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Abstract

-Background. Multi-view data representation learning explores the re-
lationship between the views and provides rich complementary information
that can improve computer-aided diagnosis. Specifically, existing machine
learning methods devised to automate neurological disorder diagnosis us-
ing brain data provided new insights into how a particular disorder such as
autism spectrum disorder (ASD) alters the brain construct. However, the
performance of machine learning methods highly depends on the size of the
training samples from both classes. In a real-world clinical setting, such med-
ical data is very expensive and challenging to collect, might (i) su↵er from
several limitations such as imbalanced classes and (ii) have non-heterogeneous
distribution when derived from multi-view brain representations.

-New Method. To the best of our knowledge, the problem of imbalanced
and multi-view data classification remains unexplored in the field of network
neuroscience. To fill this gap, we propose a Multi-View LEArning-based data

Proliferator (MV-LEAP) that enables the classification of imbalanced multi-
view representations. MV-LEAP comprises two key steps. First, a manifold
learning-based proliferator, which enables to generate synthetic data for each
view, is developed to handle imbalanced data. Second, a multi-view manifold
data alignment leveraging tensor canonical correlation analysis is proposed
to map all original and proliferated (i.e., synthesized) views into a shared
subspace where their distributions are aligned for the target classification
task.
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-Results. We evaluated our method on imbalanced multi-view ASD vs
normal control connectomic datasets with imbalanced classes.

-Conclusion. Overall, MV-LEAP achieved the best classification results
in comparison with baseline data synthesis methods.

Keywords: imbalanced classification, multi-view data, manifold learning,
data proliferator, brain network synthesis, connectomic data distribution
alignment, tensor canonical correlation analysis.

1. Introduction

Over the past few years, remarkable advances in imaging technology have
enabled researchers to apply machine learning tools to multi-view data (Zhao
et al., 2017; Li et al., 2018; Sun, 2013; Zhang et al., 2019). Multi-view data
provides a complementary representation of a set of samples using di↵erent
types of features generated from di↵erent sources. Indeed, capturing the re-
lationship between data views can help spot shared and discriminative traits
across views, which can be utilized to boost the performance of classification
frameworks. Several studies have been conducted for multi-view representa-
tion learning in di↵erent fields including computer vision for video tracking
(Li et al., 2016; Ahmad and Lee, 2006), pattern recognition for image classi-
fication (Wu et al., 2016; Luo et al., 2015a; Yang et al., 2019), and text clas-
sification (Guo and Xiao, 2012; Amini et al., 2009). In particular, multi-view
data have been used in diverse medical data applications such as diagnosis
of diseases (Cao et al., 2019; Wang et al., 2018; Liu et al., 2017) and more
specifically for autism spectrum disorder (ASD) diagnosis (Soussia and Rekik,
2017, 2018; Dhifallah et al., 2019). To non-invasively investigate how ASD
a↵ects the brain, neuroscience researchers have heavily relied on magnetic
resonance imaging (MRI) to study brain connectomes also known as brain
networks (Baron-Cohen et al., 1999; Sporns, 2013). The brain connectome,
encoded in a network, models the relationship between a pair of anatomical
regions of interest (ROIs), which is generally measured using resting-state
functional MRI (rsfMRI) to derive functional brain networks or di↵usion-
weighted MRI (dMRI) to build structural networks (Sporns, 2013). More
recently, morphological brain networks derived from T1-weighted MRI were
introduced to model the relationship in morphology between brain regions
in both healthy and disordered populations (Mahjoub et al., 2018; Lisowska
et al., 2017, 2018; Soussia and Rekik, 2018; Dhifallah et al., 2019; Raeper
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et al., 2018; Nebli and Rekik, 2019).
The brain can be represented by a single network, called single view rep-

resentation, or by multiple networks, called multi-view representation. Each
view captures a specific morphological trait of the brain such as the mean cor-
tical thickness or the mean sulcal depth. Examining multi-view brain data
can help us better understand both the healthy and disordered brain and
eventually spot atypical brain alternations in neurological disorders. Indeed,
combining di↵erent views represented by di↵erent sets of features extracted
from multiple data sources provides complementary information which can
boost diagnosis based solely on a single brain view representation (Li et al.,
2018; Sun, 2013). However, these views are usually extracted from di↵erent
modalities or using di↵erent methodologies; hence, they might lie on di↵erent
domains, with heterogeneous distributions. One conventional way of jointly
integrating multi-view data is to concatenate all features in a single vector.
However, this is prone to over-fitting and to class overlap, and leads to the
loss of complementary and correlated information which could produce er-
roneous results (Zhao et al., 2017; Serra et al., 2019; Luo et al., 2018; Zhao
et al., 2018). Moreover, in computer-aided diagnosis (CAD) systems, the
classes are usually imbalanced (Provost, 2000; Sun et al., 2009). Besides,
the data distributions are usually skewed and samples drawn from di↵er-
ent groups might overlap, making the classification of imbalanced multi-view
representation challenging and prone to bias. Without loss of generality, con-
sidering we have high-dimensional multi-view connectome data where each
single view has two imbalanced classes, the problem can be solved in two
steps: (i) handling data imbalance by proliferating the minority class for
each single view to balance both classes, and (ii) integrating the di↵erent
data views by mapping and aligning them onto a shared subspace.

Learning from imbalanced data has been a challenge in machine learning
over decades (Provost, 2000; Maloof, 2003; He et al., 2008; Sun et al., 2009; Li
et al., 2017; Capponi and Koço, 2019; Wang et al., 2019). The most popular
methods are sampling techniques such as undersampling and oversampling.
Undersampling techniques are based on decreasing the number of majority
class samples (Liu et al., 2009). However, removing samples might cause
the loss of important information and modify the data distribution (Chawla
et al., 2004). On the other hand, oversampling techniques aim to proliferate
the minority class by generating synthetic samples. A landmark oversam-
pling method is the Synthetic Minority Oversampling Technique (SMOTE)
(Chawla et al., 2002). SMOTE has been widely used due to its simplicity and
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robustness (Fernández et al., 2018a). This classic method is based on inter-
polating new synthetic samples at random distances between the k nearest
neighbors.

In the last years, a few variants of SMOTE were proposed in order to im-
prove the prediction or classification results. These variants include SMOTE-
Boost (Chawla et al., 2003), Borderline-SMOTE (Han et al., 2005), ADASYN
(He et al., 2008), SMOTE-FRST (Ramentol et al., 2012), SDD-SMOTE
(Shao et al., 2014) and Cure-SMOTE (Ma and Fan, 2017). Although, these
methods have improved the classification results of imbalanced data, they
present a few limitations when handling high-dimensional multi-view data
such as clinical data. First, SMOTE and its derivative methods fail to select
accurate nearest neighbors, due to the use of predefined distances (e.g., Eu-
clidean distance) to search for the k nearest neighbors, which produces noisy
synthetic samples. Indeed, high dimensional data are more conform to the
manifold property. In the other hand, non-aligned distributions of multiple
data views are not comparable, and a simple concatenation of these distri-
butions could produce a biased classification. To address all previous lim-
itations, we propose Multi-View LEArning based Proliferator (MV-LEAP)
framework to handle multi-view data representation with data imbalance.
The main contributions of MV-LEAP are twofold:

• First, in order to handle data imbalance, we propose View-Specific
LEArning-based Proliferator (VS-LEAP), which proliferates training
single view samples based on learning the similarities between data
samples from the minority class. We use the sample-to-sample simi-
larity matrix generated by multi-kernel manifold learning (ML) (Wang
et al., 2017) to select the nearest neighbors and proliferate the real
samples based on these selected neighbors.

• Second, to train the target classifier, we propose a joint-view alignment
of all training samples (i.e., synthesized and real samples), where we
learn a joint mapping of single viewed synthetic and real samples onto
a shared subspace where multi-view data distributions are aligned. To
this aim, we leverage tensor canonical correlation analysis (TCCA) Luo
et al. (2015b) to map view-specific distributions onto a shared subspace
where their correlation is maximized.
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2. Proposed method

In this section, we detail each step of the proposed MV-LEAP pipeline.
Figure 1 illustrates the two main steps of MV-LEAP: (a) View-Specific
LEArning-based Proliferator (VS-LEAP), and (b) joint original and prolifer-
ated view alignment. In the following, we denote tensors by boldface Euler
script letters (e.g., X ), matrices by boldface capital letters (e.g., X), and
scalars by lowercase letters (e.g., x). Table 1 presents the key mathematical
notations utilized in this paper.

Table 1: Key mathematical notations used in this paper.

Mathematical notation Definition

nr number of anatomical regions of interest (ROIs)
nv number of views
nf number of connectomic features
ns number of original samples
nc number of clusters for manifold learning

nmin number of minority class samples of the training data
nsyn number of proliferated samples
x

i

i-th real sample vector 2 Rnf

x̃

i

i-th synthetic sample vector 2 Rnf

X

s

(vi)
i-th data matrix view for subject s 2 Rns⇥nf

B

s

(vi)
i-th brain network view for subject s 2 Rnr⇥nr

Ts = {Bs

(v1)
,Bs

(v2)
, . . . ,Bs

(vq)} brain tensors of subject s with q frontal views 2 Rnr⇥nr⇥nv

y label vector 2 Rns

L latent matrix 2 Rnmin⇥nc

C

xy

covariance matrix of x and y
E[.] variance matrix
Cmin minority class
S similarity matrix 2 Rnmin⇥nmin

K(x
i

,x
j

) Gaussian kernel 2 Rnf⇥nf of the i-th and the j-th samples
tr(M) trace of a matrix M

Given a training dataset, each sample s is represented by a tensor Ts of
size nr ⇥nr ⇥nv, where nr denotes the number of cortical regions of interest
(ROIs) in each hemisphere of the brain, and nv is the number of views.
Each brain network view i for subject s is encoded in a symmetric matrix
B

s

(v
i

) of dimension nr ⇥ nr such as Ts = {Bs

(v
1

),B
s

(v
2

), . . . ,B
s

(v
q

)}, where q is
the number of frontal views of the tensor. Each element b

ij

of the matrix
B

s

(v
i

) encodes the relationship between pairs of ROIs. For each subject s,
we vectorize the upper o↵-diagonal triangular part of each matrix B

s

(v
i

) in
Ts, to obtain a connectivity feature vector of size nf = (nr ⇥ (nr � 1)/2).
Then, the extracted view-specific feature vectors are vertically concatenated
to form a data matrix X

s

(v
i

) of size ns ⇥ nf , where ns is the total number of
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subjects, and nf is the size of each row feature vector. X

s

(v
i

) is a matrix of
high dimension where nf � ns.

We first propose to balance the data using the View-Specific LEArning-
based Proliferator (VS-LEAP). Second, in order to preserve the complemen-
tary and correlated information among both real and proliferated views, we
propose to learn a low dimensional representation based TCCA, where the
data distributions are mapped and aligned into a shared low-dimensional
subspace.

2.1. View-Specific LEArning-based Proliferator (VS-LEAP)

Fig. 1–A illustrates the proposed proliferator based multi-kernel manifold
learning. The proliferator aims to generate new synthetic samples of the
minority class to balance the training data. Particularly, we propose to
generate synthetic data using the SMOTE algorithm. The main idea of
SMOTE is to interpolate points between nearest neighbors, by operating in
the features space. Fig. 2 illustrates the proliferation of real samples using
SMOTE. For each sample x

i

of the minority class Cmin, SMOTE generates a
synthetic sample x̃ at a random distance on the line segment connecting x

i

to its nearest neighbor x
j

2 {Cmin [ kNNi} , j 2 {1, . . . , k}. x

j

is randomly
chosen from the k Nearest Neighbors (kNN) set, depending upon the amount
of over-sampling required. Each synthetic sample x̃ is generated as follows:

x̃ = x

i

+ (x
j

� x

i

)⇥ � (1)

where � is a random number between 0 and 1.
Over the years, SMOTE has inspired many researchers and some variants

were proposed to improve the prediction or classification results (Fernández
et al., 2018b). Nonetheless, SMOTE and its variant use predefined distances,
such as the Euclidean distance, the Manhattan distance and the Minkowski
distance, to search for the kNNs. These metrics can cause the proliferation
of noisy real samples, due to the incompatibility of predefined distance with
the high dimensional data distribution where data may have a non-linear
relationship. For this reason, we propose to use a manifold technique that
better fits the statistical distribution of the data to proliferate real samples
from the minority class of training samples for each view individually in two
steps (Fig. 1–A). First, for each training sample, we project the data samples
of the minority class on the manifold space to detect the kNNs set. Second,
we use the KNNs set to generate synthetic samples of the minority class in
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Figure 1: Illustration of the proposed MV-LEAP framework. (A) describes the View-Specific
LEArning-based proliferator (VS-LEAP) applied to one data view. First, we proliferate the minority
class by generating new synthetic samples using manifold learning. (B) presents the joint view alignment
of proliferated and original data using tensor canonical correlation analysis (TCCA). First, we use princi-
ple component analysis (PCA) to reduce the dimensionality of the training data in order to prepare the
training data for the TCCA. Second, we map all views onto a shared subspace by projecting them using
their learned TCCA transformation matrices (or mappings) {W

1

,W
2

, . . . ,W
m

}. This step aligns the
distributions of all transformed views in a low-dimensional shared subspace. This produces a final training
matrix concatenating the extracted multi-view aligned features of both original and proliferated samples
in the learned low-dimensional shared subspace for training the target classifier.
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Figure 2: Illustration of sample proliferation in 2D space using the traditional SMOTE
(Chawla et al., 2002). x1 is a real sample with coordinates (x11, x12). The synthetic
samples are generated at a random distance between x1 and its k nearest neighbors. Given
x2 one of the 5 nearest neighbors of x1, with coordinates (x21, x22), the synthetic sample is
calculated using the Euclidean distance as follows: x̃i = (x11, x12)+(x21�x11, x22�x12)⇥�,
where � is a random number between 0 and 1.

the original space. For the first step, we use a multi-kernel manifold learning
based on the Single-cell Interpretation via Multi-kernel LeaRning (SIMLR)
algorithm (Wang et al., 2017). The main idea of SIMLR consists of learning
sample-to-sample similarity measure. Given a data matrix X

s

vi

2 Rns⇥nf as
input, SIMLR estimates proper weights for multiple Gaussian kernels which
represent di↵erent measures of sample-to-sample distance. The learned ker-
nels are combined to build a similarity matrix S 2 Rnmin⇥nmin .

A Gaussian kernel is defined as:

K (xi,xj) =
1p

2⇡� (µi, µj) /2
e
�

|xi�xj|2
�(µi+µj)

2
/2 (2)

where

• xi and xj are the i-th and the j-th feature vectors.

• µi =
P

l2kNN(xi)
|xi�xj |

k
, where kNN(xi) defines the top k neighboring

samples of the i-th sample.

The general form of the distance between a sample xi and a sample xj is:
d (xi,xj) = 2 � 2

P

l wlKl (xi,xj) , where Kl(xi,xj) is an individual kernel
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modeling the similarity between the i-th and the j-th samples, and wl is a
weight value assigned to the lth kernel Kl. The optimization framework of
SIMLR (Wang et al., 2017) aims to minimize the following energy functional:

min
S,L,w�

P

i,j,l wlKl (xi,xj)Sij + �kSk2F + � tr (Lt (I� S)L) + ⇢
P

l wl logwl

subject to L

T
L = IC

P

l wl = 1,wl � 0,
P

l Sij = 1, and Sij � 0
(3)

The first term
P

i,j,l wlKl (xi,xj)Sij invokes the relationship between a
kernel of the i-th and the j-th samples multiplied by its weight wlKl(xi,xj),
and the similarity Sij. It requires that if the distance between two samples
is large, then, the learned similarity S between them should be small.

The second term �kSk2F is a regularization term that avoids the similarity
matrix S from becoming an identity matrix. � is a non-negative tuning
parameter and kSkF is the Frobenius norm of S.

The third term � tr (Lt (IN � S)L), enforces the low-rank structure of S.
� is a non-negative tuning parameter, tr(.) is the trace of the matrix, (IN�S)
is the Laplacian graph where I is an identity matrix of size nmin⇥ nmin, and
L is an auxiliary low-dimensional matrix of size nmin ⇥ nc, where nc is the
number of clusters.

The fourth term ⇢
P

l wl logwl is a regularization term that avoids the
selection of a single kernel.

The optimization framework of SIMLR aims to solve for three variables:
(1) the similarity matrix S, (2) the weight vector w, and (3) the latent
matrix L. Next, we use the similarity matrix S to capture the kNNs of the
minority class of the training samples. When performing SIMLR, we obtain
a similarity matrix S of dimension nmin ⇥ nmin, where nmin is the size of
the minority class. Once S is learned, we select the k-nearest neighbors of
each minority class sample. The kNNs for a sample i are the k most similar
samples, such as the similarity between the samples i and j is stronger as S(i,j)

approaches 1. Next, for each training minority class sample, we retain only
pOS% of the top k-nearest neighbors, such as the retained synthetic sample
are randomly selected. We interpolate the synthetic samples between the
real samples and their selected kNN. The proposed manifold learning-based
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proliferation process is summarized in Algorithm 1.

Algorithm 1: Synthetic data proliferation
Data: data matrix of the minority class of the training data X

min

,
percentage of oversampling pOS such that pOS > 100, number of
nearest neighbors for SMOTE KSMOTE such that KSMOTE > 2,
number of nearest neighbor for manifold learning (ML) KML

such that KML > 2.
Result: proliferated minority class data matrix X

prolif

begin

/* Initialization */

Ind = matrix of all the index of the nearest neighbors of Xmin;
S = similarity matrix;
/* learn the KML nearest neighbors */

S  manifoldLearing(Xmin, KML);
for i = 1 to nmin do

for j = 1 to KSMOTE do

Ind[i, j] = the index of the j-th nearest neighbor of the i-th
sample from S;

/* Proliferate samples */

for l = 1 to nmin do

indretain = retain only pOS% out of k nearest samples from Ind;
� = random number between 0 and 1;
x̄(l) = x(l) + (x(indretain)x(l))⇥ �;

X

prolif

=
�

Xmin, ¯Xmin

 

Next, using both original and proliferated samples for each view, we will
jointly align all data views to a shared low-dimensional subspace where a
joint set of embeddings is learned (Figure 1–B). Ultimately, the proliferated
aligned data will be used to train a classification model.

2.2. Joint view alignment

Preliminary view-specific dimension reduction. Our input data is
of high dimensionality. The size of the feature vector nf is greater than the
size of the proliferated samples nsyn (nf � nsyn). This can be memory-
consuming when aiming to learn a joint embedding of all views into a shared
subspace using joint dimension reduction techniques such as TCCA (Luo
et al., 2015b). For this reason, the high dimension of the data needs to be
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reduced. There are two types of dimension reduction techniques: feature
selection and feature extraction. Feature selection techniques, such as (Ro↵o
et al., 2015), aim to select the most relevant data and remove the less impor-
tant data. This can lead to a loss of information. On the other hand, feature
extraction techniques aim to project the data into a new subspace while pre-
serving the maximum data information. To solve our problem, we propose
to use one of the most relevant feature extraction methods named principal
component analysis (PCA) (Abdi and Williams, 2010). PCA extracts impor-
tant information from data by maximizing the variance of the projected data
onto a lower dimensional subspace. It transforms the original features into a
set of new orthogonal and linearly uncorrelated features known as principal
components (PC). The principal components are computed using the eigen-
vectors and the eigenvalues of the covariance matrix of the data. When we
apply PCA on each view independently, we get nv new representations of
the data encoded in low-dimensional aligned matrices with balanced classes.
Next, we horizontally concatenate the view-specific low-dimensional matrices
to form one final multi-view aligned training matrix using the proposed view
alignment technique (Figure 1–B).

Joint view alignment. We assume that data views are nested in di↵er-
ent domains. For this reason, we propose to align each view onto a shared
low-dimensional subspace. Joint view alignment is illustrated in Figure. 1–
B. To solve this problem, we use the tensor canonical correlation analysis
(TCCA) Luo et al. (2015b). TCCA is a generalization of canonical correla-
tion analysis (CCA) to handle multi-view data representation. Specifically,
CCA is a method that measures the linear relationship between two high-
dimensional datasets or data views. CCA aims to find the optimal projection
for each set where the correlation between the two sets is maximal.

Given two vectors x1 2 Rm1 and x2 2 Rm2 , their linear projections onto
w1 and w2, respectively, are z1 = w

T
1 x1 and z2 = w

T
2 x2. CCA aims to find

the optimal pair of canonical vectors w1 and w2, where the correlations of
the projected vectors is maximized. The optimization problem of CCA is
formalized as follows:

argmax{w1,w2} ⇢ = corr (z1, z2) =
E
⇥

z1z
T
2

⇤

p

E [z1zT1 ]E [z2zT2 ]
=

w

T
1 Cx1x2w2

p

w

T
1 Cx1x1w1w

T
2 Cx2x2w2

(4)
Where ⇢ is the canonical correlation. Each pair of transformed vectors
(e.g., w1 and w2) is orthogonal to the previous ones and is associated with
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{⇢1, ⇢2, . . . , ⇢q} where q < min (m1,m2). From a probabilistic viewpoint, two
random samples x and y can be represented by a common sample z 2 Rq such
as the a�ne transformations are defined as probabilistic functions or likeli-
hoods P (x|z) and P (y|z). By maximizing the likelihood estimation, CCA
estimates the optimal mapping from source domains to the shared target
domain.

The dimensionality of the new projected sample is equal to or less than
the smallest dimension of the two samples. For this reason, CCA is not only
a pairwise data concatenation method, but also a dimension reduction strat-
egy. Compared to ordinary correlation analysis, CCA is a robust and flexible
method since it is invariant to a�ne transformation of samples. However,
while CCA explores only the pairwise correlation (low-order correlation) be-
tween two datasets (or data views), TCCA enables to explore all correlations
(low- and high-order correlations) between all views simultaneously. It aims
to directly maximize the canonical correlation of multi-view representation
by analyzing the covariance tensor. The optimization problem of TCCA is
formulated as follows:

argmax{w1,w2,...,wq} ⇢ = corr (z1, z2, . . . , zq)
Subject to z

T
p zp = 1, p = 1, . . . , q

(5)

where {w1,w2, . . . ,wq} denotes the canonical vectors.
It has been proven that this maximization problem is equivalent to find-

ing the best rank-1 approximation of the data covariance tensor Luo et al.
(2015b). This problem can be solved using alternating least squares (ALS)
algorithm (Kroonenberg and De Leeuw, 1980; Comon et al., 2009). Given

a set of m data views Tm =
n

X

s
(v1)

,Xs
(v2)

, . . . ,Xs
(vm)

o

, where each view

is represented by a data matrix of ns subjects and nf features such as
X

s
(vp)

=
⇥

xp1,xp2, . . . ,xpnf

⇤

2 Rnf⇥ns , p = 1, . . . , ns. TCCA proceed as fol-
lows:

1. Calculating a covariance tensor Cm in order to explore the correlation
information between views. The covariance tensor is calculated as:
Cm = 1

ns

Pns

i=1 x1i � x2i � . . . � xmi, where � denotes the tensor outer
product.

2. Computing the transformation matrices {W1,W2, . . . ,Wm} correspond-
ing to the m views, respectively, by approximating the covariance ten-
sors with a set of rank-1 tensors.
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3. Mapping each original matrix
�

X

s
v1
,Xs

v2
, . . . ,Xs

vm

 

to a low dimen-
sional matrix {Z1,Z2, . . . ,Zm}, using the transformation matrices {W1,W2, . . . ,Wm}.
This allows the projection of the data onto the common subspace.

4. Concatenation of all the low-dimensional matrices to obtain the final
matrix Z.

3. Results

Evaluation dataset. To evaluate our proposed framework, we used 150
subjects (50 ASD and 150 NC) from the Autism Brain Imaging Data Ex-
change (ABIDE I) public dataset 1, each with structural T1-w MR image.
Table 2 displays the data distribution. Since ASD is prevalent in male sub-
jects (Christensen et al., 2018), our cohort only included males. For each
subject, both right and left cortical hemispheres (RH and LH) were recon-
structed using FreeSurfer (Fischl, 2012). Then, each cortical hemisphere was
split into 35 cortical regions using Desikan-Killiany atlas (Desikan et al.,
2006). Four cortical attributes were assigned to each vertex on the cortical
surface using FreeSurfer. These attributes are the maximum principal cur-
vature, the cortical thickness, the sulcal depth, and the average curvature.
Based on these attributes, four morphological networks (also called views)
were generated for each subject. For each cortical view, the strength of the
connectivity between two ROIs i and j is computed as the absolute di↵er-
ence between the average cortical attribute in ROI i and the average cortical
attribute in ROI j (Mahjoub et al., 2018; Lisowska et al., 2018; Dhifallah
et al., 2019).

Table 2: Table of data distribution

Dataset ASD NC

Number of subjects 50 150
Mean age 18.14 17.91

To investigate the properties of our data distributions, we plotted the his-
togram of the majority and the minority classes for each view of the right and
the left hemisphere, as illustrated in fig. 3. All graphs represent positively
skewed distributions. Besides, the data distribution of the minority class and
the majority class overlap, which challenges the learning of high-performing

1
http://preprocessed-connectomes-project.org/abide/
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classification models. For connectomic view 2 derived from cortical thickness,
we notice that the connectomic feature distribution is bimodal for both left
and right hemispheres.

Figure 3: Data distribution of each morphological connectomic view for the left and right hemisphere
of the brain. View 1: maximum principal curvature. View 2: cortical thickness. View 3: sulcal depth.
View 4: average curvature.

Methods parameters. For SMOTE parameters, we empirically set the
number of nearest neighbors to kSMOTE = 5. For SIMLR parameters, us-
ing nested cross-validation (CV), we set the number of clusters c = 2, and
the number of nearest neighbors to kML = 5. For TCCA parameters, we
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set the regularization trade-o↵ factor ✏ = 0.5, and the rank of the tensor
for the canonical polyadic decomposition using the alternating least squares
algorithm (CP-ALS) R = 30.

Performance measures. To evaluate the performance of our method,
we used stratified 5-fold cross-validation (5-fold-CV). Stratified 5-fold-CV
is used for imbalanced data in order to have the same data distribution of
classes across all folds (Figure 4).

Figure 4: Data distribution of the minority and the majority classes in each fold. The orange color
shows the percentage of minority class samples in each fold whereas the blue color displays the percentage
of the majority class samples. The data distribution is largely stable across folds (standard deviation
equal to 1.42).

The data samples are randomly divided into 5 folds: four are used for
training and one is left out for testing. The training samples are, first, used
as input to the MV-LEAP pipeline then to train a linear support vector ma-
chine (SVM) classifier. The testing samples are used to evaluate the SVM
classification model. We evaluated the model using the confusion matrix,
which estimates the overall accuracy and the F-measure. The overall accu-
racy is an evaluation metric of the overall performance of the classification
model. It is defined as the number of correctly classified samples divided by
the total number of samples as follows:

OverallAccuracy =
TP + TN

TP + FP + FN + TN
(6)

where TP and TN represent the number of positive samples and negative
samples, respectively, which were correctly classified, and FP and FN de-
note the number of positive samples and negative samples, respectively, in-
correctly classified. However, the overall accuracy is not a precise metric for
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the evaluation of imbalanced data. If the model is weak at predicting the
minority class, but good at predicting the majority class, then the number of
the correct prediction will be larger than the number of incorrect predictions.
Thus, the overall accuracy will be high which leads to a biased evaluation of
the performance of the classifier. For this reason, we use the F-measure and
the balanced accuracy as a complementary metrics to the overall accuracy.
F-measure is the harmonic mean of precision (PPV ) and sensitivity (TPR).
It is calculated as follows:

F � measure = 2 TPR·PPV
TPR+PPV

= 2TP
2TP+FP+FN

where PPV = TP
TP+FP

and TPR = TP
TP+FN

(7)

We also use balanced accuracy (BACC), which is commonly used for eval-
uating imbalanced classification models. It is defined as the average of cor-
rectly classified samples of each class individually and calculated as follows:

BACC = ( TP
TP+FN

+ TN
FP+TN

)/2

= (TPR+TNR)
2

(8)

where TNR is the specificity.
In addition, we used the receiver operating characteristic (ROC) curve as

evaluation metric for the binary classification. ROC curve is a probability
plot. It illustrates the relationship between the sensitivity, also known as the
recall or the true positive rate (TPR) and the specificity. For example, if the
sensitivity increases, the specificity decreases. Roc curve plots TPR against
the false positive rate (FPR), which are calculated as follows:

TPR =
TP

TP + FN
(9)

FPR = 1� specificity =
TN

TN + FP
(10)

Evaluation and comparison methods. To evaluate our framework
MV-LEAP, we compared its performance with baseline methods. First, we
compared the proposed learning-based sample proliferator with the tradi-
tional SMOTE and ADASYN methods. Then, we evaluated the use of TCCA
by comparing it to a simple concatenation of the views without joint view
alignment.
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1. Comparison with proliferation methods. We compared the pro-
posed SMOTE proliferator based on manifold learning (SMOTE+ML+SVM)
with the following baseline methods: (a) linear support vector ma-
chine (SVM), (c) the traditional SMOTE with SVM (SMOTE+SVM),
(c) ADASYN with SVM (ADASYN+SVM), and (d) ADASYN based
on manifold learning (ADASYN+ML+SVM). SVM is a discriminative
classifier that learns a classification model using supervised training
data. It categorizes samples using an optimal hyperplane. ADASYN
is a proliferation method based on the SMOTE algorithm. Unlike
SMOTE, ADASYN calculates the number of synthetic samples to be
generated for each minority class entity based on a density distribution.
For a fair comparison, we set the number of nearest neighbors k = 5
across all the methods. We used four single view representations for
each cortical hemisphere.

• Accuracy measurement. For the left hemisphere, SVM achieved
the highest accuracy for all single view representations, as shown
in Figure 5–LH. Notably, our method achieved the second highest
accuracy for 3 views (views number 2, 3, and 4). The second high-
est accuracy for view 1 was achieved by ADASYN+ML+SVM.
For the right hemisphere, SVM achieved the highest accuracy for
all single view representations, as shown in Figure 5–RH. Our
method achieved the second highest accuracy for one view (view
number 4). ADASYN+SVM achieved the second highest accu-
racy for views number 2 and 3. The second highest accuracy for
view 1 was achieved by SMOTE+SVM.

• F-measure. For the left hemisphere, when proliferating sam-
ples from the minority class, our method achieved the highest
F-measure value for 3 views (views 2, 3, and 4) (Figure 6).
Excluding SVM which is overfitting the non-proliferated data,
the best highest F-measure value for view 1 was achieved by
ADASYN+SVM+ML, which leveraged the proposed idea of learn-
ing the similarities between samples to guide the data proliferation
step.

For the right hemisphere, our method outperformed benchmark
proliferation-based methods for 3 views (views 1, 3, and 4). The
highest F-measure value for view 2 was achieved by ADASYN+SVM.

• Balanced accuracy. For the left hemisphere, our method achieved

17



Figure 5: Comparison of ASD/NC classification accuracy of our method (SMOTE+ML+SVM) and
comparison methods (SVM, SMOTE+SVM, ADASYN+SVM, and ADASYN+ML+SVM), on each single
view representation. (Left panel) Classification accuracy for the left hemisphere. (Right panel) Classifi-
cation accuracy for the right hemisphere. SVM is typically trained using majority and minority classes
without any data proliferation. Its outperformance can be explained by data overfitting.

Figure 6: Comparison of the F-measure of the ASD/NC classification using F-measure of our
method (SMOTE+ML+SVM) and comparison methods (SVM, SMOTE+SVM, ADASYN+SVM, and
ADASYN+ML+SVM), on each single view representation. (Left panel) F-measure for the left hemi-
sphere. (Right panel) F-measure for the right hemisphere. SVM is typically trained using majority and
minority classes without any data proliferation. Its outperformance can be explained by data overfitting.
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the highest balanced accuracy for 2 single views (views 2 and 3)
as shown in Figure 7. ADASYN+SVM+ML achieved the high-
est balanced accuracy for the two other views (views 1 and 4).
Notably, proliferation methods based manifold learning achieved
higher results than simple proliferation methods.

For the right hemisphere, ADASYN+SVM achieved the highest
balanced accuracy for 3 views (views 2, 3, and 4). SMOTE+SVM
achieved the highest result for view 1. Overall, SVM achieved the
lowest results for both left and right hemispheres.

Figure 7: Comparison of ASD/NC classification results using balanced accuracy of our
method (SMOTE+ML+SVM) and comparison methods (SVM, SMOTE+SVM, ADASYN+SVM, and
ADASYN+ML+SVM), on each single view representation. (Left panel) Classification accuracy for the
left hemisphere. (Right panel) Classification accuracy for the right hemisphere. SVM is typically trained
using majority and minority classes without any data proliferation.

2. Comparison using TCCA. To evaluate the benefit of using TCCA
for mapping and aligning di↵erent data views, we compared the per-
formance of the designed MV-LEAP combining VS-LEAP and TCCA,
with methods that use a simple concatenation of multi-view feature
vectors without alignment. The comparison methods include: (a)

SMOTE+PCA, and (c) SMOTE+ML+PCA. In a first experiment,
we evaluated all methods on datasets generated using di↵erent combi-
nations of three connectomic morphological brain views. In a second
experiment, we evaluated all methods on a dataset composed of the
four brain views.

• Evaluation on three views. We evaluated MVLEAP (i.e.,
SMOTE+ML+PCA+TCCA) and the baseline methods (SMOTE+PCA
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and SMOTE+ML+PCA) on three brain connectomic views for
both left and right hemispheres. For both left and right hemi-
spheres, our MV-LEAP classification framework consistently out-
performed all comparison methods across di↵erent datasets com-
posed of 3 views (Figure 8).

Figure 8: Evaluation of the ASD/NC classification using the accuracy and the F-measure metrics for
the left and the right hemispheres for di↵erent combinations of three morphological connectomic views.
View 1: maximum principal curvature. View 2: cortical thickness. View 3: sulcal depth. View 4: average
curvature.

• Evaluation on four views. We compared the ASD/NC classifi-
cation of our framework MV-LEAP (SMOTE+ML+PCA+TCCA)
with the comparison methods (SMOTE+PCA) and (SMOTE+ML+PCA)
on a dataset composed of four brain views. We evaluated the
performance of our method using the overall accuracy and the
F-measure, as demonstrated in Figure 9.

Remarkably, for both left and right hemispheres MV-LEAP based
classifier achieved the best results in distinguishing between autis-
tic and typical subjects. In addition, we evaluated our method
based on the ROC curve plots in Figure 10. Clearly, our method
achieved the highest AUC, for both left and right hemispheres.
According to these results, MV-LEAP outperformed baseline meth-
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ods.

Furthermore, we calculated the performance standard deviation
(STD), for each method, by repeating the classification 10 times.
The error bars in Figure 9 represent the calculated STD. Overall,
MV-LEAP achieved more stable results with the lowest STD.

Figure 9: Evaluation of the ASD/NC classification using the accuracy and the F-measure metrics for
the left and the right hemispheres for four views.

Figure 10: ROC curves for the evaluation of the performance of the ASD/NC classifica-
tion for the left and the right hemispheres using multi-view data representations. Our method
(SMOTE+ML+PCA+TCCA) is benchmarked against (SMOTE+PCA), (SMOTE+ML+PCA).
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4. Discussion

In this paper, we proposed the first work on imbalanced multi-view brain
connectomic data classification to boost the classification accuracy and avoid
overfitting. The proposed MV-LEAP pipeline comprises a view-specific pro-
liferation step and a joint view alignment step. Specifically, it first (i) pro-
liferates real samples of the minority class nested in a learned manifold to
handle imbalanced classes, then (ii) jointly projects both real and proliferated
data views to a shared low-dimensional subspace where their distributions
are aligned.

Minority sample proliferator. To evaluate the performance of our
proliferator based on manifold learning (SMOTE+ML+SVM) classification
framework, we evaluated it on individual brain views for both left and right
hemispheres and benchmarked it against di↵erent baseline methods includ-
ing: SVM (trained using original imbalanced dataset without proliferation),
SMOTE+SVM, ADASYN+SVM, and ADASYN+ML+SVM. We note that
SVM su↵ered from data overfitting as it classified well samples drawn from
the majority class and failed to classify minority class samples (Table 3).
In other words, the ASD/NC classification by SVM is biased. Hence, our
proposed method is compared against remaining methods which proliferated
the minority class.

Table 3: Classification results on single views using SVM. The sensitivity and the speci-
ficity (recall) results demonstrate that SVM predicts well the majority class, but it is very
weak for predicting the minority class. Hence, the SVM classification of imbalanced data
is biased. RH: right hemisphere. LH: left hemisphere. v: data view.

LH v1 LH v2 LH v3 LH v4 RH v1 RH v2 RH v3 RH v4

Balanced accuracy % 50.34 47 52 49.34 49 51.67 51 51.34
Overall accuracy % 74.5 71.5 76 74 73.5 73.5 74.5 75
Sensitivity % 98.67 94 100 98.67 98 95.33 98 98.67
Specificity % 2 4 4 0 0 8 4 4

Considering the results of all the evaluation metrics, we notice that the
two proliferators (SMOTE and ADASYN) that leveraged manifold learning
to identify the k nearest neighbors in the sample synthesis step, achieved the
highest classification results. This clearly demonstrated that manifold learn-
ing improved the representativeness of the synthesized samples and captured
well their high-dimensional relationships.

Multi-view representations alignment. In order to evaluate the per-
formance of our pipeline MV-LEAP and to evaluate the benefit of using
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TCCA, we compared it with SMOTE+PCA and SMOTE+ML+PCA. PCA
was used in order to reduce the high dimensionality of the data and prepare
it for TCCA. Indeed, PCA was used for both training and testing data to
enable a reliable prediction. Therefore, the dimension of the training data
has decreased a lot, from 595 features to 39 features. This may lead to a
decrease in the performance of the pipeline. For this reason, we compared
MV-LEAP with methods that use the dimension reduction of PCA to have a
fair comparison. For datasets composed of three di↵erent views, our method
achieved the highest classification results using both accuracy and F-measure.
SMOTE+PCA achieved the lowest overall results. As for the dataset com-
posed of all four views, our method achieved the highest results for both the
left and the right hemispheres. In summary, our proposed method MV-LEAP
boosted ASD/NC classification results when using multi-view connectomic
data.

Limitations and future works. Our method has a few limitations.
First, TCCA cannot handle high-dimensional data. In fact, one needs to
first reduce the dimensionality of the input data, hence the use of PCA as
a preliminary step. Besides, TCCA maps and aligns all single views in one
common subspace but it also reduces the dimensionality of the data. In our
future work, we will seek to develop a joint multi-view data mapping and
alignment method that can e�ciently handle high-dimensional data. Sec-

ond, we note that the proliferation and view alignment steps are performed
in a sequential manner. In the spirit of bi-directional learning introduced
in recent medical image segmentation works (Amiri et al., 2018; Bnouni
et al., 2018) and which has outperformed sequential learning, we can design
a proliferation-alignment bidirectional learning model, where the proliferated
data improves the learning of the joint mapping transformation, and in turn
the learned multi-view data mapping improves the quality of the prolifer-
ated data. This is a novel research direction that we intend to investigate in
our future work building on this seminal model. Third, the proposed frame-
work proliferates each data view independently. Ideally, one would learn how
to simultaneously proliferate data views while enforcing shared traits across
data domains. Last, our method uses a supervised classifier, which limits the
scalability of the proposed classification framework. We will investigate the
potential of unsupervised techniques (Yin et al., 2017) to proliferate, align,
and classify unlabeled multi-view data.
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5. Conclusion

In this paper, we proposed a novel framework for boosting classification
performance of imbalanced multi-view connetomic data. The proposed MV-
LEAP comprises two steps. The first step aims to proliferate synthetic data
based on view-specific manifold learning to generate more true synthetic sam-
ples to the original data. The second step aligns both original and proliferated
multi-view data into a shared subspace where low-dimensional embeddings
are jointly learned. Overall, our method boosted the classification results of
autistic and typical brains compared with di↵erent proliferation techniques
with and without multi-view data alignment. Although the training data
is imbalanced, high-dimensional, and with overlapping classes, MV-LEAP
achieved the best ASD/NC classification accuracy using four data views
and it consistently outperformed baseline methods using di↵erent evalua-
tion metrics. In our future work, we will extend the proposed method by
jointly proliferating and aligning multi-view connectomic data within a uni-
fied optimization-based framework.
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