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ABSTRACT 
A very simple question is posed: Employing a ball-and-stick modelling system, and 
given a supply of the component balls and rods, then, treating it as a gedanken 
experiment, what is the most simple structure that it is possible to construct?  
 
Note: This paper is the first of three linked papers, the other two being: 

[2]  Icosahedral Quasicrystalline Structure Modelled as a Dynamically Updating   
System. 

[3]  A Structuralist Proposal for the Foundations of the Natural Numbers. 
 
 
 
 
1. Introduction  
 
Ball-and-stick models are most commonly associated with applications in chemistry 
where they are used to construct molecular models (e.g., [1]). In this paper, however, 
we are employing the gedanken ball-and-stick model to investigate “structure” in the 
abstract. This involves a conventional ball-and-stick model that is assembled in the 
conventional manner, except that it is specifically a gedanken model where an 
idealised constructor assembles the components as a gedanken experiment, not bound 
by the constraints of what can actually be physically constructed, but bound by the 
constraints of what can conceivably be physically constructed. 
 Deciding whether an object is  “simple” or “complicated” can be a matter of 
interpretation. In this context an informational approach is adopted, meaning that we 
define the most simple ball-and-stick structure to be that which can be constructed, 
requiring the minimum amount of prescriptive information. It is known (more 
formally from algorithmic information theory) that an object generated from minimal 
information input can yet, in some cases, produce a large information output. In this 
case we find that the most simple ball-and-stick structure that it is possible to 
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construct, although requiring minimal prescriptive information input, is not a 
mundane object.  
 In this paper we claim to answer the question posed in the title. And to the 
extent that the ball-and-stick modelling system is inherently suited to exemplifying a 
very simple structure, then the model constructed with this system provides an initial 
basis from which analogies with respect to fundamental structure, more generally, can 
be drawn. To quote Shapiro, “the role of concrete and quasi-concrete systems is the 
motivation of structures and the justification that structures with certain properties 
exist” [4]. The discussion of the broader implications, however, is left to associated 
paper [3]. And for a more detailed description of the geometry of the ball-and-stick 
construction, we refer to [2].  
 The work presented in this paper is limited to outlining the construction of the 
ball-and-stick model that is produced in response to the question posed in the title. 
 
 
2. The Basic Setup 
 
2.1 Components, instruction, objective  
 
There are three main features that constitute the basic setup:  

1) Components. There are two bins; one is full of identical balls, the other is full 
of identical rods.  

2) Instruction. There is the fundamental initiating instruction that tells the 
constructor to assemble balls and rods.  

3) Objective. The stated objective is to construct the most simple structure 
possible.  

 
2.2 Definitions of “most simple” and “structure” 
 
Most simple: We take an informational approach to defining “most simple”. The 
degree to which something is considered to be most simple is proportional to the 
amount of prescriptive information that is required to produce it (e.g. the amount of 
instruction required, or the length of the algorithm written). This is an informal 
approach that deals with information colloquially as semantic content. Instructional 
information (inputs) and factual information (outputs) are recognized as ordinary 
language statements.  
 The statements in subsection 2.1 above constitute the base stratum of 
information that is required to set up this paper’s construction problem.  
 
Structure: We employ the two main common usage definitions of structure: 1) An 
object that comprises multiple elements; the structure-object. 2) The organisation or 
arrangement of elements such that there are relations between them; the structure-
organisation. 
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2.3 The informational ground state 
 
The above two definitions of structure refer to elements, and relations. In this setup 
the elements are exemplified by the collection of identical balls, and the relations are 
exemplified by the collection of identical rods (that embody the relations between 
pairs of balls).  
 The component balls and rods are reproduced so that in each case there are 
multiple identical copies that individually contribute zero new information content. It 
is only if the constructor is forced to add special features to the components, requiring 
prescriptive information input, that they would then be imbued with additional 
information content – in which case the structure constructed from those components 
would be no longer be at the maximally information entropic ground state, and would 
not be optimally most simple.    
 
2.4 Summary 
 
The idealised constructor is supplied with a bin of identical balls and a bin of identical 
rods, which (along with the instruction to assemble these components) represents the 
“basic setup”. The objective now is to assemble the most simple structure possible. If 
it becomes necessary to customise the balls or rods, to add special features or specific 
requirements written over top of their basic description of “identical”, that would be 
to import additional prescriptive information into the assembly process. This would in 
turn raise the resulting structure above the maximally information entropic ground 
state.  
 It is only the model assembled with no additional information input (over and 
above the “basic setup”) that is at the maximally information entropic ground state; 
and it is only that model that we can assert is definitively the most simple structure.   
 
 
3. Begin Assembly  
 
First we trial the most obvious assembly method whereby the idealised constructor 
assembles the ball-and-stick model in a stepwise process, accreting a new ball and 
linking rods with each step to grow the structure. The first ball is labelled origin ball 
O, and subsequent balls are labelled alphabetically (see Fig. 1).  
Note: We adopt some terminology from graph theory. 
  
3.1 Steps 0 to 4 
 
Step 0: There is the origin ball O (Fig. 1 (a)). This cannot, in itself, be the most simple 
 structure because, by definition, a single element does not constitute a 
 structure. 
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Step 1: Ball A. The default assembly action attaches A to O with linking rod OA (Fig. 
1 (b)). This produces the first example of a structure. In some contexts (and 
perhaps intuitively) it is considered that the prototypical most simple structure 
can be defined as two identical coupled elements – which definition would be 
embodied in the ball-and-stick model at this stage, and thus the stated 
objective already met.   

   However, in the case of the informational approach employed here, 
and given that the core “basic setup” necessarily included the fundamental 
instruction to “assemble” (subsection 2.1, note 2), then in order to terminate 
construction of the ball-and-stick model at some specific number of balls it 
would be necessary to input information prescribing that specific cardinality, 
along with the explicit termination instruction.  

   The resulting model would then involve prescriptive information 
content in addition to the optimal ground state, which would mean that it could 
no longer be confidently argued that it is definitively the most simple structure. 
This can be referred to as the “no instruction to terminate” problem. At this 
stage, then, we allow that the assembly process (at each step) extends, 
potentially indefinitely.  

 
Step 2: Ball B: There are three different configurations in which ball B and the 

associated rod(s) can be attached to the Step 1 structure: One possibility is the 
cyclic configuration OAB shown in Figure 1 (c). The other two possible 
configurations are acyclic structures in which the rods AB or OB are pendent 
rods.    

   For each of the possible configurations we can, of course, count how 
many rods attach to each constituent ball (i.e., the degree or valence of each 
ball) which can now be described as a “feature” that the balls have acquired 
(the only distinguishing feature).    

   It is now possible to discern between the two types of configuration, 
cyclic and acyclic; in the cyclic configuration the constituent balls are 
uniformly degree 2, whereas the two acyclic configurations would produce a 
non-uniform degree count, 1.2.1.  

   Non-uniform, acyclic configurations would require specific 
information inputs to prescribe the number of rods that should attach to each 
ball for each unique instance.  A cyclic configuration, on the other hand, 
produces uniform degree such that the constituent balls remain identical, 
meaning that no instruction specific to any unique ball is required. 
Informationally, a cyclic configuration is the most simple, consequently cyclic 
configurations are selected for.  

 
 Summary: The description of a ball’s relations to nearest neighbour balls is the only 

distinguishing feature that the otherwise featureless, identical balls acquire. And these 
relations with neighbours are embodied in the linking rods, and can then be expressed 
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as the ball’s “degree”. On this basis, when selecting for optimal structures a key 
criterion will be maximally uniform degree count.  
 
Note: Balls are labelled alphabetically, however, the order in which they appear is 
prioritized with respect to an arrangement in the completed construction that becomes 
relevant later. At this stage ball B is followed by ball G. 
 
Step 3: Ball G is attached to the Step 2 equilateral triangle OAB with linking rods OG, 

AG, and BG (Fig. 1 (d)). Of the various possible arrangements, the uniform 
degree requirement determines that the resulting configuration is necessarily 
tetrahedron OABG, where every ball is degree 3.    

 
Step 4: Ball C is attached to the Step 3 tetrahedron OABG with linking rods OC, BC, 
 and GC to form the triangular bipyramid (Fig. 1 (e)). This configuration 
 produces the best possible uniformity of degree, however, no configuration of 
 five balls, following on from Step 3, can produce uniform degree count across 
 all balls. In this case two balls are degree 3, and three balls are degree 4. 
 
3.2 Steps 5 to 12 
 
Note: Steps 5 to 11 are not individually discussed, nor are the images of the models 
show, but the initial trial assembly is described here generally below. 
 
Continuing to draw from the bins of identical balls and rods, the constructor carries on 
assembling the most simple ball-and-stick structure through Steps 5 to 12 on the basis 
of trialling configurations, primarily to find the structure that produces maximal 
uniformity of degree across the collection of balls.  
 In subsection 3.1 it was noted that cyclic configurations produce optimal 
uniformity and this is evident also through Steps 5 to 12 where, in three dimensions, 
the criterion of uniform degree count biases the construction toward producing a 
cluster configuration such that balls form in a shell about central origin ball O.  
 However, from Step 5 onward the assembly produces no configurations that 
have uniform degree-spread. Even the best possible constructions at each step tend 
toward a divergence away from uniform degree count, until Step 9, at which point 
configurations track back toward producing the required uniform degree-spread 
across all vertices, until the best possible configuration is produced at Step 12. See 
Figure 2. 
  
Step 12: The process of assembling balls to the cluster formation completes the 

peripheral shell so that there is the central origin ball O and twelve peripheral 
balls, A to L, and no further balls and associated linking rods can be fitted. 
This configuration produces uniform degree across all peripheral vertices 
(degree 6). Only origin vertex O remains non-uniform (degree 12).  

 



 6 

 

	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (a)	  	  Step	  0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (b)	  Step	  1	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (c)	  Step	  2	  
	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	   	   (d)	  Step	  3	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (e)	  Step	  4	  

	  
Figure	  1.	   Initiating	   the	  ball-‐and-‐stick	   construction.	  Note	  that,	  naturally,	  some	  rods	  appear	  
foreshortened	   in	  this	  2D	   image	  of	  the	  3D	  model.	  Also,	   in	  (e)	  rods	  OB	  and	  OC	  are	  obscured	  
from	  view	  by	   rod	  BC.	   The	  alphabetical	   labelling	  of	   the	  balls	   is	  prioritized	  with	   respect	   to	  a	  
circumference	   route	   about	   the	   complete	   figure	   (see	   Fig.	   2).	   In	   the	   assembly	   process	   from	  
step	  3	  onward	  each	  new	  ball	  and	  the	  associated	  rods	  attach	  to	  the	  face	  of	  a	  tetrahedron	  to	  
form	  a	  new	  tetrahedron.	  	  	  
	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
	  
Figure	   2.	   Regularised	   IQC.	   The	   ball-‐and-‐stick	   construction	   produces	   a	   skeletal	   polyhedron	  
made	  up	  of	  20	   tetrahedra	  clustered	  about	  O.	  12	  rods	  project	   radially	  out	   from	  the	  central	  
origin	   ball	  O	   (aligned	   with	   the	   six	   icosahedral	   symmetry	   axes)	   to	   the	   12	   peripheral	   balls	  
labelled	  A	  to	  L.	  In	  the	  regularised	  model	  the	  radial	  rods	  are	  shortened	  slightly	  so	  that	  the	  12	  
peripheral	  balls	  (connected	  by	  30	  unit	  length	  rods)	  form	  a	  regular	  icosahedron.	  	  
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4. Two Significant Problems 
 
Looking at the configurations trialled up to this stage, at Step 12 the cluster model is 
the best possible configuration – however, there are (obviously) two significant 
problems:  

1) Geometrical frustration. Contrary to what is shown in Figure 2, the balls and 
rods in the cluster configuration cannot in fact all connect as required – the 
construction is geometrically frustrated.  

2) Non-uniform degree count. For the intermediary Steps between 3 and 12, no 
configuration of the growth model trialled could produce uniform degree 
count for all of the constituent balls. Although the situation is improved at 
Step 12, it remains unacceptable that whole stages of the growth model fail to 
meet the main criterion of uniformity, meaning that specific instruction would 
have to be written to cover those examples. (In the worst case, at Step 9 the 
degree count ranged between 4 and 9.)  
  At Step 12 the best possible configuration with respect to uniform 
degree count is produced (i.e., the completed cluster configuration: all 
peripheral balls = degree 6), however, a residual non-uniformity persists 
(origin vertex O is degree 12).  

 
The geometrical frustration problem is discussed in the following Sections 5 and 6. 
The non-uniform degree count problem is discussed in Section 7. 
 

 
        Figure 3. The frustrated IQC 
 
5. The Icosahedral Quasicrystal (IQC) and the Geometrical 
Frustration    Problem 
 
The criterion of maximal information entropy has steered the construction toward 
producing the cluster configuration that comprises the central origin ball O and twelve 
peripheral balls (and associated rods). These components have arranged naturally in a 
formation with icosahedral symmetry that is known in materials science as the 
icosahedral quasicrystal, IQC [5]. See Figure 2.  
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 In the context of the ball-and-stick construction, assembly of the IQC can be 
described as a clustering growth model where the rods and balls form twenty 
tetrahedra that share common central ball O. However, the dihedral angle of a 
tetrahedron is not commensurable with 2π, consequently the first of the problems that 
was signalled in the previous section is now evident; very simply, in the ball-and-stick 
construction not all balls and rods connect (contrary to what is shown in Figure 2).  
 Because it is difficult to clearly show a non-connecting ball-and-stick model, it 
is constructed here in two versions: The first version, shown in Figure 2, is 
constructed as a regularised approximant; i.e., the rod lengths of the ball-and-stick 
model are adjusted so that the twelve peripheral balls and associated rods can connect 
to form a regular icosahedron. The second version, Figure 3, is constructed as a solid 
model – this more readily illustrates the non-connecting, frustrated structure in one 
example of the various configurations that may actually result from trying to assemble 
identical rods and balls (as the problem properly requires). 
 Propagating the ball-and-stick model in three-dimensional space is essentially 
a variant of the age-old sphere-packing problem that can be found as far back as 
Sanskrit writings 499 AD [6].  (In this context here the balls in the model can be 
thought of as the centres of identical, kissing spheres.) In which case, to find that the 
assembly process runs into the geometrical frustration problem is not exactly 
unexpected.  
 Nevertheless, although the problem is well understood, in the context of the 
ball-and-stick construction there is yet some naïve residual expectation that it should 
be possible to assemble the balls and unit length rods to grow the model indefinitely; 
essentially we expect to propagate congruent tetrahedra to tile the volume of space (as 
in fact Aristotle famously believed was possible) as a natural extension of the way 
that the plane can be tiled with equilateral triangles.  
 In very simple terms, a linear extension of the balls spaced apart by unit length 
rods can equate with the marks on a ruler; then, looking at the problem in this context 
is to conclude that if conventional measurement principles hold with respect to certain 
spatial axes, there are certain other axes in that same space where those same 
principles are not commensurable. Or, broadly, the measurement system that works 
fine in one direction in space cannot simultaneously work fine in this other direction 
in that same space. This is, of course, rooted in the well understood commensurability 
problems that classical mathematics has long since dealt with; nevertheless, when 
considered as a very basic measurement problem, un-finessed, the situation can seem 
untenable.  
 The problem of filling space with the ball-and-stick construction intuitively 
feels like a very basic problem that should have a solution in an equally basic, 
canonical, model. In the context of this paper, what started as a straightforward 
proposal to assemble the balls and rods into a structure became entropically biased 
toward cluster formation with icosahedral order, thus producing the IQC that is 
geometrically frustrated, and where, in the extended structure, periodicity is lost in all 
three dimensions. So the structure is now difficult to describe in three-dimensional 
space, and it is challenging to find the correct mathematical formalism to express the 
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ideal model. Current approaches include integrating concepts from Penrose tiling, 
Fibonacci series, and projections of lattice points from hyperspace to physical space 
(for overview see [7]), all of which are complicated and there is no canonical model. 
 
 
6. Resolving the Geometrical Frustration Problem 
 
5.1 Considering the options available 
 
If there was a willingness to relax the informational strictures and concede to 
axiomatically introducing additional prescriptive information to modify the settings as 
required, there would then be several approaches to resolving the frustration problem 
that otherwise stymies the assembly of the ball-and-stick model in three-dimensional 
space.  
 For example, we could write instructions into the assembly process that would 
adjust rod length so that the regularised version of the IQC shown in Figure 2 is 
constructed. Essentially, rods forming the peripheral shell need to be slightly longer 
than the radial rods projecting out from the centre. However, we know that for any 
structure where icosahedral order is imposed locally such that five tetrahedra share a 
common edge, it is impossible to fill space even if it is allowed that the tetrahedra 
may be severely distorted. A considerable amount of instruction would have to be 
written over top of the optimal, maximally information entropic ground state. 
 Another approach may resort to constructing the ball-and-stick model, 
configured as the common cubical lattice – essentially producing the conventional 
mapping of space with orthogonal coordinate surfaces. A cubical lattice, however, 
lacks rotational symmetry and, essentially, some background notion of orthogonality 
would have to be written into the system. Clearly this approach would also require 
inputting a large prescriptive information content. 
 Rather than capitulating to these types of approach, we maintain the original 
resolve to construct the ball-and-stick model without increasing the prescriptive 
information content of the system above the maximally entropic ground state. If 
successful, this will allow us to confidently argue that the structure produced is the 
most simple possible.  
 The gedanken ball-and-stick construction problem can now be viewed as the 
problem of constructing a concrete model that must resolve the mathematical problem 
of geometrical frustration and translation asymmetry in the global model of an 
icosahedrally ordered lattice structure, or, the problem of producing the ideal model 
for the icosahedral quasicrystal.    
 The unifying character of the currently favoured approaches to this problem 
(for an overview, again see [7]) is that generally they involve an ideal model that is 
theorized to live in an unphysical higher-dimensional space from which Euclidean 
space can be recovered. Hyperspace is of course outside of the reach of intuitive 
visualisation or exemplification in any concrete model such as could be constructed 
with our ball-and-stick modelling system.  
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6.2 Introducing the ball-and-stick model constructed as a dynamically 
updating system 
 
This is a critical juncture: In this paper’s setting the question that we are seeking to 
answer is specifically concerned with construction of the ball-and-stick physical 
model, consequently the preferred conventional approaches that appeal to a non-
physical hyperspace are not available. As an alternative approach we intend to argue 
that the ideal model is necessarily a dynamically updating system.  
 Unlike the various hyperspace approaches, the dynamically updating system is 
amenable to construction in a gedanken ball-and-stick model. That development is 
discussed in Section 9. Before dealing with that, however, we will first discuss the 
non-uniform degree count problem (i.e., the second of the “two significant problems” 
mentioned in Section 4).  
 At this stage we signal ahead that the geometrical frustration problem is 
resolved in the ball-and-stick model constructed as a dynamically updating system. 
With that provisional understanding in place, in order to conceptualise the ongoing 
construction we continue to employ the regularised geometric structure that gives the 
static approximant of the IQC (e.g., Fig 2). In other words, we now have to remember 
that as the focus returns to the non-uniform degree count problem, the static 
approximants that are referred to in the following sections are temporarily standing in 
for the ball-and-stick assemblage that should more correctly be modelled as a 
dynamically updating system.   
 
 
7. Returning to the Non-uniform Degree Count Problem 
 
7.1 Quantum growth mode 
  
To recap: The trial construction that was initiated at Section 3 started from origin ball 
O and assembled the model by a stepwise accretion balls and rods to form the cluster 
configuration that auto-completed (i.e., all available spaces were filled) at the shell of 
the IQC. However, in that construction process, steps in the assembly of the model 
involved stages where a large amount of prescriptive information would have to be 
written to resolve the obvious non-uniform degree count problem. 
 Given the above, as an alternative assembly mode it is proposed that the 
idealised constructor must assemble the model as a quantum jump from Step 0 (origin 
ball O) directly to Step 12 (origin ball O and the full array of twelve balls that 
complete the peripheral shell). This bypasses the steps that most egregiously exhibit 
the non-uniform degree problem, bringing the model construction to the completed 
IQC that, although not yet perfect, is the best-case configuration.   
 Intuitively, of course, our notion as to what constitutes the most simple 
method of assembling the ball-and-stick model is influenced by our human 



 11 

constructor’s physical ability to construct the model, recognizing that to assemble the 
twelve peripheral balls in unison would be physically difficult. Superficially then, it 
may also seem that writing the instruction for the idealized constructor to perform the 
quantum jump mode of assembly would require a longer algorithm than would be the 
case for the stepwise assembly process. That intuition brings with it a sense that the 
stepwise assembly is the default mode over top of which the quantum jump mode 
would have to be written-in, requiring additional information input.  
  None of that intuition is, of course, necessarily correct. The basic setup 
includes the initial instruction to assemble the components. But it is logical to 
presume that an unbiased constructor will assemble components undiscerningly 
across all degrees of freedom available, as opposed to selecting specific orientations. 
The latter would imply an overt action requiring information input.   
 The only instruction that determines the construction mode is stated in the 
objective as initially given in subsection 2.1 note 3. The objective states that the 
structure produced should be the most simple, thus requiring the least prescriptive 
information input, which implies the growth mode that involves only uniform 
components – specifically in this case balls with uniform degree. And the assembly 
mode that best satisfies that criterion is that which proceeds as a quantum jump from 
Step 0 to Step 12. 
 
7.2 The fundamental building block   
 
At subsection 3.2, Step 12, the stepwise assembly process completed the peripheral 
shell of the IQC, indicating that a phase of the construction had auto-completed (there 
were no more ball positions available within the shell). With respect to an entropically 
driven growth model that is thus biased toward clustering about a central origin ball, 
the IQC is the resulting structure.  
 Growth is now revised so that the previous stepwise construction process is 
now realised, more correctly, to be a quantum growth mode that, in a single step, 
assembles the peripheral balls to complete the first shell – and as such, that phase of 
the assembly process can be considered to have auto-completed. These considerations 
define the IQC as the first “quantum” building block.  
 To summarise: The assembly necessarily progressed directly from the origin 
ball O to the IQC completed unit as the first building block. 
 
7.3 Penetration twin assembly mode 
 
At this stage we have concluded that for origin ball O there is not a first successor ball 
in the assembly process, but rather, the successor step necessarily jumps to the 
completed IQC. And given the requirement of uniformity of characteristics across all 
of the balls in the model, we can also conclude that every ball is equally a central ball 
about which the model assembles in this quantum growth mode. This argument tells 
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us, first, that the growth model is to be thought of as an accretion of IQC building 
blocks, and second, it also gives us the assembly mode of those building blocks. 
 Perhaps the first intuition is to assemble the IQC building blocks in non-
overlapping contiguous junction, however, the above arguments tell us that in fact 
they must self-assemble (i.e., assemble in the maximally information entropic 
formation mode; see also [5]) in conjoined, penetration twin junction – or more 
specifically, in multiply conjoined, penetration twinned junctions.  
 Each of the twelve peripheral balls that make up the first shell of the first IQC 
that formed about central origin ball O is now, in a second phase of growth, the new 
central origin ball about which a new IQC forms in penetration twin junction with the 
first central IQC and with each of the neighbouring IQCs. Just as the first phase of the 
model assembly proceeded as a quantum growth step, so also a second phase of 
growth proceeds as a quantum growth step in which twelve IQCs are accreted to the 
initial, central IQC, multiply penetration twinned, forming the second shell about the 
origin ball O.    
 As discussed above, the penetration twin growth mode produces the required 
identicalness, or uniformity, across all of the balls. In the second phase of growth, the 
balls that make up the first shell about the first origin ball O are no longer peripheral 
balls, but they become the origin balls of the penetration twinned IQCs, and are thus 
now, like the origin ball O, also degree 12. This is the first part of the solution to the 
non-uniform degree count problem.  
 The multiply penetration twinned growth that accretes twelve new IQCs to the 
structure resolves the problem of non-uniform degree count with respect to the initial, 
central IQC; but it also produces, of course, a new peripheral shell filled with balls 
that are degree 6. So although the initial problem, as strictly defined, has been 
resolved, it is also the case that the problem has just been deferred. Any cluster 
configuration with an edge will result in a disparity of degree count between interior 
balls and boundary balls. This will only be resolved if a structure can be constructed 
(in this setting of the concrete ball-and-stick model) that is without an edge or 
boundary.  
 
 
8. Quasicrystaline Pentakis Dodecahedron (QPD) 
 
The construction of the ball-and-stick model can be described as three distinct phases:  
 
Phase I: Assembly of the ball-and-stick model began at Step 0 with the origin ball O. 

 
Phase II: There is the “quantum” jump from Step 0 to Step 12, which completes the 
assembly of the first shell that is composed of twelve peripheral balls in icosahedral 
configuration, thus producing the IQC (Fig. 2). The IQC is the minimum unit (i.e., 
wherever there is a ball, there is necessarily an IQC) and is the fundamental building 
block for all further construction.  
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Figure 4. QPD (Note: This is obviously an illustration, not true projection) 
 
Phase III: The Phase II configuration produced icosahedrally ordered structure, and 
the idealized constructor continued to assemble the structure, attaching in a quantum 
growth mode twelve penetration twinned IQC building blocks (i.e., each of the central 
IQC’s twelve peripheral balls become the origin ball for the twelve new, penetration 
twinned IQCs) to form the second shell. As was the case with the first shell that 
completed Phase II, now the second shell auto-completes Phase III construction. 
 At the completion of Phase III the structure comprises 13 balls from Phase II, 
and 32 balls from the Phase III penetration twinned IQCs, for a total of 45 balls. The 
32 surface balls form a pentakis dodecahedron.  
 In geometry, a pentakis dodecahedron is a dodecahedron with a pentagonal 
pyramid covering each face, and this Phase III figure is characterised as 
“quasicrystaline” because it is not a geometric solid, but rather, it includes the interior 
construction that causes it to be geometrically frustrated, and it has icosahedrally 
ordered structure. So the completed figure (that includes the surface balls as well as 
those of the interior structure) is referred to here as the quasicrystaline pentakis 
dodecahedron, or QPD. 
 
 
9. Returning to the Ball-and-stick Model as a Dynamically Updating 
System  
 
To recap: In subsection 3.2, Step 12, the assembly of the ball-and-stick model 
completed the shell of the IQC. Section 4 acknowledged two significant problems – 
one being the inherent geometrical frustration. Section 6 discussed optional 
approaches to resolving the problem. The favoured conventional approaches 
commonly theorise unphysical constructions that live in hyperdimensional spaces. 
Those approaches are obviously not accessible to the physical ball-and-stick 
construction.  
 As an alternative approach, at subsection 6.2 the concept of the ball-and-stick 
model as a dynamically updating system was introduced. In fact, all of the structure 

 
Origin ball O (red). 
 
Shell of first IQC (purple balls) 
 
 
IQCs penetration twinned with first IQC 
and with each nearest neighbour IQC 
(yellow balls).  
 
Shell of QPD 
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produced in the previous sections has been based on the IQC building block for which 
the static regularised approximant has been standing in for the actual dynamically 
updating model, ahead of the discussion in this section.  
 The concept of the model as a dynamically updating system is straightforward: 
Figure 3 showed the IQC constructed as a solid model, clearly demonstrating the 
geometrical frustration that prevents the ball-and-stick model from being assembled 
with the balls and rods completely connecting in the manner required.  
 The general concept of the dynamically updating system applied to this model, 
works on the basis that where there is the frustration gap, e.g., Figure 3, at position A, 
rods can be pulled together such that a ball can be fixed at that position − but that is 
only possible if it is granted that rods are, as a consequence of that action, also pulled 
apart from a ball at a neighbouring position. That ball can no longer be fixed at that 
neighbouring position until the gap there is pulled together, and the domino effect 
perpetuates this attaching and detaching action cyclically around the configuration. 
We refer to this action as having the effect of “creating” and “annihilating” balls.  
 The proposal put forward here is that the geometrically frustrated, asymmetric 
configuration that the static construction has produced (e.g., Fig. 3) is smoothed out in 
the dynamically updating system so that the IQC and the QPD are, in the mean, 
centrally symmetric structures. The ball-and-stick construction becomes an animated 
model in which, triggered by a sequential domino effect, balls and rods are clicking 
together and pulling apart, created and annihilated, in rapid succession throughout the 
complicated system so that, as the idealised constructor views it, the components 
average out to the blurred image of a centrally symmetric structure.  
 That is a reasonable image of the model, however it is not the only one.  
Especially, it is not implied in the ball-and-stick model that the update process is 
necessarily dynamical in the traditional sense that it is evolving over time, either 
continuous or discrete time. The information in the system has not implied or required 
the notion of some background metronome that the process conforms to; nor has it 
implied that the update process is inherently continuous.  
 The concept of the dynamical update system requires only that where there are 
frustration gaps in the existing structure, the idealised constructor can pull rods and 
ball together to fix the ball in that position; but accepting that this is only possible at 
the expense of pulling neighbouring ball and rods apart so that that ball is no longer 
fixed in place. It subsequently follows that the constructor must at some later stage 
then repair the connection to that second ball; however, there is no sense of “when”. 
The domino update process is causally driven, not temporally driven.  
 The above outline has broadly introduced the mechanics of the dynamically 
updating ball-and-stick construction. However, it is also a requirement that the system 
acquires this capacity to update for free (i.e., for zero prescriptive information input); 
whereas, superficially at least, it would appear that introducing the update system will 
require considerable prescriptive information input. 
 As the idealised constructor stands at his workbench and assembles the balls 
and rods, commonly, the first intuition is that the static model is the default most 
simple setup over top of which considerable prescriptive information input would be 
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required to animate this construction to produce the dynamically updating model 
described above.  
 It is true that the concept of the dynamically updating system has been 
introduced in order to resolve the geometrical frustration problem, but it is not one 
proposal, or philosophical approach, hypothesised from a wide range of available 
approaches. For any proposed system, the constructor is in fact, in all cases, forced to 
decide on one of two alternatives – the system is static, or it is dynamical.  
 The idealised constructor may well ask, in what sense, actually, or 
conceptually, is the ball-and-stick construction on the workbench inherently static? It 
is of course composed of dynamically updating atomic and subatomic constituents 
that are all together rotationally shifted on the surface of the Earth that is orbiting the 
sun that races around the galactic centre that is moving toward some distant point in 
the universe. The concept of the static model was, of course, contingent upon an 
artificially contrived frame of reference. And conceptually, it is not essentially static 
either. 
 So we cannot make the traditional assumption that our model is by default 
static, but rather, we are forced to make the argument equally for either static or 
dynamical; and – colloquially at this stage – there is every reason to argue that the 
default ground state model is a dynamical system from which the static model can be 
abstracted at the expense of some information input.  
 Just as it was necessary to revise the initial intuition and consider that the 
default construction mode necessarily propagated structure with respect to all degrees 
of freedom equally in quantum growth, so also any initial intuition that the default 
most simple structure is necessarily a static structure, is revised in favour of the 
dynamical alternative. 
 
 
10. The Boundary Problem Resolved in the Dynamically Updating 
QPD  
 
Recap: Phase I consisted of the origin ball O. Phase II proceeded as a quantum jump 
that filled in all ball positions available in the first shell, thus producing the 
fundamental building block, the IQC. Phase III proceeded as the quantum jump that 
accreted a ring of penetration twinned IQC building blocks, filling in the second shell 
that gave us the QPD.  
 At the completion of Phase II the non-uniform degree problem persisted 
residually, evident in the degree-disparity between the central origin ball O (degree 
12) and peripheral balls (degree 6), prompting the ensuing Phase III construction – 
which did solve the immediate problem, but only, of course, by transferring it from 
the periphery of the IQC, to the periphery of the QPD. The balls at the new periphery 
are once again degree 6, while interior balls are degree 12. Essentially, it is clear that 
the most simple ball-and-stick construction must have no edge.  
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 If we wish to construct the QPD as a finite space that has no edge, we have, of 
course examples of such – a common one being the 3-sphere. However, all such 
topological constructions are hyperdimensional and require the abstract notion of 
gluing, both of which features have no direct physical analogue and as such are 
obviously not available to the concrete ball-and-stick construction. The proposal now 
is that, just as the concept of the dynamically updating system has provided a physical 
model at that point where conventional approaches might appeal to higher dimensions, 
so also treating the ball-and-stick construction as a dynamically updating system 
offers a “physical” solution to the present boundary problem.  
 This can be conceptualised as a gedanken experiment in which the intrinsic 
idealised observer (as distinct from the “constructor”) takes a (graph-theoretic) walk 
through the ball-and-stick construction. Starting at the central origin ball O, the 
idealised observer’s first step arrives at a ball on the first shell, or on the periphery of 
the IQC. The observer’s walk can logically only include balls that are fully connected 
to rods, or, can include only “created” balls but not “annihilated” balls. It is 
conjectured that the idealised observer’s walk is necessarily correlated with ball 
creation – the walk can only proceed on the basis that the inherently dynamical 
system updates the approached ball-rod connection to “created” status. 
 This progression of the idealised observer, transitioning from the centre 
toward the boundary, involves a system wherein the geometric frustration gaps are 
closed as balls and rods are pulled together ahead (ball creation) causing gaps to open 
where balls and rods are pulled apart behind (ball annihilation), with the effect that in 
relation to the overall QPD structure, the idealised observer remains always at a 
central origin vertex O. It is proposed that when the mechanics of the idealised 
observer’s transition through the structure are fully developed, it will be seen that this 
process will necessarily induces a correlated churn of balls and rods being zipped 
together ahead and unzipped behind such that the observer appears to drag the QPD 
structure along, while always remaining at the centre. 
 
 
11. The Quintessential Most Simple Ball-And-Stick Structure 
 
11.1 Review 
 
The “basic setup” (as first outlined in Section 2) provided the base stratum of 
information necessary to initiate this paper’s construction program.  
 In the previous sections we’ve seen that the assembly process organises into 
three phases: 
 
Phase I  

• Step 0 introduced the origin ball O, the first ball – this does not meet the 
definition of “structure”.  
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• Step 1 introduced the second ball so that the structure now comprises two 
identical balls coupled with a rod. This is not, however, the most simple 
structure because the “no instruction to terminate” problem (subsection 
3.1) cannot be resolved for this construction; therefore at this stage the 
assembly process is necessarily indefinitely extending.  

 
Phase II 

• The initial trial of the stepwise assembly process is revised in favour of a 
quantum growth mode in which twelve balls complete the first shell, 
producing the IQC. Note: This is not a case of “prescribing” quantum growth; 
rather, it is a case of realising that, informationally, centrally symmetric 
quantum growth is the default growth model. 

• It is hypothesised that in order to resolve the geometrical frustration problem, 
the structure is necessarily, by default, a dynamically updating system. 

• The IQC fails to be the most simple structure because of the “non-uniform 
degree” problem and the “no instruction to terminate” problem.  

• The IQC is, however, identified as the fundamental building block. 
 
Phase III 

• Twelve penetration twinned IQC building blocks are assembled to the model 
in a quantum jump, with the peripheral balls forming the second shell. The 
twelve IQCs auto-complete the second shell, producing the QPD (Fig. 4). 

• The ball-and-stick QPD structure, as a dynamically updating system, resolves 
the geometrical frustration problem. 

• It is also conjectured that the dynamical update feature produces an evolution 
of the structure such that for an idealised intrinsic observer the informationally 
finite QPD structure has no edge or boundary (Section 10); thereby resolving 
the “non-uniform degree” problem. 

• This leaves only the “no instruction to terminate” problem outstanding.  
 
11.2 The “no instruction to terminate” problem  
 
The problem that the constructor is faced with is that the default instruction is to 
assemble the ball-and-stick model; consequently, to stop assembling requires an 
instruction input to that effect, probably requiring also a statement to prescribe the 
cardinality. This would increase the information content above the maximally 
entropic ground state, in which case we could no longer be certain that the model is 
the most simple. 
 It follows that the idealised constructor is necessarily bound to continue 
assembling the model indefinitely, which presents the obvious problem that the 
undertaking is never completed. In a conventional growth model the constructor could 
never point to a definitive model that is the most simple structure that it is possible to 
construct.    
 



 18 

11.3 The appearance of fractal structure 
 
Reluctance to capitulate to writing the additional prescriptive information that would 
be required to terminate the construction process means that, obviously, assembly of 
the ball-and-stick model continues on the basis laid out up to this point. Fortunately, 
however, the idealised constructor observes (without, obviously, inputting any 
directing instruction) that a fractal character naturally begins to appear in the structure 
of the ball-and-stick model. 
 The completion of the second shell that produced the QPD initiates a phase 
transition with the effect that further assembly of the ball-and-stick model does not 
produce a third shell, does not produce novel structure, but rather, further construction 
iterates the QPD structure through successive fractal layers. The iterative fractal 
character of the indefinitely extensible construction process means that structure that 
is produced at any future stage is fully represented in the first QPD. 
  
11.4 Summary 
 
At this stage it can now be claimed that the dynamically updating QPD configuration, 
as reviewed above, and with the fractal character of the structure resolving the “no 
instruction to terminate” problem, is the definitive most simple ball-and-stick 
structure that it is possible to construct.    
 The following section will elaborate on the fractal character of the structure, 
and additional features of the QPD model become evident (most notably a ubiquitous 
helicity) as the extended, fractally-layered ball-and-stick model assembly is continued. 
 
 
12. The Extended Ball-and-Stick Model 
 
In the previous Sections the idealised constructor has completed the assembly of the 
QPD. Now the assembly of the three-dimensional ball-and-stick structure beyond the 
first QPD is outlined, referring to the illustration in Figure 5.  
 Note: For a more detailed description see also [2] Section 8. 
 
12.1 Fractal structure 
 
First, growth up to the stage of the QPD is here reviewed. Referring to Figure 5, the 
notes below are keyed to numbers on the diagram: 
 

1. Origin ball O (Phase I). 
2. The first IQC, i.e., the first shell (Phase II). This construction has icosahedral 
symmetry (see also Fig. 2). We can think of the six icosahedral symmetry axes 
that intersect at origin ball O as twelve rays emanating from O, aligned with those 
axes. One of those rays is highlighted in red, Note 7. 
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3. To the first, central IQC, Phase III growth accretes twelve penetration twinned 
IQC building blocks, aligned with the twelve rays in a centrally symmetric 
quantum jump, to produce the QPD (the second shell). That construction, the QPD, 
comprises 45 balls and 204 rods (see also Fig. 4).   

 
The above growth has completed the QPD.   
 

4. From the surface of the QPD, the next growth stage accretes another twelve 
penetration twinned IQC building blocks along each of the twelve rays that radiate 
from O aligned with the symmetry axes. Note 4 sits on the shell of one of those 
IQCs. 
5. We see that further growth does not produce a third shell that enshrouds the 
QPD, but rather, the only IQC building block accretion option available is for 
them to stack anisotropically to form rods aligned with the symmetry axes. 
6. Shell of typical QPD. 
7. Typical symmetry axis (red). 
8. Gaps between the rods cannot be filled, but this is not indicative of a geometric 
frustration-type defect, but rather it is the case that there is a phase transition so 
that the growth is at this stage producing the second fractal layer of structure.    
9. The first IQC, Note 2, is iterated at the second fractal layer. The shell of the 
second fractal layer IQC is indicated, Note 9. From this stage, ongoing 
construction will assemble those second fractal layer IQC building blocks.  

 
As outlined above, growth of the ball-and-stick construction continues past the QPD 
(Fig. 5, Note 3), but at that point there is a phase transition to second fractal layer 
growth. This is a seamless transition in which the idealised constructor continues 
uninterruptedly (i.e., without extra instruction input), to assemble penetration twinned 
IQC building blocks in centrally symmetric quantum jumps, adding to the growth (Fig. 
5, Notes 4 and 5) that stacks the IQCs to form rods that project out along each of the 
twelve rays that radiate from O. This is a seamless continuation of prior growth. 
However, beyond the shell of the first QPD (Note 3), the growth of IQCs does not 
coalesce into an encasing third shell, but rather, the stacked IQCs project out as rods 
that are aligned with the symmetry axes. Now the QPD (Fig. 5, Note 3) can be 
thought of as the second fractal layer origin ball O, and the stacked IQCs (Fig. 5, 
Notes 4 and 5) can be thought of as the second fractal layer rods. 
 The growth of the ball-and-stick model self-organised into Phases I, II, and III; 
but there is no Phase IV. Rather, the continued growth seamlessly reproduces Phases I, 
II, and III at the second, third, fourth, etc. fractal layers.   
 The above analysis of the fractal structure describes the assembly process in 
terms of growth that emanates outward from O in centrally symmetric quantum jumps, 
and goes on to reproduce the essential QPD structure at ever-larger scale. But it is also 
the case, naturally, that the fractal structure extends similarly in the other direction.  
As well as looking at the QPD as the result of growth out from origin ball O, we can 
also zoom in on O so that we observe that it resolves to the QPD. That is to say, we  
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Figure 5. This shows the fractally layered extended structure (illustration of 
2D section through 3D structure; i.e., not true projection). The notes below are 
keyed to the numbers in diagram. 
 
Note: Fractal layer number is given in italicised square brackets.  
1). Origin ball O (red). 
2). Shell of first IQC. 
3). Penetration twinned IQCs in cluster formation, forming the second shell = QPD = 

ball [2] (see also Fig. 4).  
4). Shell of 1st IQC attached to surface of QPD. 
5). Penetration twinned IQCs in anisotropic formation aligned with symmetry                       
     axis = rod [2]. 
6). Shell of typical QPD =  ball [2] (see also Note 3 above). 
7). Typical symmetry axis (red). 
8). Gap between rods.  
9). Shell of IQC [2]. 
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can magnify the ball-and-stick construction to reveal that the original balls are also 
QPDs, and the original rods are made up of linearly stacked IQCs. Figure 5 shows an 
example (highlighted with green outline) of the second fractal layer ball-rod-ball 
assembly (clearly, the actual ball-and-stick modelling components initially shown at 
Fig. 2 did not anticipate the proportions very accurately). 
 Summary: The IQC is the fundamental building block from which the ball-
and-stick model is constructed. However, the QPD is the fundamental “atom” at every 
fractal magnification. It is the first element. Each of the balls in the bin in the original 
basic setup are QPDs. And the complete global structure of the indefinitely extended 
ball-and-stick construction is equally the QPD.  
 
12.2 The fundamental underlying icosahedral quasicrystalline lattice 
 
Considering the fractal character that has become evident in the overall structure that 
has been produced thus far, it is now clear that with the first ball in place there was 
also already implied a fundamental, icosahedrally ordered quasicrystalline lattice 
structure, a structural chassis that underlies the entire ball-and-stick construction. The 
idealised constructor, charged with producing the most simple structure (i.e., the 
maximally information entropic structure) was always ineluctably bound to assemble 
the three-dimensional ball-and-stick model along those lattice lines through space.  
  
12.2 The dynamically updating ball-and-stick extended model  
 
The idealised constructor is, of course, not constrained by practical considerations in 
the same way that a human constructor would be. And it has to be remembered that, 
contrary to the limitations of this presentation (i.e., the static diagrams and 
descriptions) the model we have been discussing is the network of ball-rod 
connections that is dynamically updating. In this dynamical model balls are “created” 
and “annihilated” in the causal-domino effect that ripples throughout the entire 
icosahedral quasicrystalline lattice structure of the ball-and-stick construction.  
 The idealised constructor’s ability to produce the above described dynamical 
model, we can well enough conceptualise, but those same construction capabilities do 
not, of course, extend to a human constructor. In fact, although we are arguing in this 
paper that the dynamically updating model is the default most simple idealised 
gedanken model, in contrast to that, the default most simple model for the human 
constructor is always the static model. (This dichotomy between the dynamical 
subject matter and the human predilection for converting that to the static model is 
discussed in [3].)  
 At this stage we anticipate that even a very reduced dynamically updating ball-
and-stick model is not only physically difficult for the human constructor to produce, 
but also presents a combinatorially intractable problem. Where the idealised 
constructor readily assembles the dynamically updating ball-and-stick model as the 
default self-perpetuating system that requires minimal informational input, the human 



 22 

constructor on the other hand best resorts to constructing an inferior static model that 
can at least capture a representative snapshot of that system.  
 An aspect of the ball-and-stick assemblage that hasn’t been discussed yet is 
the migration effect that is anticipated to result from the dynamical update feature. 
The structural tension throughout the quasicrystaline ball-and-stick model manifests 
as the geometrical frustration gaps, which are only resolved at one location where a 
ball and associated rods are pulled together so that the ball is “created”, at the expense 
of a neighbouring ball being pulled apart from the rods, then “annihilated”. This 
update process can perpetuate as a type of domino effect. However, as balls alternate 
between “created” and “annihilated” states, they do not reappear, re-created, in the 
same position – but rather, their position is shifted slightly so that the effect over 
multiple updates causes a migration of the overall system.  
 
12.3 The ubiquitous helicity mapped out in the static approximant 
 
For the idealised constructor’s dynamically updating ball-and-stick model that has 
been described above, the human constructor can at best represent that by assembling 
a static version as an imperfect regularised approximant (in which rods are not 
identical, but lengths are adjusted). Taking account of the migration effect described 
above, once that initial approximant ball-and-stick model is constructed, it is then 
straightforward to produce the geometry that describes the migration pathway 
between any two neighbouring balls – i.e., that pathway that captures the dynamical 
evolution of the structure with respect to that segment. In paper [2], Section 13, the 
geometry for the three-dimensional model of that pathway is detailed, revealing it to 
be a tubular extension, referred to there as the “range-tube pathway”.   
 That is, for a representative sample of the structure, the approximant model 
assembles all of the balls, each located within a range of position. And for any 
particular ball, the migration hypothesis says that over multiple dynamical updates 
that ball will be annihilated and re-created. Included in this is a geometry that 
describes the pathway in the static model that gives the range of position that any 
annihilation and creation of that ball is restricted to, spanning between all pairwise 
adjacent balls. Furthermore, there is a geometry that concatenates the pathway 
segments between pairwise adjacent balls to produce extended pathways throughout 
the static model of the entire lattice structure. These pathways are essentially 
describing, with respect to one static snapshot of the structure, the evolution of the 
overall system, or the macrostate of the system (see [2] Sections 16 and 17, the range-
tube pathways).  
 The description given above is saying that for the interval between adjacent 
balls we can map the possible positions of balls that will be produced by the migration 
effect. In the full development (e.g., [2]) the static model is only able to define the 
positions and states of these balls probabilistically, and as such they are referred to as 
virtual balls. The geometry that delineates that extension produced by the migration 
effect is constructed of multiple compound curves so that the overall shape is a 
curvilinear tubular extension.  
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 When we apply the geometry that concatenates those segments of curved 
tubular extension, it becomes evident that the extended composite range-tube 
pathways take on a helical configuration. Every extension that defines the interval 
between neighbouring balls is curved, and every extended concatenation of those 
intervals produces a helically coiled pathway. Yet the rays that project out from origin 
ball O aligned with the icosahedral symmetry axes map out the growth of the structure 
along the underlying chassis of straight lattice lines such that the overall space can be 
described as flat.   
 All of this is detailed in [2]. There we see that the range-tube pathways that 
traverse the extended structure can be constructed, originating at origin ball O and 
radiating in centrally symmetric growth outward, exiting the QPD shell and forming 
the rod extensions in multiply helically coiled paths. Those helices in the first instance 
coil about a substructure that is a triple helix strand, where that triple helix strand is 
itself entwined in a helical coil with five others strands.  
 Referring back to Figure 5, Notes 4 and 5 indicate the rod structure that grows 
out from the surface of the first QPD. We see that the rod extends a short distance 
before it is absorbed into the successor QPD. This demonstrates a second fractal layer 
ball-rod-ball construction, and we can say that the rod defines the interval between the 
two QPD/balls. Initially this could appear to present another case of the “no 
instruction to terminate” problem. It is not at first obvious what information there is to 
determine the rod length, before it terminates at the successor ball?  
 This is where the dynamical update system provides the auto-termination 
mechanism. In associated paper [2] Section 17, this is developed more fully. There we 
see that in the static model the dynamical update process is explained in terms of the 
range-tube pathways that map that update process as a helical pathway through the 
structure. For example, a typical pathway can be tracked from an origin at O, to where 
it moves through the rod structure before, at a certain point, the helically coiled 
configuration of the path returns to a point on the symmetry axis that is a reflection of 
the original starting point, thus signalling that one iteration of rod has terminated at 
the central origin O2 of the successor ball – therefore a ball-rod-ball section of the 
structure is completed without information input.    
 Note: Every extension that defines the interval between neighbouring balls is 
curved. And every most simple extended pathway that traverses the overall structure 
is intrinsically helical. Generally, the defining feature of the model is a ubiquitous 
helicity that runs throughout the entire icosahedrally ordered, quasicrystalline lattice 
structure of the ball-and-stick construction that has been here identified as the most 
simple structure that it is possible to construct.   
 
 
13. Conclusions 
 
Consider that an observer’s view ranges over the entire universe but begins to zoom in, 
with the Milky Way coming into focus as it moves toward Andromeda, and within the 
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Milky Way our solar system becomes visible, tracing its orbital path around the 
galactic centre. The lateral traverse of the galaxy combined with its rotational spin 
means that if a line is plotted behind our solar system, tracking its pathway, that line is 
of course a large helix drawn through space.  
 This helical pathway is a thickened line drawn through space by the motion of 
the entire solar system within which, naturally, there is the motion of the Earth 
orbiting the Sun. So the first path, the galactic path, is that thickened helical strand the 
width of the solar system that is itself, secondly, composed of the helical sub-strands 
drawn by the paths that the planets are tracing through space. So the rather limited 
“flat” diagrams of the usual heliocentric model are expanded here to produce the 
helical pathway. 
 Of those helical sub-strands there is one, of course, that is carved out by the 
Earth. And somewhere on the Earth’s surface, the idealised constructor stands at his 
workbench assembling the ball-and-stick model. The Earth’s movement through 
space, tracking along its multiply-helical path, combined with its rotational spin, 
means that within that system the idealised constructor is, of course, also tracing out 
his own helical pathway. And the laterally transported orbits of atomic and sub-
atomic particles that compose the idealised constructor are producing further sub-
strands of helical pathways streaming through space (including the helically 
configured molecular DNA strands that carry the idealised constructor’s own set of 
assembly instructions).  
 This is painting the picture of an overwhelmingly helically configured and 
dynamical milieu within which the idealised constructor assembles the ball-and-stick 
model. That very simple process, taking from the bin of identical rods and the bin of 
identical balls and assembling them as outlined in this paper, proceeded without any 
instruction that was biased toward producing helical structure – in fact, as far as it was 
possible, the components were of course assembled according to “no rules” 
whatsoever. Yet we have seen the default, maximally information entropic, most 
simple structure propagate in quantum jumps of centrally symmetric growth, radiating 
out along an icosahedrally ordered lattice where every extension is helically 
configured, composed of multiples of helical strands within helical strands.   
 The original question was, “What is the most simple structure that it is 
possible to construct?” We claim that this question has been at least broadly answered 
with the construction of the ball-and-stick QPD model summarised at Section 11, and 
where Section 12 describes the extended model, and associated paper [2] provides 
more detail. This work is describing the indefinitely extensible, dynamically updating, 
icosahedrally ordered, fractally layered and helically configured QPD structure that 
the idealised constructor has, as outlined in this paper, assembled.  
 Intuitively, the model presented here may not at first align with the common 
conception of a most simple structure. However, the conclusion of this paper’s 
investigation is that when “most simple” is defined in terms of prescriptive 
information content, and conventional bias that favours a static model as the default 
model is overridden, then the QPD model described here definitively answers the 
question posed in the title of this paper. 
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 The QPD model is not presented here as an interesting structure among other 
interesting structures, but to the extent that the ball-and-stick modelling system is 
inherently suited to exemplifying, at least colloquially, a very simple structure, then 
the model constructed with this system is a fundamentally simple object that provides 
an initial basis from which broader analogies with respect to fundamental structure 
can be drawn (for which we reference associated paper [3]).  
 Essentially, there is an argument that says that if the QPD model is indeed 
pointing toward a new structure that is, in some critical sense, the fundamental 
underlying structure, then it may be appropriate to raise the question as to how 
explicit, or not, the current foundations of mathematics are with respect to even the 
notion of such a model, particularly in the context of current problems in physics? 
 Obviously this paper gives only an introductory outline rather than a full 
exposition, in particular with respect to quantifying the information content; and 
neither do the associated papers [2] and [3] yet provide the full, formal, information-
theoretic development – that remains an area for future work. The aim has been that 
this paper should provide a useful introduction to the concept of a most simple 
concrete model that has potential to analogise more significant proposals around the 
notion of a fundamental underlying structure (of everything).  
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