fair betting ratios. Fair betting
ratios ought indeed satisfy the axioms of probability, but degrees of belief
need not. Nevertheless, it should be possible to calculate fair betting ratios
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from degrees of belief when these are necessary. For this purpose, degrees
of belief may satisfy a weaker set of axioms than those of the probability
calculus. For an introduction to Dempster-Shafer belief functions see
Section 3.1 in Huber (2016).

Many epistemologists have held that degrees of belief are not so defi-
nitely comparable as suggested by the probabilistic analysis. Keynes (1921)
famously proposes that degrees of belief may enjoy only an ordinal struc-
ture, which admits of qualitative, but not quantitative, comparison. Keynes
even suggests that the strength of some pairs of partial beliefs cannot be
compared at all. Koopman (1940) and Fine (1973) pursue Keynes’ sugges-
tions, developing axiomatic theories of qualitative probability. See Konek
(this volume) for an introduction to qualitative probability comparisons.

3.2 Ranking Theory

Cohen (1977, 1980) distinguishes between two rival probabilistic traditions.
Pascalian probability finds its latest expression in contemporary Bayesian-
ism. But Cohen traces a rival tradition back to Francis Bacon. Roughly,
these two can be distinguished by the scale they select for the strength of
belief. On the Pascalian scale a degree of belief of zero in some proposition
implies maximal conviction in its negation. On the Baconian scale, a de-
gree of belief of zero implies no conviction in either the proposition or its
negation. Thus, the Pascalian scale runs from “disproof to proof” whereas
the Baconian runs from “no evidence, or non-proof to proof” (Cohen,
1980, p. 224). Cohen (1977) argues that despite the conspicuous successes
of Pascalian probability, the Baconian scale is more appropriate in other
settings, including legal proceedings.

Ranking theory, first developed in Spohn (1988), is a sophisticated contem-
porary theory of Baconian probability. For an article-length introduction
to ranking theory see Huber (2013; this volume). For an extensive book-
length treatment, with applications to many subjects in epistemology and
philosophy of science, see Spohn (2012). We mention some of its basic
features, as it provides a useful counterpoint to the models of belief we
have already discussed.

As before, let W be a set of possible worlds. Let F be an algebra over
W.5 A function β : F →N∪ {∞} from F into the set of natural numbers
N extended by ∞, is a positive ranking function on F just in case for any
A, B ∈ F :

β(∅) = 0; (Consistency)

β(W) = ∞; (Infinitivity)

5 Refer to Section 1 if you need to refresh yourself on the definition of an algebra
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β(A ∩ B) = min{β(A), β(B)}. (Minimitivity)

A positive ranking function expresses degrees of belief. If β(A) > 0, then
we may say that A is (fully) believed and ¬A is disbelieved. If β(A) = 0
then A is not believed and ¬A may not be believed either. Thus, ranking
theory can be seen as satisfying the “Lockean thesis,” the intuitive proposal
that a degree of belief above some threshold is necessary and sufficient for
full belief (see Section 5.2). Note however that nothing in ranking theory
requires us to say that the threshold is exactly zero: we could have chosen
any positive number n.

Let β be a positive ranking function and A ∈ F with β(¬A) < ∞. Then
for any B ∈ F the conditional positive rank of B given A is defined as

β(B | A) = β(¬A ∪ B)− β(¬A).

The function βA : B 7→ β(B | A) is called the conditionalization of β by A
and is itself a positive ranking function. This definition is used to articulate
an update rule for ranking theory: if β is your positive ranking function at
time t and between t and t′ you become certain of E ∈ F and no logically
stronger proposition, then βE should be your new ranking function at
time t′. Spohn (1988) also defines ranking-theoretic analogues of Jeffrey
conditioning.

It is clear from the definition of conditioning that, as in the Bayesian case,
the rank of the material conditional is a lower bound for the conditional
rank: β(A→ B) ≤ β(B |A). It also satisfies a version of Rational Monotony:
if β(¬A) = 0 and β(B) > 0, then β(B | A) > 0.6 Therefore, ranking-
theoretic update satisfies the “spirit” of AGM update. Note however, that
ranking theory has no trouble with iterated belief revision: a revision takes
as input a ranking function and an evidential proposition and outputs a
new ranking function.

Ranking theory lies somewhat awkwardly between a theory of full and
partial belief. On the one hand, all propositions of positive rank are fully
believed. On the other hand, the rank of a proposition measures something
about the strength of that belief. But how should we interpret these ranks?
Huber (this volume) investigates the relation between ranking-theoretic
degrees of belief, and AGM-style degrees of entrenchment. The degree of
entrenchment for a proposition A is defined as the number of independent
and reliable information sources testifying against A that it requires for the
agent to give up full belief in A. Degrees of entrenchment may be used to
measure ranking-theoretic degrees of belief; alternatively, it is possible to
identify ranking-theoretic degrees of belief with degrees of entrenchment.
Huber (manuscript) proves that if an agent defines her full beliefs from

6 Rational Monotony is not satisfied if we set the the threshold for full belief at some number
greater than zero (Raidl, forthcoming, footnote 26).



full & partial belief 471

an entrenchment function, her beliefs will be consistent and deductively
closed iff the entrenchment function is a ranking function.

One of the advantages of ranking theory over AGM is that it allows
reasons to be defined (Spohn, 2012). Say that A is a reason for B with respect
to the positive ranking function β iff β(B | A) > β(B | ¬A). Say that an
agent has A as a reason for B iff A is a reason for B according to her
positive ranking function β and β(A) > 0. Note that it is not possible to
make such a definition in the AGM theory since the conditional degree of
entrenchment is not defined. Thus ranking theory may provide an answer
to Pollock’s criticism of belief revision by allowing various kinds of defeat
of reasons to be represented (Spohn, 2012, Section 11.5).

4 eliminationisms

There are those who deny that there are any interesting principles bridging
full and partial belief. Theorists of this persuasion often want either to
eliminate one of these attitudes or reduce it to a special case of the other.
Jeffrey (1970) suggests that talk of full belief is vestigial and will be entirely
superseded by talk of partial belief and utility:

. . . nor am I disturbed by the fact that our ordinary notion of
belief is only vestigially present in the notion of degree of belief.
I am inclined to think Ramsey sucked the marrow out of the
ordinary notion, and used it to nourish a more adequate view.
But maybe there is more there, of value. I hope so. Show me; I
have not seen it at all clearly, but it may be there for all that (p.
172).

Theorists such as Kaplan (1996) also suggests that talk of full belief is
superfluous once the mechanisms of Bayesian decision theory are in place.
After all, only partial beliefs (or confidence in Kaplan’s terminology) and
utilities play any role in the Bayesian framework of rational deliberation,
whereas full belief need not be mentioned at all. Those committed to full
beliefs have the burden of showing what difference they make to our lives:

Making the case that talk of investing confidence leaves out
something important—something we have in mind when we
talk of belief—is going to require honest toil. One has to say
. . . exactly how an account of rational human activity will be
the poorer if it has no recourse to talk of belief. In short, one
has to meet the Bayesian Challenge. (p. 100)

Stalnaker (1984) is much more sympathetic to a qualitative notion of belief
(or acceptance) but acknowledges the force of the Bayesian Challenge.
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Bayesian decision theory gives a complete account of how prob-
ability values . . . ought to guide behavior . . . So what could be
the point of selecting an interval near the top of the probability
scale and conferring on the propositions whose probability falls
in that interval the honorific title “accepted”? Unless accep-
tance . . . makes a difference to how the agent behaves, or ought
to behave it is difficult to see how the concept of acceptance
can have the interest and importance for inquiry that it seems
to have. (p. 91)

It is true that there is no canonical qualitative analogue to the Bayesian
theory of practical deliberation. However, the fact that it is the theorist of
full belief that feels the challenge, and not vice versa, may be an accident of
history: if a qualitative theory of practical deliberation had been developed
first, the shoe would now be on the other foot. The situation would
be even more severe if qualitative decision making, which we seem to
implement as a matter of course, were less cognitively demanding than its
Bayesian counterpart. Of course, this anticipates a robust theory of rational
qualitative deliberation that is not immediately forthcoming. However,
recent work such as Lin (2013) and Spohn (2017, 2019) may remedy that
inadequacy. For example, Lin (2013) proves a Savage-style representation
theorem characterizing the relationship between full beliefs, desires over
possible outcomes, and preferences over acts. By developing a theory of
rational action in terms of qualitative belief, Lin demonstrates how one
might answer the Bayesian challenge.

On the other hand there are partisans of full belief that are deeply
skeptical about partial beliefs.7 Many of these object that partial beliefs
have no psychological reality and would be too difficult to reason with if
they did. Horgan (2017) goes so far as to say that typically “there is no
such psychological state as the agent’s credence in p” and that Bayesian
epistemology is “like alchemy and phlogiston theory: it is not about any
real phenomena, and thus it also is not about any genuine norms that
govern real phenomena” (p. 7). Harman (1986) argues that we have very
few explicit partial beliefs. A theory of reasoning, according to Harman,
can concern only explicit attitudes, since these are the only ones that can
figure in a reasoning process. Therefore, Bayesian epistemology, while
perhaps an account of dispositions to act, is not a guide to reasoning.
Nevertheless, partial beliefs may be implicit in our system of full beliefs in
that they can be reconstructed from our dispositions to revise them.

How should we account for the varying strengths of explicit be-
liefs? I am inclined to suppose that these varying strengths are

7 See Harman (1986), Pollock (2006), Moon (2017), and Horgan (2017). See also the “bad
cop” in Hájek and Lin (2017).
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implicit in a system of beliefs one accepts in a yes/no fashion.
My guess is that they are to be explained as a kind of epiphe-
nomenon resulting from the operation of rules of revision. For
example, it may be that P is believed more strongly than Q if it
would be harder to stop believing P than to stop believing Q,
perhaps because it would require more of a revision of one’s
view. . . (Harman, 1986, p. 22)

On this picture, almost all of our explicit beliefs are qualitative. Partial
beliefs are not graded belief attitudes toward propositions, but rather dis-
positions to revise our full beliefs. The correct theory of partial belief,
according to Harman, has more to do with entrenchment orders (see
Section 2.2.2) or ranking-theoretic degrees of belief (see Section 3.2) than
with probabilities. Other apparently partial belief attitudes are explained
as full beliefs about objective probabilities. So, in the case of a fair lottery
with ten thousand tickets, the agent does not believe to a high degree that
the nth ticket will not win, but rather fully believes that it is objectively
improbable that it will win.

Frankish (2009) objects that Harman’s view requires that an agent have
a full belief in any proposition that we have a degree of belief in: “And
this is surely wrong. I have some degree of confidence (less than 50%) in
the proposition that it will rain tomorrow, but I do not believe flat-out
that it will rain—not, at least, by the everyday standards for flat-out belief”
(p. 4). Harman might reply that Frankish merely has a full belief in the
objective probability of rain tomorrow. Frankish claims that this escape
route is closed to Harman because single events “do not have objective
probabilities,” but this matter is hardly settled.

Staffel (2013) gives an example in which a proposition with a higher
degree of belief is apparently less entrenched than one with a lower degree
of belief. Suppose that you will draw a sequence of two million marbles
from a big jar full of red and black marbles. You do not know what
proportion of the marbles are red. Consider the following cases.

Scenario 1. You have drawn twenty marbles, 19 black and one red. Your
degree of belief that the last marble you will draw is black is .95.

Scenario 2. You have drawn a million marbles, 900, 000 of which have
been black. Your degree of belief that the last marble you will draw
is black is 19/20 = .90.

Staffel argues that your degree of belief in the first case is higher than
in the second, but much more entrenched in the second than in the first.
Therefore, degree of belief cannot be reduced to degree of entrenchment.
Nevertheless, the same gambit is open to Harman in the case of the
marbles—he can claim that in both scenarios you merely have a full belief
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in a proposition about objective chance. See Staffel (2013) for a much more
extensive engagement with Harman (1986).

5 bridge principles for full and partial belief

Anyone who allows for the existence of both full and partial belief inherits
a thorny problem: how are full beliefs related to partial beliefs? That seem-
ingly innocent question leads to a treacherous search for bridge principles
connecting a rational agent’s partial beliefs with her full beliefs. Theo-
rists engaged in the search for bridge principles usually take for granted
some set of rationality principles governing full belief and its revision
e.g. AGM theory, or a rival system of non-monotonic reasoning. Theorists
usually also take for granted that partial belief ought to be representable
by probability functions obeying some flavor of Bayesian rationality. The
challenge is to propose additional rationality postulates governing how a
rational agent’s partial beliefs cohere with her full beliefs. In this section,
we will for the most part accept received wisdom and assume that ortho-
dox Bayesianism is the correct model of partial belief and its updating.
We will be more open-minded about the modeling of full belief and its
rational revision.

In this section, we will once again take propositions to be the objects of
belief. In the background, there will be a (usually finite) set W of possible
worlds. As before, the reader is invited to think of W as a set of coarse-
grained, mutually exclusive, possible ways the actual world might be.
The actual world is assumed to instantiate one of these coarse-grained
possibilities. We write B to denote the set of propositions that the agent
believes and use B(A) as shorthand for A ∈ B. We will also require some
notation for qualitative propositional belief change. For all E ⊆W, write
BE for the set of propositions the agent would believe upon learning E
and no stronger proposition. We will also write B(A | E) as shorthand for
A ∈ BE. By convention, B = BW . If F is a set of propositions, we let BF
be the set {BE : E ∈ F}. The set BF represents an agent’s dispositions to
update her qualitative beliefs given information from F .

The following normative constraint on the set of full beliefs B plays a
large role in what follows.

For all propositions A, B ⊆W: (Deductive Cogency)

1. B(W);

2. not B(∅);
3. if B(A) and A ⊆ B, then B(B);

4. if B(A) and B(B) then B(A ∩ B).
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The first two clauses say that the agent believes the true world to be among
the worlds in W and that she does not believe the empty set to contain the
true world. The third clause says that belief is closed under single-premise
entailment, i.e. if the agent believes A and A logically entails B, then she
believes B. The final clause says that the agent’s beliefs are closed under
conjunction, i.e. if she believes A and she believes B, then she believes
A ∩ B. Together, clauses 3 and 4 say that the agent’s beliefs are closed
under entailment by finitely many premises. When W is finite, the set B
must be finite as well, implying that Deductive Cogency is equivalent to
the following formulation:

B is consistent and B(B) iff ∩B ⊆ B. (Deductive Cogency)

In other words, Deductive Cogency means that there is a single, non-
empty proposition, which is the logically strongest proposition that the
agent believes, entailing all her other beliefs. When the two formulations
of Deductive Cogency come apart, we will always mean the latter one.
Deductive Cogency only mentions the set of full beliefs B, and is therefore
not a bridge principle at all. Bridge principles are expressed as constraints
holding for pairs 〈B, p〉.

All of the rationality norms that we have seen for updating qualitative
beliefs have propositional analogues. The following are propositional
analogues for the six basic AGM principles. Here E, F are arbitrary subsets
of W.

BE = Cn(BE). (Closure)

E ∈ BE. (Success)

BE ⊆ Cn(B ∪ {E}). (Inclusion)

If ¬E /∈ Cn(B) then B ⊆ BE. (Preservation)

BE is consistent if E 6= ∅. (Consistency)

If E ≡ F, then BE = BF. (Extensionality)

BE∩F ⊆ Cn(BE ∪ {F}). (Conjunctive inclusion)

If ¬F /∈ Cn(BE), then
Cn(BE ∪ {F}) ⊆ BE∩F. (Conjunctive preservation)

Supposing that for all E ⊆W, BE satisfies Deductive Cogency, the first six
postulates reduce to the following three, for arbitrary E ⊆W.

∩BE ⊆ E. (Success)

∩B ∩ E ⊆ ∩BE. (Inclusion)
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If ∩B * ¬E, then ∩BE ⊆ ∩B ∩ E. (Preservation)

Together, Inclusion and Preservation say that whenever information E is
consistent with current belief ∩B,

∩BE = ∩B ∩ E.

If F is a collection of propositions and for all E ∈ F , the belief sets B,BE

satisfy the AGM principles, we say that BF , the agent’s disposition to
update her qualitative beliefs given information from F , satisfies the basic
AGM principles.

We will use p(·) to denote the probability function representing the
agent’s partial beliefs. Of course, p(·) is defined on a σ-algebra of subsets
of W. In the usual case, when W is finite, we can take the ℘(W) to be
the relevant σ-algebra. To update partial belief, we adopt the standard
probabilistic modeling. For E ⊆ W such that p(E) > 0, p(· | E) is the
partial belief function resulting from learning E. We will sometimes use
pE as a shorthand for p(· | E). Almost always, partial belief is updated via
conditioning:

p(A | E) = p(A ∩ E)
p(E)

, whenever p(E) > 0.

Let F+
p be the set of propositions with positive probability according to p,

i.e {A ⊆W : p(A) > 0}.

5.1 Belief as Extremal Probability

The first bridge principle that suggests itself is that full belief is just the
maximum degree of partial belief. Expressed probabilistically, it says that
at all times a rational agent’s beliefs and partial beliefs can be represented
by a pair 〈B, p〉 satisfying:

B(A) iff p(A) = 1. (Extremal Probability)

Roorda (1995) calls this the received view of how full and partial belief
ought to interact. Gärdenfors (1986) is a representative of this view, as are
van Fraassen (1995) and Arló-Costa (1999), although the latter two accept
a slightly non-standard probabilistic modeling for partial belief. For fans
of Deductive Cogency, the following observations ought to count in favor
of the received view.

Theorem 11 If 〈B, p〉 satisfy extremal probability, then B is deductively cogent.

Gärdenfors (1986) proves the following.
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Theorem 12 Suppose that 〈BE, pE〉 satisfy extremal probability for all E ∈ F+
p .

Then BF+
p

satisfies the AGM postulates.

In other words: if an agent’s partial beliefs validate the probability axioms,
she updates by Bayesian conditioning and fully believes all and only those
propositions with extremal probability, her qualitative update behavior will
satisfy all the AGM postulates (at least whenever Bayesian conditioning
is defined). Readers who take the AGM revision postulates to be a sine
qua non of rational belief update will take this to be good news for the
received view.

Roorda (1995) makes three criticisms of the received view. Consider the
following three propositions.

1. Millard Fillmore was the 13th President of the United States;

2. Millard Fillmore was a U.S. President;

3. Millard Fillmore either was or was not a U.S. President.

Of course, I am not as confident that Fillmore was the 13th president as I
am in the truth of the tautology expressed in (3). Yet there does not seem
to be anything wrong with saying that I fully believe each of (1), (2), and
(3). However, if extremal probability is right, it is irrational to fully believe
each of (1), (2), and (3) and not assign them all the same degree of belief.

Roorda’s second objection appeals to the standard connection between
degrees of belief and practical decision making. Suppose I fully believe (1).
According to the standard interpretation of degrees of belief in terms of
betting quotients, I ought to be accept a bet that pays out a dollar if (1) is
true, and costs me a million dollars if (1) is false. In fact, if I truly assign
unit probability to (1), I ought to accept nearly any stakes whatsoever that
guarantee some positive payout if (1) is true. Yet it seems perfectly rational
to fully believe (1) and refrain from accepting such a bet. If we accept
Bayesian decision theory, extremal probability seems to commit me to all
sorts of weird and seemingly irrational betting behavior.

Roorda’s final challenge to extremal probability appeals to corrigibility,
according to which it is reasonable to believe that at least some of my
beliefs may need to be abandoned in light of new information. However, if
partial beliefs are updated via Bayesian conditioning, I can never cease to
believe any of my full beliefs since if p(A) = 1 it follows that p(A | E) = 1
for all E such that p(E) > 0. If we believe in Bayesian conditioning,
extremal probability seems to entail that I cannot revise any of my full
beliefs in light of new information.
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5.2 The Lockean Threshold

The natural response to the difficulties with the received view is to retreat
from full certainty. Perhaps full belief corresponds to partial belief above
some threshold falling short of certainty. Foley (1993) dubbed this view
the Lockean thesis, after some apparently similar remarks in Book IV of
Locke’s Essay Concerning Human Understanding. So far, the Lockean thesis
is actually ambiguous. There may be a single threshold that is rationally
mandated for all agents and in all circumstances. Alternatively, each agent
may have her own threshold that she applies in all circumstances—that
threshold may characterize how “bold” or “risk-seeking” the agent is
in forming qualitative beliefs. A yet weaker thesis holds that the thresh-
old may be contextually determined. We distinguish the strong, context-
independent Lockean thesis (SLT) from the weaker, context-dependent
thesis (WLT). The domain of the quantifier may be taken as the set of all
belief states 〈B, p〉 a particular agent may find herself in, or as the set of all
belief states whatsoever.

Strong Lockean Thesis (SLT). There is a threshold 1
2 < s < 1 such that

all rational 〈B, p〉 satisfy

B(A) iff p(A) ≥ s.

Weak Lockean Thesis (WLT). For every rational 〈B, p〉 there is a thresh-
old 1

2 < s < 1 such that

B(A) iff p(A) ≥ s.

Most discussions of the Lockean thesis have in mind the strong thesis.
More recent work, especially Leitgeb (2017), adopts the weaker thesis. The
strong thesis leaves the correct threshold unspecified. Of course for every
1
2 < s < 1, we can formulate a specific thesis SLTs in virtue of which the
strong thesis is true. For example, SLT.51 is a very permissive version of
the thesis, whereas SLT.95 and SLT.99 are more stringent. It is also possible
to further specify the weak thesis. For example, Leitgeb (2017) believes that
the contextually-determined threshold should be equal to the degree of
belief assigned to the strongest proposition that is fully believed. In light
of Deductive Cogency, that corresponds to the orthographically ungainly
WLTp(∩B).

The strong Lockean thesis gives rise to the well-known Lottery paradox,
due originally to Kyburg (1961, 1997). The lesson of the Lottery is that the
strong thesis is in tension with Deductive Cogency. Suppose that s is the
universally correct Lockean threshold. Now think of a fair lottery with
N tickets, where N is chosen large enough that 1− (1/N) ≥ s. Since the
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lottery is fair, it seems permissible to fully believe that some ticket is the
winner. It also seems reasonable to assign degree of belief 1/N to each
proposition of the form “The ith ticket is the winner.” According to the
Lockean thesis, such an agent ought to fully believe that the first ticket is
a loser, the second ticket is a loser, the third is a loser, etc. Since cogency
requires belief to be closed under conjunction, she ought to believe that all
the tickets are losers. But now she violates cogency by believing both that
every ticket is a loser and that some ticket is a winner. Since s was arbitrary,
we have shown that no matter how high we set the threshold, there is
some Lottery for which an agent must either violate the Lockean thesis
or violate Deductive Cogency. According to Kyburg, what the paradox
teaches is that we should give up on Deductive Cogency: full belief should
not necessarily be closed under conjunction. Many others take the lesson
of the Lottery to be that the strong Lockean thesis is untenable.

Several authors attempt to revise the strong Lockean thesis by placing
restrictions on when a high degree of belief warrants full belief. Broadly
speaking, they propose that a high degree of belief is sufficient to warrant
full belief unless some defeating condition holds. For example, Pollock
(1995) proposes that, although a degree of belief in P above some threshold
is a prima facie reason for belief, that reason is defeated whenever P is
a member of an inconsistent set of propositions each of which is also
believed to a degree exceeding the threshold. Ryan (1996) proposes that a
high degree of belief is sufficient for full belief unless the proposition is a
member of a set of propositions such that each member has a degree of
belief exceeding the threshold, but the probability of their conjunction is
below the threshold. Douven (2002) says that it is sufficient except when
the proposition is a member of a probabilistically self-undermining set. A set
S is probabilistically self undermining iff for all A ∈ S , p(A) > s and
p(A | B) ≤ s, where B =

⋂
(S \ {A}). It is clear that any of these proposals

would prohibit full belief that a particular lottery ticket will lose.
These proposals are all vitiated by the following sort of example due

to Korb (1992). Let A be any proposition with a degree of belief above
threshold but short of certainty. Let Li be the proposition that the ith

lottery ticket (of a large lottery with N tickets) will lose. Consider the
set S = {¬A ∪ Li | 1 ≤ i ≤ N}. Each member of S is above threshold,
since Li is above threshold. Furthermore, the set S ∪ {A} meets all three
defeating conditions. Therefore, these proposals prohibit full belief in any
proposition with degree of belief short of certainty. Douven and Williamson
(2006) generalize this sort of example to trivialize an entire class of similar
formal proposals.

Buchak (2014) argues that what partial beliefs count as full beliefs cannot
merely be a matter of the degree of partial belief, but must also depend
on the type of evidence it is based on. According to Buchak, this means
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there can be no merely formal answer to the question: what conditions
on partial belief are necessary and sufficient for full belief? The following
example, of a type going back to Thomson (1986), illustrates the point.
Your parked car was hit by a bus in the middle of the night. The bus could
belong either to the blue bus company or the red bus company. Consider
the following two scenarios.

Scenario 1. You know that the blue company operates 90% of the buses
in the area, and the red bus company operates only 10%. You have
degree of belief 0.9 that a blue bus is to blame.

Scenario 2. The red and blue companies operate an equal number of
buses. A 90% reliable eyewitness testifies that a blue bus hit your car.
You have degree of belief 0.9 that a blue bus is to blame.

Buchak (2014) argues that it is rational to have full belief that a blue bus
is to blame in the second scenario, but not in the first. You have only
statistical evidence in the first scenario, whereas in the second, a causal
chain of events connects your belief to the accident (see also Thomson, 1986,
Nelkin, 2000, and Schauer, 2003). These intuitions, Buchak observes, are
reflected in our legal practice: purely statistical evidence is not sufficient
to convict. If you find Buchak’s point convincing, you will be unsatisfied
with most of the proposed accounts for how full and partial belief ought
to correspond (Staffel, 2016).

Despite difficulties with buses and lotteries, the dynamics of qualitative
belief under the strong thesis are independently interesting to investigate.
For example, van Eijck and Renne (2014) axiomatize the logic of belief for
a Lockean with threshold 1

2 . Makinson and Hawthorne (2015) investigate
which principles of non-monotonic logic are validated by Lockean agents.
Before turning to proposed solutions to the Lottery paradox, we make
some observations about qualitative Lockean revision, inspired largely by
Shear and Fitelson (2018).

It is a theorem of the probability calculus that p(H | E) ≤ P(E→ H). So
if H is assigned a high degree of belief given E, the material conditional
E → H must have been assigned a degree of belief at least as high ex
ante. It is easy to see that as a probabilistic analogue of the principle of
Conditionalization from non-monotonic logic or, equivalently, the AGM
Inclusion principle. That observation has the following consequence: any
belief that the Lockean comes to have after conditioning, she could have
arrived at by adding the evidence to her prior beliefs and closing under
logical consequence. Therefore Lockean updating satisfies the AGM prin-
ciple of Inclusion. Furthermore, it follows immediately from definitions
that Lockean update satisfies Success and Extensionality.
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Theorem 13 Suppose that s ∈ ( 1
2 , 1). Let BE = {A : p(A | E) ≥ s} for all

E ∈ F+
p . Then BF+

p
satisfies Inclusion, Success, and Extensionality.

In Section 2.2.1, we argued that Inclusion and Preservation capture the
spirit of AGM revision. If Lockean revision also satisfied Preservation, we
would have a clean sweep of the AGM principles, with the exception of
Deductive Cogency.

However, that cannot hold in general. It is possible to construct examples
where p(¬E) < s, p(H) ≥ s, and yet p(H | E) < s. For Lockean agents
this means that it is possible to lose a belief, even when revising on a
proposition that is not disbelieved.

Recall the example of Alice, Bob, and the Ford from Section 2.1.1. Let
W = {a, b, c} corresponding to the worlds in which Alice owns the Ford,
Bob owns the Ford, and no one in the office owns the Ford. Suppose the
probability function

p(a) =
6
10

,

p(b) =
3
10

,

p(c) =
1
10

,

captures my partial beliefs. For Lockean thresholds in the interval (.75, .9],
my full beliefs are exhausted by B = {{a, b}, W}. Now suppose I were to
learn that Alice does not own the Ford. That is consistent with all beliefs
in B, but since p({a, b} | {b, c}) = 3

4 , it follows by the Lockean thesis that
{a, b} /∈ B{b,c}. So Lockeanism does not in general validate Preservation.
The good news, at least for those sympathetic to Pollock’s critique of
non-monotonic logic, is that the Lockean thesis allows for undercutting
defeat of previous beliefs.

However, Shear and Fitelson (2018) also have some good news for fans
of AGM and the Lockean thesis. Two quantities are in the golden ratio
φ if their ratio is the same as the ratio of their sum to the larger of the
two quantities, i.e. for a > b > 0, if a+b

a = a
b then a

b = φ. The golden
ratio is an irrational number approximately equal to 1.618. Its inverse φ−1

is approximately .618. Shear and Fitelson prove the following intriguing
result.

Theorem 14 Suppose that s ∈ ( 1
2 , φ−1]. Let BE = {A : p(A | E) ≥ s} for all

E ∈ F+
p . Let

D = {E ⊆W : E ∈ F+
p and BE is deductively cogent}.

Then BD satisfies the six basic AGM postulates.
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That shows that for relatively low thresholds, Lockean updating satisfies
all the AGM postulates—at least when we restrict to deductively cogent
belief sets.

Why has the golden ratio turned up here? That is relatively simple
to explain. The AGM Preservation postulate can be factored into the
following two principles.

If ¬E /∈ Cn(B) and E ∈ Cn(B) then B ⊆ BE. (Cautious Monotony)

If ¬E /∈ Cn(B) and E /∈ Cn(B) then B ⊆ BE. (Preservation B)

We have discussed Cautious Monotony in Section 2.1.1. It is widely ac-
cepted as a sine qua non of rational non-monotonic reasoning. Surprisingly,
there is no Lockean threshold that satisfies Cautious Monotony in general.8

However, if p(H | E) < s it must be that p(H ∩ E) < s · P(E) ≤ s, from
which it follows that any violation of Cautious Monotony must be a viola-
tion of deductive closure. Moreover, Lockean updating with a threshold in
( 1

2 , φ−1] satisfies Preservation B. That follows immediately from the fact
that for s ∈ ( 1

2 , φ−1], if p(E) < s and p(H | E) < s, then P(H → ¬E) ≥ s.
The proof of that fact hinges on a neat fact about the golden ratio: if s > 0,
then s ≤ φ−1 iff s2 ≤ 1− s.9

5.3 The Stability Theory of Belief

For many, sacrificing Deductive Cogency is simply too high a price to
pay for a bridge principle, even one so simple and intuitive as the strong
Lockean thesis. That occasions a search for bridge principles that can be
reconciled with Deductive Cogency. One proposal, due to Leitgeb (2013,
2014, 2015, 2017) and Arló-Costa and Pedersen (2012), holds that rational
full belief corresponds to a stably high degree of belief, i.e. a degree
of belief that remains high even after conditioning on new information.
Leitgeb calls this view the Humean thesis, due to Hume’s conception of
belief as an idea of superior vivacity, but also of superior steadiness.10

Leitgeb (2017) formalizes Hume’s definition, articulating the following
version of the thesis:

Humean Thesis (HT). For all rational pairs 〈B, p〉 there is s ≥ 1/2 such
that

B(A) iff ¬B /∈ B implies p(A | B) > s.

8 See Lemma 1 in Shear and Fitelson (2018).
9 Suppose that s ∈ ( 1

2 , φ−1] and P(E) < s and P(H | E) < s. Then, P(E)P(H | E) = P(H ∩
E) < s2 ≤ 1− s, and therefore 1− P(H ∩ E) = P(H → ¬E) ≥ s.

10 See Loeb (2002, 2010) for a detailed development of the stability theme in Hume’s concep-
tion of belief.
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In other words: every full belief must have stably high conditional degree of
belief, at least when conditioning on propositions which are not currently
disbelieved. Since full belief occurs on both sides of the biconditional,
it is evident that this is not a proposed reduction of full belief to partial
belief, but rather a constraint that every rational agent must satisfy. The
Humean thesis leaves the precise threshold s unspecified. Of course for
every 1

2 < s < 1, we can formulate a specific thesis HTs in virtue of which
the thesis is true. For example, HT.5 requires that every fully believed
proposition remains more likely than its negation when conditioning on
propositions not currently disbelieved.

Some form of stability is widely considered to be a necessary condition
for knowledge. Socrates propounds such a view in the Meno. Paxson and
Lehrer (1969) champion such a view in the epistemology literature post-
Gettier. However, stability is not usually mooted as a condition of belief.
Raidl and Skovgaard-Olsen (2017) claim that Leitgeb’s stability condition
is more appropriate in an analysis of knowledge and too stringent a
condition on belief. A defender of the Humean thesis might say that every
rational belief is possibly an instance of knowledge. Since knowledge is
necessarily stable, unstable beliefs are ipso facto not known.

Leitgeb demonstrates the following relationships between the Humean
thesis, Deductive Cogency, and the weak Lockean thesis.

Theorem 15 Suppose that 〈B, p〉 satisfy HT and ∅ /∈ B. Then, B is deduc-
tively cogent and 〈B, p〉 satisfy WLTp(∩B).

So if an agent satisfies the Humean thesis and does not “fully” believe the
contradictory proposition, her qualitative beliefs are deductively cogent
and furthermore, she satisfies the weak Lockean thesis, where the thresh-
old is set by the degree of belief assigned to ∩B, the logically strongest
proposition she believes. Leitgeb also proves the following partial converse.

Theorem 16 Suppose that B is deductive cogent and 〈B, p〉 satisfy WLTp(∩B).
Then, 〈B, p〉 satisfy HT

1
2 and ∅ /∈ B.

Together, these two theorems say that the Humean thesis (with threshold
1
2 ) is equivalent to Deductive Cogency and the weak Lockean thesis (with
threshold p(∩B)). Since it is always possible to satisfy HT

1
2 , Leitgeb gives

us an ingenious way to reconcile Deductive Cogency with a version of the
Lockean thesis.

Recall the example of the lottery. Let W = {w1, w2, . . . , wN}, where wi is
the world in which the ith ticket is the winner. No matter how many tickets
are in the lottery, a Humean agent cannot believe any ticket will lose.
Suppose for a contradiction that she believes W \ {w1}, the proposition
that the first ticket will lose. Now suppose she learns {w1, w2}, that all
but the first and second ticket will lose. This is compatible with her initial
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belief, but her updated degree of belief that the first ticket will lose must
be 1

2 . That contradicts the Humean thesis. So she cannot believe that any
ticket will lose. In this Lottery situation the agent cannot fully believe
any non-trivial proposition. This example also shows how sensitive the
Humean proposal is to the fine-graining of possibilities. If we coarsen W
into the set of possibilities W = {w1, w2}, where w1 is the world in which
the first ticket is the winner and w2 is “the” world in which some other
ticket is the winner, the agent can believe that the first ticket will lose
without running afoul of the Humean thesis.

Perhaps Buchak (2014) is right and no agent should have beliefs in
lottery propositions—these beliefs would necessarily be formed on the
basis of purely statistical evidence. Kelly and Lin (forthcoming) give
another scenario in which Humean agents seem radically skeptical, but in
situations which are evidentially unproblematic. Suppose the luckless Job
goes in for a physical. On the basis of a thorough examination, the doctor
forms the following dire opinion of his health: her degree of belief that
Job will survive exactly n months is 1

2n . Therefore, her degree of belief that
Job will not survive the year is 1

2 +
1
4 + · · ·+

1
212 > .999. Shockingly, the

Humean thesis prevents the doctor from forming any nontrivial beliefs.
Let ≤ n be the proposition that Job survives at most n months and let
≥ n be the proposition that he survives at least n months. Let B be the
strongest proposition that the doctor believes. Suppose for a contradiction
that B entails some least upper bound for the number of Job’s remaining
months, i.e for some n, B entails ≤ n and does not entail ≤ n′ for any
n′ < n. By construction, p(B| ≥ n) = p(n)/p(≥ n) = 1

2 for all n. But since
≥ n is compatible with B, the Humean thesis requires that p(B| ≥ n) > 1

2 .
Contradiction.

The example of the doctor suggests that the price of Humeanism is a
rather extreme form of skepticism: in many situations a Humean agent
will have no non-trivial full beliefs at all. That criticism is developed
extensively in Rott (2017) and Douven and Rott (2018). The doctor also
illustrates how the Humean proposal allows arbitrarily small perturbations
of partial beliefs to be reflected as huge differences in full beliefs. Suppose
the doctor is slightly more confident that Job will not survive a month, i.e.
her survival probabilities decrease as 1

2 + ε, 1
4 , 1

8 − ε, 1
16 , 1

32 , . . . . Now the
doctor can believe that Job will be dead in two months without running
afoul of the Humean thesis.

So far we have inquired only into the synchronic content of the Humean
proposal. What sort of principles of qualitative belief update does it under-
write? Leitgeb demonstrates an intimate relationship between the AGM
revision principles and the Humean thesis: every agent that satisfies the
AGM principles, as well as a weak version of the Lockean thesis, must also
satisfy the Humean thesis. So if you think that AGM theory is the correct
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theory of rational qualitative belief update (and you believe that a high
degree of partial belief is a necessary condition of full belief) you must also
accept the Humean thesis.

To present Leitgeb’s result we have to introduce a few technical concepts.
Say that a proposition A is p-stabler iff for all B ∈ F+

p such that A∩ B 6= ∅,
p(A | B) > r. An immediate consequence of this definition is that if A is
p-stabler and A is consistent with E ∈ F+

p , then A ∩ E is pE-stabler. Let

S r
p = {A : A is p-stabler}.

Leitgeb proves that for r ≥ 1/2, the set S r
p is a system of spheres in the

sense of Section 2.2.3. That is: there is some least element B of S r
p such

that all other elements constitute a nested, well-ordered sphere system
centered on B. Recall that S r

p(E) is defined to be D ∩ E, where D is the
closest sphere to B compatible with E. By the previous observation, S r

p(E)
is pE-stabler.

Leitgeb proves the following.

Theorem 17 The following are equivalent.

1. BF+
p

satisfies all AGM postulates and for all E ∈ F+
p , A ∈ BE only if

p(A | E) > r.

2. ∩BE = S r
p(E) ∈ S r

pE
.

We know from the result of Section 2.2.3 that for any AGM belief revision
operation, there is a corresponding system of Grove spheres. Leitgeb has
proven that any agent that validates the AGM postulates and the high-
probability requirement can be modeled by the system of spheres gener-
ated by the p-stabler propositions. For such an agent, all pairs 〈BE, pE〉
satisfy the Humean thesis with threshold r. So any agent that violates
the Humean thesis must either fail to satisfy the AGM postulates, or the
high-probability requirement. Note that the converse is not true: it is not
the case that that if all pairs 〈BE, pE〉 satisfy the Humean thesis, then BF+

p

must satisfy the AGM postulates. To prove this, suppose that 〈B, p〉 satisfy
the Humean thesis and ∩B ⊂ E for some E ∈ F+

p . If we let BE = {E},
then 〈BE, pE〉 satisfy the Humean thesis. However, such an agent patently
violates Rational and even Cautious Monotony.

5.4 The Tracking Theory

Lin and Kelly (2012) propose that qualitative belief update ought to track
partial belief update. On their picture, partial and full beliefs are main-
tained and updated by parallel cognitive systems. The first system, gov-
erned by the probabilistic norms of Bayesian coherence and conditioning,
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is precise, slow, and cognitively expensive. That system is engaged for
important deliberations requiring a lot of precision and occurring without
much time pressure e.g. retirement planning. The second, which in some
way maintains and updates full beliefs, is quicker and less cognitively
burdensome.11 That system is engaged in ordinary planning: grocery shop-
ping, or selecting a restaurant for a department event. What keeps these
two parallel systems in sync with each other?

Lin and Kelly study acceptance rules that specify a mechanism for transi-
tioning gracefully into the qualitative and out of the probabilistic system.
An acceptance rule α maps every partial belief state p to a unique qual-
itative belief state α(p) with which it coheres. For example, the strong
Lockean thesis determines an acceptance rule once we specify a threshold.
The Humean thesis, on the other hand, underdetermines an acceptance
rule, merely imposing constraints on acceptable pairs 〈B, p〉. An agent’s
qualitative updates track her probabilistic updates iff

α(p)E = α(pE),

whenever p(E) > 0. In other words: acceptance followed by qualitative
revision yields the same belief state as probabilistic revision followed by
acceptance.

Here is a way to understand the tracking requirement. Suppose that,
although an agent maintains a latent probabilistic belief state, most of her
cognitive life is spent reasoning with and updating qualitative beliefs. A
typical day will go by without having to engage the probabilistic system at
all. Suppose Monday is a typical day. Let 〈α(p), p〉 be the belief state she
wakes up with on Monday: her full and partial beliefs are in harmony. Let
E be the total information she acquired since waking up. Since qualitative
beliefs are updated on the fly, she goes to sleep with the qualitative belief
state α(p)E. Overnight, her probabilistic system does the difficult work
of Bayesian conditioning and computes the partial belief state pE, just in
case she runs into any sophisticated decision problems on Tuesday. Before
waking, she transitions out of her probabilistic system pE and into the
qualitative belief state α(pE). If she fails the tracking requirement, she
may wake up on Tuesday morning with a qualitative belief state that is
drastically different from the one she went to sleep with on Monday night.
If she tracks, then she will notice no difference at all. For such an agent, no
mechanism (other than memory) is required to bring her full and partial
beliefs back into harmony on Tuesday morning. Supposing that we enter
the probabilistic system by conditioning our previous partial belief state p
on all new information E, and exit by accepting α(pE), tracking ensures
that transitioning in and out of the probabilistic system does not induce

11 For an objection to the two systems view, see Staffel (2018).
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any drastic changes in qualitative beliefs. An agent that tracks will notice
no difference at all. An agent that does not track may find her full and
partial beliefs perpetually falling out of sync, requiring many expensive
acceptance operations to bring them back into harmony.

Tracking may be a desirable property, but are there any architectures that
exhibit it? Lin and Kelly (2012) answer this question affirmatively. Since
Bayesian conditioning is taken for granted, Lin and Kelly must specify two
things: a qualitative revision operation and an acceptance rule that jointly
track conditioning. We turn now to the details of their proposal. As usual,
let W be a set of worlds. A question Q is a partition of W into a countable
collection of mutually exhaustive propositions H1, H2, . . . , which are the
complete answers to Q. The partial belief function p is defined over the
algebra of propositions A generated by Q.

First we specify an acceptance rule. Lin and Kelly propose the odds
threshold rule. The degree of belief function p is used to determine a
plausibility order by setting

Hi ≺p Hj if and only if
p(Hi)

p(Hj)
> t,

where t is a constant greater than 1 and p(Hi), p(Hj) > 0. This determines
an acceptance rule by setting α(p) = B≺p . Since the odds threshold rule
determines a plausibility order ≺p and any plausibility order ≺ gives rise
to a deductively cogent belief state B≺, the Lottery paradox is avoided.
In other words: the bridge principle that any rational 〈B, p〉 are related
by B = α(p) ensures that B is deductively cogent. Furthermore, the odds
threshold rule allows non-trivial qualitative beliefs in situations where the
stability theory precludes them. Recall the case of the doctor. Consider the
odds threshold 210 − 1. Given this threshold, the hypothesis that Job will
survive exactly 1 month is strictly more plausible than the proposition that
he will survive at least n months for any n ≥ 10. This threshold yields the
full belief that Job will survive at most 10 months. However, in the case
of the Lottery the odds threshold rule precludes any non-trivial beliefs.12

See Rott (2017) and Douven and Rott (2018) for an extensive comparison
of the relative likelihood of forming non-trivial qualitative beliefs on the
odds-threshold and stability proposals.

It remains to specify the qualitative revision operation. Lin and Kelly
adopt an operation proposed by Shoham (1987). Let ≺ be a well-founded,
strict partial order over the answers to Q.13 This is interpreted as a plausi-
bility ordering, where Hi ≺ Hj means that Hi is strictly more plausible than

12 The content-dependent threshold rule proposed by Kelly and Lin (forthcoming) may allow
non-trivial beliefs in the Lottery situation.

13 A strict partial order is well-founded iff every subset of the order has a least element. This is
closely related to the stopperedness property discussed in Section 2.1.2.
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Hj. Every plausibility order ≺ gives rise to a belief state B≺ by letting
¬Hi ∈ B≺ iff there is some Hj strictly more plausible than Hi and closing
under logical consequence. In other words, ∩B≺ is the disjunction of the
minimal elements in the plausibility order. The plausibility order ≺ is
updated on evidence E by setting every answer incompatible with E to be
strictly less plausible than every answer compatible with E, and otherwise
leaving the order unchanged. Let ≺E denote the result of this update
operation. We use the updated plausibility order to define a belief revision
rule by setting BE = B≺E . Then, for all E, F ⊆W, BE is deductively cogent
and satisfies:

∩BE ⊆ E; (Success)

∩B ∩ E ⊆ ∩BE; (Inclusion)

if ∩B ⊆ E then ∩BE ⊆ ∩B. (Cautious monotony)

However, it does not necessarily satisfy Preservation. To see this suppose
that Q = {H1, H2, H3} and H1 ≺ H2 but H3 is not ordered with H1 or
H2. Then ∩B = H1 ∪ H3. However ∩B¬H1 = H2 ∪ H3 * ∩B even though
∩B ∩ ¬H1 6= ∅.

Lin and Kelly prove that Shoham revision and odds-threshold based
acceptance jointly track conditioning.

Theorem 18 Let ≺ equal ≺p and let BE = B≺E . Then B℘(W) satisfies Deduc-
tive Cogency, Success, Cautious Monotony, and Inclusion. Furthermore, BE =

α(p)E = α(pE) for all E ∈ F+
p .

In other words: odds-threshold acceptance followed by Shoham revision
yields the same belief state as Bayesian conditioning followed by odds-
threshold acceptance.14 Although the original plausibility ordering ≺p is
built from the probability function p, subsequent qualitative update pro-
ceeds without consulting the (conditioned) probabilities. That shows that
there are at least some architectures that effortlessly keep the probabilistic
and qualitative reasoning systems in harmony.

Fans of AGM will regret that Shoham revision does not satisfy AGM
Preservation (Rational Monotony). Lin and Kelly (2012) prove that no
“sensible” acceptance rule that tracks conditioning can satisfy Inclusion and
Preservation. According to Lin and Kelly, sensible acceptable rules are non-
skeptical, non-opinionated, consistent, and corner-monotonic. An acceptance
rule is non-skeptical iff for every answer Hi to Q there is a non-negligible

14 Kelly and Lin (forthcoming) recommend a modification of the odds-threshold rule pro-
posed in Lin and Kelly (2012).
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set of probability functions p such that Hi ∈ α(p).15 An acceptance rule is
non-opinionated iff there is a non-negligible set of probability functions p
where judgement is suspended, i.e. where ∩α(p) = W. An acceptance rule
is consistent iff for all p, α(p) is deductively cogent. The intuition behind
corner-monotony is that if Hi is accepted at p, then Hi should still be
accepted if Hi is made more probable. More precisely, an acceptance rule
is corner-monotone iff Hi ∈ α(p) implies that Hi ∈ α(p′) for all p′ such that

p′ = p(· | Hi) · q + p(· | ¬Hi) · (1− q),

and q > p(Hi). Lin and Kelly (2012) prove the following “no-go” theorem
for AGM revision.

Theorem 19 Suppose that BE = α(pE) for E ∈ F+
p . Then BF+

p
satisfies Inclu-

sion and Preservation only if α is not sensible.

5.5 Decision-Theoretic Accounts

All of the bridge principles we have seen so far have the following in
common: whether an agent’s full and partial beliefs cohere is a matter of
the full and partial beliefs alone. It is not necessary to mention preferences
or utilities in order to evaluate a belief state. There is another tradition,
originating in Hempel (1962) and receiving classical expression in Levi
(1967), that assimilates the problem of “deciding” what to believe to a
Bayesian decision-theoretic model. Crucially, these authors are not commit-
ted to a picture on which agents literally decide what to believe—rather
they claim that an agent’s beliefs are subject to the same kind of normative
evaluation as their practical decision-making. Contemporary contributions
to this tradition include Easwaran (2015), Pettigrew (2016c), and Dorst
(2017). Presented here is a somewhat simplified version of Levi’s (1967)
account taking propositions, rather than sentences, as the objects of belief.

As usual, let W be a set of possible worlds. The agent is taken to be
interested in answering a question Q, which is a partition of W into a
finite collection of mutually exhaustive answers {H1, H2, . . . Hn}. Levi
calls situations of this sort “efforts to replace agnosticism by true belief,”
echoing themes in Peirce (1877).

Doubt is an uneasy and dissatisfied state from which we strug-
gle to free ourselves and pass into the state of belief; while the

15 A set of probability functions is non-negligible iff it contains an open set in the topology
generated by the metric

||p− q|| =
√

∑
Hi∈Q

(p(Hi)− q(Hi))2.
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latter is a calm and satisfactory state which we do not wish to
avoid, or to change to a belief in anything else. On the contrary,
we cling tenaciously, not merely to believing, but to believing
just what we do believe.

The agent’s partial beliefs are represented by a probability function p that is
defined, at a minimum, over the algebra A generated by the question. Levi
recommends the following procedure to determine which propositions are
fully believed: disjoin all those elements of Q that have maximal expected
epistemic utility and then close under deductive consequence. The expected
epistemic utility of a hypothesis H ∈ A is defined as:

E(H) := p(H) ·U(H) + p(¬H) · u(H),

where U(H) is the epistemic utility of accepting H when it is true, and
u(H) is the utility of accepting H when it is false. How are u(H), U(H) to
be determined? Levi is guided by the following principles.

1. True answers have greater epistemic utility than false answers.

2. True answers that afford a high degree of relief from agnosticism
have greater epistemic utility than true answers that afford a low
degree of relief from agnosticism.

3. False answers that afford a high degree of relief from agnosticism
have greater epistemic utility than false answers that afford a low
degree of relief from agnosticism.

It is easy to object to these principles. The first principle establishes a
lexicographic preference for true beliefs. It is conceivable that, contra this
principle, an informative false belief that is approximately true should
have greater epistemic utility than an uninformative true belief. The first
principle precludes trading content against truthlikeness. It is also conceiv-
able that, contra the third principle, one would prefer to be wrong, but not
too opinionated, than wrong and opinionated. The only unexceptionable
principle seems to be the second.

To measure the degree of relief from agnosticism, a probability function
m(·) is defined over the elements of A. Crucially, m(·) does not measure
a degree of belief, but degree of uninformativeness. The degree of relief
from agnosticism afforded by H ∈ A, also referred to as the amount
of content in H, is defined to be the complement of uninformativeness:
cont(Hi) = m(¬Hi). Levi argues that all the elements of Q ought to
be assigned the same amount of content, i.e. m(Hi) = 1

n and therefore
cont(Hi) =

n−1
n for each Hi ∈ Q. The set of epistemic utility functions that

Levi recommends satisfy the following conditions:

U(H) = 1− q · cont(¬H),

u(H) = −q · cont(¬H),
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where 0 < q < 1. All such utility functions are guaranteed to satisfy Levi’s
three principles. The parameter q is interpreted as a “degree of caution,”
representing the premium placed on truth as opposed to relief from
agnosticism. When q = 1 the epistemic utility of suspending judgement,
U(W), is equal to zero. This is the situation in which the premium placed
on relief from doubt is the maximum. Levi proves that expected epistemic
utility E(H) is maximal iff p(H) > q · cont(¬H). Therefore, Levi’s ultimate
recommendation is that the agent believe all deductive consequences of⋂

{¬Hi ∈ Q : p(¬Hi) > 1− q · cont(¬Hi)}.

From this formulation it is possible to see Levi’s proposal as a question-
dependent version of the Lockean thesis where the appropriate threshold
is a function of content. However, Levi takes pains to make sure that
the result of this operation is deductively cogent and therefore avoids
Lottery-type paradoxes.

Contemporary contributions to the decision-theoretic tradition proceed
differently from Levi. Most recent work does not take epistemic utility to
be primarily a function of content. Most of these proposals do not refer
to a question in context. Many proposals, such as Easwaran (2015) and
Dorst (2017), are equivalent to a version of the Lockean thesis, where the
threshold is determined by the utility the agent assigns to true and false
beliefs. Since these are essentially Lockean proposals, they are subject to
Lottery-style paradoxes.
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