
                                                                    

University of Dundee

Cysteine Glutathionylation Acts as a Redox Switch in Endothelial Cells

Lermant, Agathe; Murdoch, Colin E

DOI:
10.3390/antiox8080315

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Lermant, A., & Murdoch, C. E. (2019). Cysteine Glutathionylation Acts as a Redox Switch in Endothelial Cells.
Antioxidants (Basel, Switzerland), 8(8), 1-25. [315]. https://doi.org/10.3390/antiox8080315

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/227471053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3390/antiox8080315
https://discovery.dundee.ac.uk/en/publications/0e186769-3405-4baa-a85e-105d8827a72e
https://doi.org/10.3390/antiox8080315


antioxidants

Review

Cysteine Glutathionylation Acts as a Redox Switch in
Endothelial Cells

Agathe Lermant and Colin E. Murdoch *

Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
* Correspondence: c.z.murdoch@dundee.ac.uk; Tel.: +44-(0)1382383526

Received: 29 June 2019; Accepted: 12 August 2019; Published: 16 August 2019
����������
�������

Abstract: Oxidative post-translational modifications (oxPTM) of receptors, enzymes, ion channels and
transcription factors play an important role in cell signaling. oxPTMs are a key way in which oxidative
stress can influence cell behavior during diverse pathological settings such as cardiovascular diseases
(CVD), cancer, neurodegeneration and inflammatory response. In addition, changes in oxPTM are
likely to be ways in which low level reactive oxygen and nitrogen species (RONS) may contribute
to redox signaling, exerting changes in physiological responses including angiogenesis, cardiac
remodeling and embryogenesis. Among oxPTM, S-glutathionylation of reactive cysteines emerges as
an important regulator of vascular homeostasis by modulating endothelial cell (EC) responses to their
local redox environment. This review summarizes the latest findings of S-glutathionylated proteins
in major EC pathways, and the functional consequences on vascular pathophysiology. This review
highlights the diversity of molecules affected by S-glutathionylation, and the complex consequences
on EC function, thereby demonstrating an intricate dual role of RONS-induced S-glutathionylation in
maintaining vascular homeostasis and participating in various pathological processes.

Keywords: S-glutathionylation; endothelial cells; cardiovascular diseases; glutathione; oxidative
stress; reactive oxygen and nitrogen species; oxidative post-translational modifications; signal
transduction; redox

1. Introduction

Covering vascular lumen walls, endothelial cells (ECs) are a central component building the
interface between blood and underlying tissue. ECs act on multiple processes to ensure the maintenance
of systemic vascular homeostasis, including the regulation of blood pressure, haemostasis, tissue
vascularization and inflammation. Endothelial dysfunction is thus involved in a wide range of
pathologies, especially cardiovascular diseases (CVDs) such as diabetes, hypertension and peripheral
arterial disease. Importantly, the direct contact of ECs with blood circulation makes them highly
sensitive to local oxygen levels. The role of oxidative stress and high levels of reactive oxygen and
nitrogen species (RONS), resulting from ischemia/reperfusion, is now widely recognized in the
onset of CVDs [1,2]. RONS alter EC functions via inducing post-translational modifications (PTM)
on major signalling proteins involved in the main physiological processes. Those modifications
significantly modulate protein structure and activity, which highlights the potential importance of
local redox environment for driving EC functions in both physiological and pathological processes.
Among those modifications, S-glutathionylation emerges as an important modulator of EC behavior
under oxidative stress.

The harmful effects of oxPTM have been widely related to pathological processes. However,
attempts to develop antioxidant therapies to reduce oxidative damages and resolve CVDs have not met
the success expected [3]. Moreover, some antioxidant molecules reversing oxPTM, and more precisely
S-glutathionylation, recently appeared to impair key EC functions under oxidative stress such as
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post-ischemia revascularization [4]. More generally, antioxidants appear to contribute to pathological
processes such as lung diseases [5,6]. Further evidence for antioxidant treatment leading to adverse
effects comes from a randomized clinical trial for antioxidant use in pregnancy disorder, preeclampsia.
This trial reported a surprising secondary outcome, in which antioxidant treatment (Vitamin C and E)
caused lower birth weight with no protection against preeclampsia [7]. Taken together these findings
reveal an essential underpinning role of basal RONS levels in the maintenance of vascular homeostasis.
Our understanding of how S-glutathionylation affects EC function is developing. However, the precise
implications of this modification in physiological processes are not fully understood, and often lead to
contradictory findings. This complexity underlies a double-edge sword role of S-glutathionylation
in response to oxidative stress and suggests an example of how an ox-PTM can contribute to both
physiological and pathological processes by altering interlinked signaling pathways. It is then of
critical importance to fully understand the mechanisms by which oxPTM like S-glutathionylation can
influence EC functions to better appreciate the complex relation between oxidative stress and CVDs,
and potentially rethink our therapeutic approaches.

In this context, this review will summarize the latest insights on the role of glutathionylated
proteins in the regulation of major EC pathways, and their implications in the main physiological and
pathological processes linked with vascular homeostasis.

2. Protein S-Glutathionylation

After translation, proteins undergo various modifications including palmitoylation, phosphorylation
or hydroxylation, which alter protein function through changes in cellular location, activity or stability.
Cysteinyl residues are especially sensitive to levels of oxygen and nitrogen species (RONS), resulting in
a range of oxidative post-translational modifications (PTM) including S-nitrosylation, S-sulfenylation
and S-glutathionylation.

Under physiological RONS levels, the antioxidant molecule glutathione (GSH) can bind to specific
reactive cysteinyl residues via the creation of reversible disulfide bonds depending on the cysteine
position and redox potential. This process of S-glutathionylation can be reversed by thiol modifying
enzymes, predominantly glutaredoxin (Grx), and appears as a protective mechanism against permanent
protein damage following irreversible cysteine oxidation, summarized in Figure 1.

The different molecular mechanisms involved in S-glutathionylation PTM have been extensively
reviewed [8,9]. Beyond its protective functions, S-glutathionylation can directly modulate the structure
and activity of redox sensitive proteins by modulating their global molecular mass and charge,
or preventing other molecules to bind to their active sites [10]. Targeting a wide-range of proteins
involved in key cellular processes acting from transcriptional, structural to post-translational levels,
S-glutathionylation is now emerging as a key regulator of major signaling pathways in combination
with other posttranslational regulatory mechanisms [11,12]. In this review, we will focus on the
literature demonstrating S-glutathionylation involvement in endothelial signaling pathways and thus
its importance in cardiovascular diseases. The wide range of proteins with redox sensitive thiols
involved in EC function, and the impact of S-glutathionylation on the corresponding protein activity
are summarized in Table 1. This gives an overview of the breadth and impact that S-glutathionylation
can have on EC function.
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Table 1. Summary of S-glutathionylation activation (green) or inhibition (red) effects on major molecular players in endothelial cell (EC) function and their
physiological consequences.

Protein Name Protein Type Glutathionylated
Cysteine(s) Direct Effect(s) on Protein Physiological Effect(s) in ECs Reference(s)

4.1. Epigenetics regulators

Histone H3 Nucleosomal C110 Not confirmed Regulation of gene expression via
modulating chromatin structure [13,14]

Sirtuin1 Histone deacetylase C67 C268 C623 Inhibition of enzymatic activity Apoptosis - Senescence [15–17]
4.2. Transcription factors

p65 Unknown Inhibition of nuclear translocation [18]
p50 C62

Angiogenesis & cell survival
[19]

c-jun C269
Inhibition of DNA-binding activity

Unknown [20,21]

p53 C124 C141 C182 Inhibition of DNA-binding and
protein dimerization

Angiogenesis & cell survival
(supposed) [22]

HIF-1a C520 Protein stabilization Angiogenesis & ischemic
revascularisation [23,24]

STAT3 C328 C542 Inhibition of phosphorylation and
activity

Anti-angiogenesis and reduced
inflammation [25–28]

STAT1

Transcription factor

C324 C492 Protein activation Unknown [28]

Keap1 Nrf2 inhibitor C434 Inhibition of Nrf2 binding Antioxidant and anti-inflammatory
response via Nrf2 signalling [29,30]

IKKb Kinase C179 Inhibition of kinase activity Angiogenesis & neovascularisation [31]
5. Kinases & phosphatases

LMW PTP Unknown Cell migration and angiogenesis [32]
PTP1B

Phosphatase
C215 Not confirmed [33,34]

Rac1
Small Rho GTPase

C81 C157
Inhibition of activity

Altered actin structure and barrier
function [35,36]

Rac2 C157 Increased GTP-binding activity Unknown [36,37]
Ras GTPase C118 Not confirmed Unknown [36,38,39]

PKA C199 [40,41]
PKB Unknown [40,42,43]

MEKK1 C1238 [40,44]
PKC

Kinase

Unknown

Inhibition of activity
Alteration of barrier function and

blood pressure regulation
(supposed)

[40,45]
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Table 1. Cont.

Protein Name Protein Type Glutathionylated
Cysteine(s) Direct Effect(s) on Protein Physiological Effect(s) in ECs Reference(s)

6. RONS production
p47 phox NADPH oxidase C98 C111 C196 [46]

Complex I NADH-ubiquinone
oxidoreductase Unknown

Enhanced protein function Sustained superoxide production
Endothelial dysfunction (supposed) [47]

eNOS Oxide synthase C689 C908 Protein uncoupling
Sustained superoxide production

Impaired vasodilation and
endothelial dysfunction

[48–52]

7. Calcium-dependent channels

IP3R Ca2+ channel
Unknown (C34

C42 C65?) Protein activation [53–55]

PMCA Unknown Protein inhibition

Increased [Ca2+]i
Regulation of Ca2+ homeostasis [56]

SERCA2b Ca2+ ATPase pump C674 Protein activation Increased Ca2+ uptake in ER stores
Cell migration and angiogenesis

[57–62]

STIM1 Ca2+ sensor C56 Protein oligomerization Increased [Ca]i via Orai1 activation
Mitochondrial dysfunction [63]

8. Apoptosis and autophagy
Fas Death receptor C294 Enhanced activity Cell death [64]

Caspase-3 C45 (p12)
C135 (p17) [65,66]

Caspase-8
Protease

Unknown
Inhibition of proteolytic activity Cell survival

[67]

Beclin-1 Autophagy-related
protein Unknown Upregulation of protein activity Not confirmed [68]

9. Cell structure and dynamics

ProMMPs Metalloprotease
PRCGVPD motif

on inhibitory
domain

Activation Angiogenesis and vascular
permeability [69]

ICAM-1 Adhesion receptor Unknown Protein degradation Cell junction disassembly [70]
Actin C374 Inhibition of cell motility [71–73]

Microtubules
Cytoskeletal

Unknown
Inhibition of polymerization

Cell growth arrest and apoptosis [74,75]
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Figure 1. General mechanisms of reversible protein S-glutathionylation. Free thiols on reactive cysteinyl
residues can be modified after the formation of an intermediate thiol derivative, or more rarely undergo
direct thiol-disulfide exchange. S-glutathionylation can be reversed by the action of thiol-modifying
enzymes, e.g., glutaredoxin (Grx). Cys = cysteine, GSH = glutathione.

3. Role of Endothelium in Vascular Physiology

Endothelial cells (ECs) are a specialized tissue lining the lumen of all blood vessels. At the
interface between circulating blood and underlying tissues, ECs have multiple functions (Figure 2)
including: (a) maintenance of a selective permeability barrier between both compartments to
coordinate the passage of macromolecules, ions or signaling molecules through endothelial junctions
or intracellular clefts; (b) maintenance of hemostasis through tight spatial and temporal interplays
between pro-thrombotic, anti-coagulant, anti-platelet and fibrinolytic activities and the regulation
of blood cell-vessel wall interactions; (c) involvement in innate and adaptive immune responses
and inflammation; (d) modulation of vascular smooth muscle tone and thus blood flow distribution
and control of blood pressure; (e) formation of new blood vessels, or angiogenesis, through the
regulation of vessel wall cell proliferation and apoptosis; and (f) a contribution to the maintenance
of a quiescent, differentiated vascular smooth muscle phenotype. This broad array of EC functions
is ensured by multiple actors involved in orchestrated signalling pathways to maintain vascular
homeostasis (Figure 2). Figure 2 depicts some of the key proteins involved in EC function, which are
modification by S-glutathionylation that will be reviewed herein. Since ECs are found in all organs,
a proper interplay between these pathways is essential to a wide range of physiological functions.
In contrast, EC activation or dysfunction can lead to various pathologies. Endothelial activation is
a term used to describe reversible phenotypical changes of the endothelium, notably an increase in
adhesion molecule expression, and includes a wide spectrum of events such as variations in signaling
cascades, transcription factors, gene expression and the cytoskeleton. Endothelial dysfunction entails
pathophysiological dysregulation, which is at the extreme range of endothelial activation where it
becomes permanent or maladaptive, contributing to the development of pathological conditions.
Endothelial dysfunction is often present many years before the manifestation of clinical disease
symptoms, for example in the case of type-2 diabetes and Alzheimer’s disease.
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Figure 2. Schematic representation of the main endothelial cell functions and associated molecular
pathways which are suspectable to S-glutathionylation.

4. Transcription Regulation by S-Glutathionylation: Epigenetics Regulators and Transcription Factors

4.1. Epigenetic Regulators

The importance of epigenetics in EC function and related complex diseases is meeting a growing
interest, highlighted by the recent emergence of whole genome studies. The modification of histone
methylation state plays a key role in EC function by acting upstream of gene transcription, and its
implications in cardiovascular pathologies [76]. Importantly, epigenetics appears as an essential player
in EC progenitor function, therefore regulating vascular repair processes [77,78]. Histone modifications
are particularly important for regulating the expression of key EC genes as the endothelial nitric oxide
synthase (eNOS) and the vascular endothelial growth factor 1 (VEGFR1), therefore playing a pivotal
role in vascular homeostasis and angiogenesis (Figure 3a) [79–81]. Oxidative stress is known to alter
chromatin structure, and S-glutathionylation occurs in histones and histone-modifying enzymes [82].
However, how S-glutathionylation directly relates to epigenetic-induced onset of cardiovascular
diseases (CVD) warrants further assessment since the following factors undergo oxPTM.

4.1.1. Histone Proteins

In eukaryotes, the chromatin is packaged in individual units called nucleosomes. Histones,
the building bricks of nucleosomes, are subject to various PTM which directly impact the chromatin
structure and, as a result, gene expression [83]. Although cysteine residues have been identified
in histone H3 [84], studies on redox regulation processes such as S-glutathionylation on histones
have been halted by challenging technical requirements. Only recently has S-glutathionylation been
identified on histone H3 in cancerous cells [13]. S-glutathionylation of histone H3 has been confirmed
and further characterized by Olaso et al., who identified a target cysteine residue on the protein [14].
Despite altering the nucleosome structure and, therefore, chromatin compaction, the exact functional
implications of S-glutathionylation on chromatin structure are not widely appreciated. While Garcia
et al. suggested that histone H3 S-glutathionylation opens chromatin structure and promotes gene
expression [14], another study claimed opposite effects [85]. These discrepancies may be due to
the difficulty in studying highly reversible oxidative modifications. Further studies are required to
elucidate the functional consequences of histone H3 S-glutathionylation on gene expression, and the
potential existence of other S-glutathionylation modifications on other reactive Cys in histone H3
previously identified [14,84].
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Figure 3. Overview of the interlinked effects of S-glutathionylation in major EC functions via the
alteration of (a) major signaling pathways in cytosol and nucleus (b) RONS formation in mitochondria
(c) calcium-dependent signaling in the endoplasmic reticulum.

4.1.2. Histone-Modifying Enzymes

The effect of S-glutathionylation on the modulation of chromatin structure can be appreciated
indirectly, via the modification of histone-modifying enzymes. Particularly, RONS are known to decrease
histone deacetylase (HDAC) activity, notably via nitrosylation, favoring gene transcription [86,87].
However, the role of S-glutathionylation in the regulation of histone acetylation state and implications in
EC physiology is only starting to be elucidated with sirtuins. This family of proteins plays an important
role in the regulation of endothelial cell homeostasis via deacetylation of multiple targets [88].
In addition to its role in angiogenesis and diastolic functions [89,90], sirtuin-1 (SIRT1), also called
“longevity protein”, appears to play a protective role in EC response to oxidative stress by reducing
RONS levels. While p65 gene deacetylation by SIRT1 inhibits nuclear factor kappa-light-chain-enhancer
of activated B cells (NFκB) signaling [91,92], the same process enhances eNOS activity, therefore
promoting nitric oxide (NO) production and vasodilation while reducing RONS production [93,94].
Three cysteines have been identified as susceptible to thiol modifications on SIRT1 [15], and the
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presence of S-glutathionylation has been confirmed [16]. SIRT1 S-glutathionylation appears to inhibit
enzymatic activity by altering protein structure and binding to nicotinamide adenine dinucleotide
(NAD+), leading to cell senescence and apoptosis (Figure 3a) [17].

4.2. Transcription Factors

S-glutathionylation regulates various transcription factors in ECs, most of the time by inhibiting
their activity and, therefore, silencing the expression of downstream targets (Figure 3a). Interestingly,
some exceptions were reported where this modification had opposite effects, enhancing gene expression.
The redox regulation of transcription factors illustrates the complexity of S-glutathionylation acting to
switch effects in multiple signaling pathways and its potential clinical implications.

4.2.1. S-Glutathionylation-Mediated Inhibition of Transcription Factors

NFκB transcription factor complex is mostly known for its pro-inflammatory properties,
characterized in ECs by a promotion of vascular permeability and leukocyte recruitment [95]. Besides
promoting inflammation, NFκB also plays a key role in the regulation of angiogenesis and cell survival,
notably via Wnt5a signaling pathway [4,96].

S-glutathionylation regulates various components of the NFκB pathway. NFκB major subunits p50
and p65 activity are inhibited by S-glutathionylation, preventing DNA-binding or nuclear translocation
and downstream gene transcription [18,19]. S-glutathionylation was also reported in the protein kinase
IKKb, which impaired its kinase activity and, therefore, further promotes the p65/p50 sequestration
in the cytosol [31]. The consequences of S-glutathionylation-induced inhibition of NFκB have been
demonstrated in various inflammatory diseases and have been extended to ECs. Recent studies
highlighted an essential role of this process for neovascularization response. This is in accordance with
the recognized antiangiogenic properties of NFκB signaling via the production of the antiangiogenic
factor soluble Vascular growth factor receptor 1 (sVEGFR1) (Figure 3a). [42,43]. Previous studies,
however, suggested that NFκB inhibition by S-glutathionylation in mice fibroblasts promoted cell
hypoxic apoptosis [44].

As a component of the AP-1 transcription factor complex, c-Jun protein promotes cell proliferation
and angiogenesis in ECs. However, its precise roles in cell survival are still controversial. The signaling
cascade of c-Jun is known to be susceptible to redox regulation [43–100]. Displaying a particularly
high redox potential, S-glutathionylation of its Cys269 residue has been extensively reported
(Figure 3a) [20,21]. This oxPTM inhibits the DNA binding of c-jun, with the functional consequence in
ECs and may contribute to invasive breast cancer and/or pulmonary hypertension [43,100].

p53 is gatekeeper of a wide range of cellular pathways, mostly known for its antitumorigenic
properties preventing abnormal cells proliferating. However, the role of p53 in non-cancerous cells
such as ECs has recently attracted interest due to its crucial implications in angiogenesis, apoptosis
and vascular dysfunction [101]. p53 S-glutathionylation inhibition of DNA binding and protein
dimerization has been reported in cancerous cells [22], having potential implications in EC function
and vascular pathologies associated with defects in angiogenesis regulation.

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a basic redox-regulated leucine zipper protein,
is another major transcriptional factor that plays fundamental roles in EC functions including
essential anti-angiogenic activity. In response to oxidative stress, Nrf2 mediates antioxidant and
anti-inflammatory signals providing crucial cytoprotective effects in many cells types including the
endothelium(Figure 3a) [102]. The range of cytoprotective proteins induced by Nrf2 activation include
NADPH quinone oxidoreductase 1, sulfiredoxin 1, Heme oxygenase-1 and glutathione S-transferases.
In addition, Nrf2 regulates angiogenesis post ischemia [103]. A novel role of S-glutathionylation in
modulating Nrf2 activity was recently reported in various cell types, where S-glutathionylation of its
inhibitor Keap1 results in Nrf2 nuclear translocation and expression of its downstream targets [29,30].
Those findings highlight the importance of S-glutathionylation in cell response to oxidative stress.



Antioxidants 2019, 8, 315 9 of 25

4.2.2. S-Glutathionylation-Mediated Activation of Transcription Factors

Hypoxia-inducible factor 1-alpha (HIF-1α) is the major regulator of oxygen homeostasis in
ECs, and promotes angiogenic signaling in response to hypoxia [104]. Alterations in the protein
activity, therefore, play a crucial role in severe pathological states associated with ischemia [105].
The role of HIF-1a S-glutathionylation was extensively studied in cancerous cells. In the hypoxic
tumor environment, this modification stabilizes the protein and, therefore, promotes tumor growth
and angiogenesis (Figure 3a) [23]. Accordingly, the promotion of S-glutathionylation of HIF-1α in
endothelial cells was found to accelerate ischemic revascularization via VEGF-A production in animal
models [24], showing important implications in the mechanism of recovery from ischemic injury.

4.2.3. Opposite Effects of S-Glutathionylation on Various Signal Transducer and Activator of
Transcription (STAT) Proteins

The JAK/STAT signaling pathway is activated in response to cytokines and growth factors and
stimulates a wide range of physiological processes including inflammation, apoptosis, differentiation,
cell migration and proliferation. In this pathway, Signal Transducer and Activator of Transcription
(STAT) family proteins are intracellular transcription factors phosphorylated by JACK, and translocated
to the nucleus to promote gene expression (Figure 3a) [106]. These include STAT1 and STAT3, activated
not only by cytokine receptors but also by Vascular Endothelial Growth Factor (VEGF) signaling in
endothelial cells. STAT pathway, therefore, plays a role in angiogenic response and cell growth [107,108].
Beyond their role in angiogenesis, STATs are highly important in promoting EC inflammatory response,
and are known to play a role in atherosclerosis progression [109,110].

S-glutathionylation of STAT3 prevents phosphorylation inhibiting DNA-binding capacities [25],
and a more recent study identified two reactive cysteine residues subject to S-glutathionylation in STAT3
structure [26]. Carbon monoxide (CO)-mediated S-glutathionylation of the reactive cysteines under
mild oxidative conditions exerts a cytoprotective mechanism, modulating pro-inflammatory signals in
ECs [27]. S-glutathionylation of STAT1 was observed in microglial cells. Interestingly, the effects of
this modification appear contrary to the ones observed with STAT3, as STAT1 phosphorylation was
not impaired by S-gluathionylation and activity was enhanced [26]. STAT3 and STAT1 have been
shown to have antagonistic effects on angiogenesis and cell proliferation in endothelial cells [111,112].
Although inducing opposite effects on the two STAT proteins, S-glutathionylation seems to exhibit
a general inhibitory role on JACK-STAT-mediated angiogenesis.

5. Redox Control of Phosphorylation by S-Glutathionylation: Phosphatases, GTPases and Kinases

Protein phosphorylation is a pivotal post-translational modification regulating cell signaling
pathways. Phosphatase and kinase enzymes regulate the phosphorylation state of major proteins
in EC signaling as receptors and downstream targets (Figure 3a). While cysteine oxidation is
generally considered as an inhibitor of phosphatase activity, the effects on kinases requires further
investigation [113,114]. The example of S-glutathionylation seems to follow this pattern and could
bring novel insights into the redox regulation of phosphorylation in key EC signaling pathways and
effects of oxidative stress in pathophysiological conditions.

5.1. Phosphatases

Protein tyrosine phosphatases (PTP) down-regulate key receptors by dephosphorylating
kinase domains.

Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) family proteins inhibit growth
factors regulating cell growth and angiogenesis, but also inhibit focal adhesion kinase regulating cell
migration. LMW-PTP, characterized by the presence of two reactive cysteines located in their catalytic
domain, are widely recognized as a redox-dependent “molecular switche” in many cell types [115–117].
More specifically, S-glutathionylation was shown to inhibit LMW-PTP phosphatase activity in ECs
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and, therefore, appears essential for promoting angiogenesis and EC migration [32]. This same study
demonstrated that this modification was mediated by VEGF-dependent ONOO-, highlighting its role
in a negative feedback loop central to VEGF signaling.

PTP1B is a major regulator of EC proliferation through its binding and inactivation of the VEGFR2
receptor. Its phosphatase activity on tyrosine domains also applies to the VE-cadherin receptor,
stabilizing cell–cell adhesion and, therefore, limiting vascular permeability [118]. S-glutathionylation
inhibits PTP1B activity [33,34]. Although the functional consequences of this modification were not
studied in directly in ECs, mice lacking PTP1B display enhanced angiogenic and revascularization
capacities as well as an increased cardiac perfusion following myocardial infarction [119]. Further
studies are needed to investigate the potential implications of PTP1B inhibition by S-glutathionylation
in cardiovascular diseases related to VEGF and VE-cadherin signaling. S-glutathionylation could also
appear as a key redox switch for the regulation of other PTPs such as HCPTPA, also involved in VEGF
receptor inhibition [120].

5.2. GTPases

GTPases, hydrolyze GTP to provide the energy required for central physiological processes, play
an important role in the regulation of vascular permeability and RONS production. Defects in vascular
barrier function are a hallmark of vascular dysfunction, promoting leukocyte transmigration and chronic
inflammation, and have been associated with various severe pathologies such as diabetes [121,122] or
pulmonary disorders [123]. Enhanced RONS and S-glutathionylation levels appear to promote vascular
permeability, suggesting redox control [35,123]. However, which components are S-glutathionylated
and how this process affects vascular permeability is yet to be described in detail.

Small Rho GTPases act in a complex interplay to modulate the dynamics of the actin cytoskeleton,
a central feature for EC barrier function and migration [124,125]. GTPases are recognized as
redox-sensitive and generally inhibited by oxidative stress [38]. Among them, Ras-related C3 botulinum
toxin substrate 1 (Rac1) S-glutathionylation was recently shown to alter the enzyme function, resulting
in loss of cortical actin structure, increased stress fibers and cell–cell adherens junction disassembly [35].
On the contrary, another study evidenced the opposite effect on Rac2, on which S-glutathionylation
appeared to enhance GTP-binding activity [37]. The Ras subfamily of GTPases S-glutathionylation
was observed in ECs and smooth muscle cells (SMC). However, the biological effects on nucleotide
exchange and protein activity remain controversial [87,89,90].

Beyond the regulation of vascular barrier integrity, further understanding of Rho GTPase redox
regulation could provide important insights on EC response to oxidative stress through NADPH
oxidase and eNOS activation [36–126] and, therefore, angiogenesis and cell migration [127].

5.3. Kinases

Kinase proteins are now widely recognized as redox-regulated, and more specifically subject to
inhibition by S-glutathionylation due to the presence of a reactive cysteine residue in their catalytic
domain [40]. It is notably the case for protein kinase B (PKB), which activity was maintained by Grx in
various studies [42,43]. PKA, PKC and mitogen-activated protein kinase (MEK) are other examples of
S-glutathionylation-induced inhibition of kinase activity [45–98].

Although precise biological implications of protein kinase redox regulation have not been
extensively explored in ECs, the results showing that their enzymatic activities are importantly altered
by S-glutathionylation could have crucial impacts for EC physiology. Indeed, the role of various
kinases in key EC functions, especially the regulation of vascular barrier function and blood pressure,
is well established [128,129].
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6. S-Glutathionylation Effects on RONS Production

6.1. NADPH Oxidase Complex

In ECs, the major source of RONS is a NADPH oxidase (NOX) homologue. Upon activation
by VEGF, ET-1, Angiotensin II (AngII) or Transforming Growth Factor β (TGFβ), the production
of superoxide (O2

−) and hydrogen peroxide from NOX regulates multiple redox-dependent
pathways, especially those involved in the regulation of vascular tone and angiogenesis through NO
inhibition [130–132] (Figure 3a). As a result, NOX-dependent RONS expression induces endothelial
dysfunction and various cardiovascular pathologies such as hypertension, diabetes and cardiac
failure [4,106–135]. The activation of the catalytic transmembrane unit relies on interactions between
several cytosolic proteins, including cytosolic phox subunits and Rac1 [136,137]. In addition to Rac1
S-glutathionylation mentioned previously, p47phox S-glutathionylation was reported in neutrophils
on three cysteines, in which the modification appears essential to drive sustained O2

− generation [46].
Interestingly, S-glutathionylation did not alter the protein phosphorylation state of p47phox, essential
for its activation. As p47phox was identified as a key factor for RONS production in ECs stimulated by
TNF-α [138], p47phox S-glutathionylation could then appear as an upstream redox switch promoting
endothelial dysfunction through multiple target oxidation. However, further studies are needed to
confirm that a similar effect is observed in EC despite some variations in vascular NOX properties
compared to phagocytic cells [139]. A similar effect was observed on mitochondrial Complex I, another
major source of O2

− in EC (Figure 3b) [47,140].

6.2. Endothelial Nitric Oxide Synthase System

eNOS is the major source of NO in ECs. This soluble gasotransmitter plays a central role in vascular
homeostasis by regulating vascular tone, angiogenesis and maintenance of barrier integrity. The effects
of RONS on eNOS activity are now generally recognized. Under oxidative stress, eNOS adopts
a NADPH oxidase function and switches from NO to O2

− generation, which is a hallmark of multiple
cardiovascular pathologies including atherosclerosis [141]. The role of eNOS S-glutathionylation in
this process has recently met a growing interest. eNOS S-glutathionylation at the reductase site
alters electron transfer and, therefore, uncouples eNOS, promoting O2

− over NO generation [48].
Since then, the role of S-glutathionylation has been further assessed [142] and shown in different
pathologies such as hypoxia/reoxygenation injury [49] or necrotizing enterocolitis [50]. Importantly,
eNOS S-glutathionylation is NADPH oxidase dependent [51,52], potentially contributing to NO
inhibition resulting from O2

− production by NOS (Figure 3a).

7. S-Glutathionylation Effects on Ca2+ Homeostasis

Major functions of EC including angiogenesis, cell migration and growth, all depend on cytosolic
calcium ion (Ca2+) concentrations ([Ca]i), tightly regulated by calcium-dependent channels located at
the surface of the endoplasmic reticulum (ER), mitochondria and plasma membrane (Figure 3c) [143].
The effects of oxidative stress, and more precisely oxidized glutathione, on [Ca2+]i modulation have
been reported [53,144], suggesting S-glutathionylation as a potential regulator of cellular Ca2+ handling.

7.1. Calcium-Dependent IP3R & PMCA Channels

Lock et al. were the first to show that direct modification of inositol trisphosphate receptor
(IP3R) and plasma membrane Ca2+ ATPase (PMCA) by S-glutathionylation have an effect on Ca2+

oscillatory patterns and [Ca2+]i [56]. Interestingly, opposite effects were observed on each channel:
while S-glutathionylation appeared to inhibit PMCA activity, it was shown to enhance IP3R activity,
both increasing Ca2+ entry into aortic EC cytosol [56]. This latter effect was further explored in a later
study which suggested that S-glutathionylation enhanced the receptor sensitivity to cytosolic Ca2+,
leading to increased Ca2+ leaking into the cytosol [54]. Despite the identification of several cysteines
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potentially subject to S-glutathionylation in it the receptor structure, [55], whether this enhanced activity
is due to direct protein modification or S-glutathionylation of accessory components is not known.

7.2. SERCA2b Calcium Pump

The sarco/endoplasmic reticulum calcium ATPase2 (SERCA2) pump promotes Ca2+ uptake in
ER stores in ECs and SMC, directly regulating downstream processes involved in the maintenance
of vascular homeostasis [145]. The importance of SERCA2 S-glutathionylation was first identified in
SMC, in which NO-induced S-glutathionylation on one reactive cysteine enhanced protein uptake
activity and muscle relaxation. S-glutathionylation of SERCA2 was well characterized, yet it is not
clear how it leads to increased uptake by the pump [146].

This finding brought novel insights on the redox regulation of EC functions in response to hypoxia.
Recent studies pointed out the essential role of SERCA S-glutathionylation in VEGF-induced EC
migration via NOX signaling [57,147]. Thompson et al. further confirmed the physiological implications
by showing that reversible SERCA2 S-glutathionylation was required for hypoxia-induced angiogenic
responses in mouse models [58]. Another study proposed a multiplayer model where SERCA2
S-glutathionylation in EC and macrophages is essential for their interplay leading to angiogenic
response [59]. Altogether, those results provide novel insights in the importance of redox-regulated
Ca2+ store maintenance in VEGF-induced angiogenic response in EC.

The multiple effects of SERCA2 S-glutathionylation in SMC, EC and macrophages emphasize its
importance in CVDs. This reversible modification appears as a protective mechanism against permanent
SERCA oxidation, linked to severe conditions including atherosclerosis, cardiac dysfunctions, diabetes
and impaired ischemic revascularization [90,132,134–136].

7.3. STIM1 Molecule and ORAI1 Channel

Stromal interaction molecule 1 (STIM1) senses Ca2+ contents of ER stores and replenishes them
by activating calcium release-activated calcium channel protein 1 (Orai1) promoting Ca2+ entry into
the cell [148]. S-glutathionylation was shown on one highly conserved reactive cysteine of STIM1,
leading to protein oligomerization in fibroblasts. This process triggered a constitutive activation of
Orai1, therefore, increasing global Ca2+ entry into intracellular stores. This sustained mitochondrial
Ca2+ overload alters its function, resulting in cell death [63]. Highly expressed in EC, STIM1 is key
to the maintenance of cell apoptosis and barrier integrity via both Ca2+ dependent and independent
pathways and is, therefore, an important player in inflammation [130,132,133].

8. S-Glutathionylation Effects on Cell Death and Autophagy

8.1. Apoptotic Signalling

EC apoptosis is a central process of vascular homeostasis, as it maintains vasculature turnover
and tightly regulates network formation during angiogenesis [149]. In addition to causing defects in
vessel network formation, the dysregulation of apoptosis contributes to pathological conditions such
as atherosclerosis via factors released by extracellular vesicles throughout the process [150]. Oxidative
stress is regarded as a general mediator of EC apoptosis [151,152].

One aspect of the apoptotic process in EC involves the activation of the death receptor Fas [153]
also involved in the maintenance of vascular integrity [154,155]. S-glutathionylation is suggested to
upregulate the receptor activity and subsequent apoptotic signaling (Figure 3a) [64].

The apoptotic response is mediated by a cascade activation of the proteolytic enzymes
cysteine-aspartic proteases (Caspases) downstream death receptors [153]. Caspase active sites,
composed of cysteines, by definition are interesting targets for deciphering the role of redox-dependent
thiol modifications such as S-glutathionylation in EC death receptor signaling pathway. The importance
of thiol modifications in Caspases were first highlighted when a disulfide bond formation on Caspase-1
thiol inhibited its activity [156]. Pan et al. demonstrated that S-glutathionylation of Caspase-3 stabilizes
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the enzyme, inhibiting its cleavage required for activation, therefore, inhibiting apoptosis in EC [65].
Caspase-3 S-glutathionylation was further characterized in various cell types, in a study revealing
two cysteines undergoing S-glutathionylation. While one is located in the enzymatic site, it remains
to be discovered how the second one affects enzymatic activity [66]. Similarly, S-glutathionylation
of caspase-8 in mice models seems to inhibit apoptosis, suggesting a protective mechanism against
pathologies related to cell toxicity [67].

8.2. Autophagy

Growing evidence points out a protective role of EC autophagy in various physiological
processes following oxidative stress and RONS production [157,158], as in ischemia/reperfusion
injury [159], notably by promoting NO production [160]. Apoptosis and autophagy pathways are
interlinked, and S-glutathionylation is likely to promote EC autophagy by upregulating the activity
of autophagy-related protein Beclin-1 [68]. The altered function of Beclin-1, a major mediator of
this process, was found to participate in various pathological processes such as atherosclerosis
or hypertension promoting EC dysfunctions [161,162], pointing out the potential implications of
S-glutathionylation in CVDs through autophagy regulation.

9. Redox Regulation of Cell Structure and Dynamics by S-Glutathionylation

9.1. Metalloproteases

Metalloprotease (MMP) enzymes are implicitly involved in angiogenesis by degrading endothelial
cell matrix (ECM) components, permitting the endothelial cells to migrate within tissues. MMPs also
contribute to angiogenesis releasing proangiogenic stimuli to further promote EC migration
(Figure 3a) [163]. In addition to cancer, the dysregulation of MMP activity contributes to inflammation,
and multiple cardiovascular conditions especially cardiac hypertrophy and atherosclerosis [164,165].
While previous studies pointed out the mechanisms of MMP redox regulation through the modulation
of upstream mitogen-activated protein kinase (MAPK) pathway [166,167], others identified direct
redox-dependent modifications of the MMP system. MMP activity is tightly regulated and activated in
situ by cleavage of a pro-MMP form by tissue inhibitors of metalloproteinases (TIMPs). Promising
results showed that S-glutathionylation of pro-MMP inhibitory domain could trigger the passage from
latency to activated state, therefore, enhancing angiogenesis and vascular permeability (Figure 3a) in
animal models [69,168].

9.2. Adhesion Proteins

Integrins are the major points of contact between ECs and their extracellular microenvironment,
driving cell migration, proliferation and regulating vessel permeability. In addition to promoting cell
adhesion and migration within the ECM, integrins act as receptors to trigger specific proangiogenic
signaling pathways (Figure 3a) [169]. In leukocytes, thiol-based redox regulation of integrins modulate
their structure and activity [170]. More precisely, S-glutathionylation of integrinα4 enhances the binding
of neutrophils to ECs [171,172]. Despite Integrins wide range of biological functions, the physiological
effects of EC integrins S-glutathionylation remain elusive. However, this is likely to contribute to
endothelial activation, therefore, modulating the inflammatory response.

Vascular cell adhesion protein 1 and Intercellular Adhesion Molecule 1 (VCAM-1 and ICAM-1)
are mainly expressed in ECs in response to pro-inflammatory cytokines and RONS. Adhesion proteins
play a pivotal role in EC activation and binding to leukocytes, mediating leukocyte transmigration
during inflammation and are, therefore, involved in inflammatory diseases such as rheumatoid
arthritis [173,174]. Growing evidence also suggests a role of VCAM-1 in angiogenesis via VEGF
activation, with subsequent implications in cancer progression [175]. A recent study suggested that
Tumor necrosis factor α (TNF-α) induced ICAM-1 S-glutathionylation, altering protein folding and
promoting its degradation [70]. The multiple cystine residues present on ICAM-1 make it particularly
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subject to oxidation processes, and a better understanding of redox effects on protein function could
provide novel insights on the mechanisms involved in inflammatory diseases and cancer.

9.3. Cytoskeletal Proteins

Cytoskeletal dynamics, a key feature driving vascular angiogenesis and barrier function,
are governed by polymerization and depolymerization of the two main component units, actin and
tubulin. Both proteins are highly redox-sensitive and S-glutathionylation is now recognized to
have a major impact on the regulation of polymerization-depolymerization cycles in various cell
types [71,136,176]. Polymerization-depolymerization cycles have been better characterized in actin,
on which S-glutathionylation modification on one reactive cysteine residue inhibits polymerization
and, therefore, plays a key role in the regulation of cytoskeletal dynamics driving cell motility
(Figure 3a) [71–73]. Similarly, glutathionylated microtubules appear depolymerized, promoting cell
growth arrest [74,75]. Phenotypical effects were not investigated in ECs specifically. However,
S-glutathionylation-induced changes in cytoskeletal reorganization could emerge as an important
feature altering cell motility under oxidative stress.

10. Conclusions

S-glutathionylation has emerged as a novel redox switch altering the functions of EC through
the modulation of key signaling pathways. Its importance and complexity in EC homeostasis and
cardiovascular physiopathology is highlighted by recent insights on how S-glutathionylated protein
functions are altered in interlinked molecular pathways at multiple levels (Figure 3).

It is now apparent that S-glutathionylation can coordinate gene transcription by modulating
epigenetics and transcription factors. Studies investigating the impact of S-glutathionylation in
epigenetics are still at their early stage, and further work is required to fully understand how
it alters gene expression. However, current insights demonstrate that both histone proteins and
histone-modifying enzymes are prone to S-glutathionylation, altering chromatin structure and gene
expression. Given the number of various genes regulated by those processes, novel insights on the
links between oxidative stress and epigenetics would allow a better understanding of EC signaling in
response to RONS, and highlight novel factors involved in complex diseases for which genetic factors
alone are not sufficient to explain. The effect of S-glutathionylation on transcription factors suggest
differential effects on their activity depending on the protein targeted. Accordingly, it is difficult to
define a general effect of this modification on EC physiology. However, the redox regulation of VEGF
signaling appears central to the activation of downstream transcription pathways and the alteration of
resulting EC functions.

S-glutathionylation exhibits a general inhibitory effect on enzymes by altering the structure of
their catalytic site and impairing their activity. This has important repercussions when applied to
phosphatases, GTPases and kinases, which are key signal transducers in ECs. The multiplicity of
pathways regulated by enzymatic activity underlines the crucial importance of understanding the
redox mechanisms dictating their behavior to better understand EC responses to oxidative stress.

As upstream mediators of S-glutathionylation, RONS themselves are subject to redox regulation.
The two main RONS sources in EC, NOX and eNOS, are under tight redox control. The different
effects of S-glutathionylation on RONS-producing systems have a general tendency to promote RONS
production. This suggests a retroactive system, where RONS sustain their own production, which could
importantly participate in oxidative stress-mediated EC dysfunction.

In respect to calcium signaling, S-glutathionylation tends to favor ion entry into the cell cytosol
through reversible alteration of various player functions, except for the SERCA channel. Those results
confirm that this modification plays a central role in Ca2+ homeostasis in EC, and that a tight regulation
of RONS levels is required to ensure physiological Ca2+ levels in cellular stores allowing proper
EC functions.
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The opposing effects of S-glutathionylation on different apoptotic factors may explain the complex
and diverse effect of oxidative stress on EC apoptosis.

The role of S-glutathionylation in EC autophagy is less studied, and we expect future work will
target this pathway.

Beyond signaling molecules, the influence of S-glutathionylation on cell structure components is
another example of the duality of S-glutathionylation effects. While this modification tends to lower cell
growth and motility by inhibiting cytoskeleton polymerization as well as surface adhesion molecules,
the positive effects observed on metalloprotease proteins favor cell migration within extracellular
tissues. S-glutathionylation induced degradation of adhesion molecules might also play an important
role in the regulation of leukocyte transmigration and inflammation.

All modifications depicted in this review are integrated into a diagram to reflect the complexity of
S-glutathionylation redox switch in the modulation of EC signaling pathways (Figure 3). Altogether,
these findings highlight the wide range of proteins targeted for S-glutathionylation and the diversity
of EC functions involved. This process is now recognized as a novel signaling “switch” among other
more characterized PTM such as phosphorylation.

However, the difficulty lies in finding a consistent effect of S-glutathionylation and appreciating
the complex mechanism of RONS/antioxidant balance during physiology and pathophysiology.
The importance of basal redox signaling in normal physiology could provide a better understanding
of why antioxidant therapies failed to meet expectations. Greater appreciation of redox signaling
in physiology is of upmost importance since antioxidant treatments in clinical trials have caused
unexpected adverse effects. Studies on S-glutathionylation are still at their relatively early stage
compared to other PTMs. Another aspect which requires further investigation to appreciate the
implications in cardiovascular pathophysiology is how S-glutathionylation interrelates with other
oxPTM. A better understanding of the S-glutathionylation process in EC could illuminate the
complicated relations linking oxidative stress/redox signaling with CVDs and may also be relevant for
other pathologies such as cancer and inflammatory diseases.
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Abbreviations

[Ca2+]i cytosolic calcium ion concentrations
AngII angiotensin II
Ca2+ calcium ion
CO carbon oxide
CVD cardiovascular diseases
Cys cysteine
EC endothelial cell
ECM extracellular matrix
eNOS endothelial nitric oxide synthase
ER endoplasmic reticulum
Grx glutaredoxin
GSH glutathione
HDAC histone deacetylase
HIF-1α hypoxia-inducible factor 1α
ICAM-1 intercellular adhesion molecule 1
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LMW-PTP Low-molecular-weight protein tyrosin phosphatase
MAPK mitogen-activated protein kinase
MEK mitogen-activated protein kinase kinase
MMP matrix metalloproteinases
NAD+ nicotinamide adenine dinucleotide
NFκB nuclear factor-kappa B
NO nitric oxide
NOX NADPH oxidase
Nrf2 nuclear factor erythroid 2-related factor 2
O2 superoxide
oxPTM oxidative post-translational modifications
PKB protein kinase B
PTM post-translational modifications
PTP protein tyrosine phosphatase
Rac1 ras-related C3 botulinum toxin substrate 1
RONS reactive oxygen and nitrogen species
Sirt-1 sirtuin 1
STAT signal transducer and activator of transcription
TGF-β transforming growth factor beta
TIMPs tissue inhibitors of metalloproteinases
TNF-α tumor necrosis factor alpha
VCAM-1 vascular cell adhesion protein 1
VEGF vascular endothelial growth factor
VEGFR1 vascular endothelial growth factor receptor 1
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