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Abstract:
KDM4/JMJD2 are H3K9- and H3K36- specific demethylases, which are considered promising therapeutic targets for the
treatment of acute myeloid leukemia (AML) harboring MLL-translocations. Here, we investigate the long-term effects of
depleting KDM4 activity on normal hematopoiesis to probe potential side effects of continuous inhibition of these enzymes.
Utilizing conditional Kdm4a/Kdm4b/Kdm4c triple-knockout mice we show that KDM4 activity is required for hematopoietic
stem cell (HSC) maintenance in vivo. The knockout of the KDM4 demethylases leads to accumulation of H3K9me3 on
transcription start sites and the corresponding downregulation of expression of several genes in hematopoietic stem cells.
We show that two of these genes, Taf1band Nom1, are essential for the maintenance of hematopoietic cells. Taken together,
our results show that the KDM4 demethylases are required for the expression of genes essential for the long-term
maintenance of normal hematopoiesis. 
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Key Points  
 

 Combined knockout of Kdm4a, Kdm4b and Kdm4c results in hematopoietic stem cell defects 
 

 KDM4 demethylases are required for sustained expression of genes important for survival of 
hematopoietic stem cells 

 

Abstract 

KDM4/JMJD2 are H3K9- and H3K36- specific demethylases, which are considered promising 

therapeutic targets for the treatment of acute myeloid leukemia (AML) harboring MLL-

translocations. Here, we investigate the long-term effects of depleting KDM4 activity on normal 

hematopoiesis to probe potential side effects of continuous inhibition of these enzymes. 

Utilizing conditional Kdm4a/Kdm4b/Kdm4c triple-knockout mice we show that KDM4 activity is 

required for hematopoietic stem cell (HSC) maintenance in vivo. The knockout of the KDM4 

demethylases leads to accumulation of H3K9me3 on transcription start sites and the 

corresponding downregulation of expression of several genes in hematopoietic stem cells.  We 

show that two of these genes, Taf1b and Nom1, are essential for the maintenance of 

hematopoietic cells. Taken together, our results show that the KDM4 demethylases are required 

for the expression of genes essential for the long-term maintenance of normal hematopoiesis.  

 

Introduction 

Chromatin-modifying enzymes are important during development of leukemia where they sustain 

the erroneous expression pattern of oncogenes and tumor suppressor genes. Importantly, their 

catalytic activities are often required for growth of leukemic cells making them potential 

therapeutic targets1,2. The H3K9me3/me2 and H3K36me3/me2 specific histone lysine 

demethylase family KDM4/JMJD2 have four members: KDM4A-D3-6. While KDM4A-C are expressed 

in many tissues, expression of KDM4D is confined to testis7. Mice single knockout for Kdm4a-c are 

viable, whereas the combined deletion of Kdm4a and Kdm4c or Kdm4a, Kdm4b and Kdm4c is 

embryonic lethal8,9. KDM4 enzymes localize to H3K4me3 positive promoters preventing 

accumulation of H3K9me3 and H3K36me39. KDM4 activity is required for the growth of MLL-AF9 

translocated acute myeloid leukemia (AML) cells, and considered promising therapeutic 

targets10,11. Here we addressed the role of the KDM4 enzymes in normal hematopoiesis. 
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Methods 
Animal studies 

Mouse lines and tamoxifen injection procedures have been described9,11. BM and PB cells were 

isolated and stained as described12. All animal studies were approved by the Danish Animal Ethical 

Committee. 

 

RNA-seq 

RNA from 10.000 cells was converted to cDNA using Nugen Ovation RNA-seq System V2 and 

sequenced on a Nextseq500 (Illumina). Reads where mapped using RNA STAR13 (Galaxy Version 

2.4.0d-2) and counted using htseq-count14 (Galaxy Version 0.6.1galaxy1). Differentially expressed 

genes were identified using DESeq215 (Galaxy Version 2.1.8.3). 

 

ChIP-seq 

30.000 LSK cells were fixed, sonicated and subjected to immunoprecipitation as described12. 

Mapping and peak calling were done using Bowtie2 (Galaxy Version 2.2.6.2) and EaSeq16. RNA-seq 

and ChIP-seq data are desposited under GSE129137, GSE129156 and GSE129157. 

 

Results and Discussion 

To investigate the role of the KDM4 enzymes in normal hematopoiesis, we performed a series of 

competitive bone marrow transplantations (BMTs). We used bone marrow (BM) from mice 

expressing tamoxifen inducible Cre from the Rosa26 locus (CreER) in combination with conditional 

alleles of Kdm4 (CreER:Kdm4cfl/f, CreER:Kdm4acf/fl and CreER:Kdm4abcfl/fl) (Figure 1A). Four weeks 

after transplantation, we measured the percentage of CD45.2+ donor derived cells in peripheral 

blood (PB) and induced knockout through intraperitoneal injection of tamoxifen (Supplementary 

Figure 1A and 1B). We followed the percentage of CD45.2+ cells in myeloid, B- and T-cell 

populations in PB 1, 3 and 5 months after tamoxifen injection (Figure 1B). Deletion of Kdm4c alone 

did not affect the production of either Myeloid, T- or B-cells (Figure 1B), whereas Kdm4ac or 

Kdm4abc deletion resulted in a significant reduction of all three lineages six months after 

transplantation (Figure 1B). Single knockout or the combined deletion of Kdm4b and Kdm4c did 
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not have any gross effect on hematopoiesis (Supplementary Figure 2A-F). These data indicate that 

KDM4A, KDM4C and to a lesser extend KDM4B play functionally redundant roles in hematopoiesis.  

Since Kdm4abc triple knockout mice have reduced number of myeloid, B- and T- cells, we 

hypothesized that the loss of KDM4 activity resulted in defects in a common progenitor. We 

quantified CD45.2+ cells in CD34- Lin- Sca-1+ c-Kit+ (CD34-LSK) HSC, multipotent progenitor 

(CD34+LSK), and granulocyte/macrophage progenitor (GMP) compartments of the bone marrow 

six months after transplantation. We found that Kdm4abc deletion resulted in a significant 

reduction in cell numbers for all three cell types (Figure 1C). To understand why the cells were 

lost, mice treated with tamoxifen for 10 days were subsequently injected with BrdU, and cells 

were harvested 72 hours after. As shown in Figure 1D, LSK cells showed an increase in 

apoptosis/S-phase and a reduction of cells in G0/G1, supporting the notion that KDM4A-C exert 

important functions in HSCs and early progenitors. To investigate this possibility, we generated in 

vitro cultures of CD34-LSK cells FACS sorted from CreER:Kdm4cfl/fl and CreER:Kdm4abcfl/fl two 

weeks after tamoxifen injections. These experiments showed that KDM4A-C are required for the 

proliferation of CD34-LSK cells (Figure 1E).  An effect confirmed in methocult replating experiments 

(Figure 1F). Taken together, we conclude that the KDM4 histone demethylases play functionally 

redundant, but essential, roles in maintaining HSCs and multipotent progenitors and for the long-

term maintenance of B-, T- and Myeloid cells in peripheral blood.  

We speculated that KDM4 enzymes are required for proper expression of genes essential 

for HSCs. To identify such genes, we performed ChIP-seq. We were unable to perform KDM4A and 

KDM4C ChIPs in LSK cells, however previous results have shown that the KDM4 proteins associate 

with H3K4me3 positive transcription start sites (TSS)8,9,11. We expected that direct target genes of 

KDM4 would accumulate H3K9me3 at TSSs after KDM4 depletion. Thus, we performed H3K9me3 

ChIP-seq on chromatin prepared from LSK cells of CreER:Kdm4abcfl/fl and CreER mice two weeks 

after injection of tamoxifen. We quantified the H3K9me3 reads in knockout and control cells in a 

region of +/- 1000bp around the 9072 H3K4me3 positive TSSs present in LSK cells12 (Figure 2A-D). 

We filtered the data to identify TSS regions where H3K9me3 levels changed  2-fold in response to 

tamoxifen treatment. This led to the identification of 1381 TSSs (Figure 2A and 2D). 

To identify genes where an increase in H3K9me3 resulted in a transcriptional change we 

FACS sorted long-term (LT) HSCs (Lin-Sca-1+, c-Kit+, CD48-, CD150+) from CreER:Kdm4abcfl/fl and 
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CreER mice 2 weeks after tamoxifen injection and performed RNA-seq. This led to the 

identification of 164 downregulated genes and 157 upregulated genes in knockout LT-HSCs (Figure 

2E). Comparing ChIP-seq and RNA-seq analysis we identified six genes that are both repressed and 

have increased H3K9me3 levels (Figure 2E and 2F). 

 To identify genes that could explain the phenotype of the KDM4 knockout mice, we 

analyzed the six genes using the DepMap dataset17,18. Here we found that Nom1 and Taf1b are 

classified as common essential genes. Both genes are expressed at similar levels in both HSCs and 

AML cells19 and the H3K9me3 levels on the TSS of none of them changed significantly in KDM4A or 

KDM4C single knockouts (Supplementary Figure 1B and 1C). We speculated that the decreased 

expression of Nom1 and Taf1b in HSCs could explain the requirement of the KDM4 histone 

demethylases for the maintenance of HSCs. To test this more directly, we depleted Nom1 or Taf1b 

using CRISPR/Cas9 in LSK cells. We cloned and validated lentiviral constructs expressing GFP 

tagged gRNAs against Nom1 and Taf1b in conjunction with Cas9 (Supplementary Figure 1E and 

1F). WT LSK cells were transduced with these constructs and the percentage of GFP positive cells 

were followed over a period of 12 days of in vitro growth. We conclude that CRISPR/Cas9 

mediated depletion of NOM1 and TAF1B attenuates the growth of LSK cells (Figure 2G and 

supplemental Figure 1G). This supports the hypothesis that loss of KDM4 activity results in 

transcriptional repression of Nom1 and Taf1b, which in turn causes a growth defect in LSK cells. 

Previously, we and others have demonstrated that deletion of Kdm4a-c had a strong effect 

on proliferation of MLL-AF9 translocated AML cells whereas the effect on untransformed 

progenitors was less severe10,11. Specifically, we found that KDM4A-C activity is required for the 

expression of Il3ra, a gene essential for the survival of AML cells, but dispensable for normal 

hematopoiesis20. Using non-competitive BMT we also showed that the hematopoietic output of 

KDM4A-C knockout stem cells was sufficient to confer survival of recipient mice for up to three 

months11. This differential requirement for KDM4 for the proliferation of AML and maintenance of 

HSCs provides a potential therapeutic window of opportunity. However, the results from this 

study show that KDM4 is required for normal long-term hematopoiesis, which is critical to take 

into consideration when KDM4 inhibitors move into a clinical setting. 
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Figure legends 

 

Figure 1: The combined knockout of Kdm4a, Kdm4b and Kdm4c leads to reduction of myeloid 

and lymphoid cells. (A) Schematic drawing of the experimental setup. Lethally irradiated mice 

were transplanted with bone marrow from mice with the indicated genotypes (CD45.2) mixed 1:1 

with bone marrow from B6-SJL mice. (B) CD45.2 chimerism in peripheral blood at the indicated 

times after injection of tamoxifen. GM (granulocyte/macrophage population). Data represented as 

mean +/-SD (n=6 in each group). (C) Histogram depicting the CD45.2 percentage in the indicated 

cell populations within the bone marrow four months after tamoxifen injection. Data represented 

as mean +/-SD (n=6 in each group). HSC (Lin-Sca-c-Kit+CD34-), LSK (Lin-Sca-c-Kit+) and GMP 

Granulocyte-monocyte progenitor population. (D) Cell cycle profile of LSK cells sorted from the 

bone marrow of mice that were treated 10 days with tamoxifen and additional 72 hours with 

BrdU. The percentage of BrdU positive cells in the different populations is indicated. Data is 

represented as mean +/- SD (n=4 in control group and n=3 in the Kdm4abc knockout group). (E) In 

vitro growth curve of HSCs sorted from bone marrow of mice with indicated genotypes two weeks 

after injection of tamoxifen. Data is represented as mean +/-SD (n=4 in each group). (F) Methocult 

replating assay using LSK cells sorted from the bone marrow of mice with the indicated genotypes 

2 weeks after injection of tamoxifen. 1000 cells per plate were plated in the first round and 5000 

in the subsequent rounds of replating. Data is represented as mean +/-SD (n=3 in each group) 

 

Figure 2: Loss of KDM4A-C leads to accumulation of H3K9me3 at TSS on a subset of genes in LSK 

cells. (A) Pie chart indicating the position of H3K4me3 peaks in LSK (Lin-Sca-c-Kit+) cells from 

C57BL6 mice12. Orange and gray represent peaks localized +/- 1kb of TSS, peaks falling outside 

these regions are represented with blue. H3K4me3 positive regions +/-1kb of TSS that experience 

a significant change in H3K9me3 levels are indicated with gray. (B) Heat map of H3K9me3 ChIP-seq 

read counts +- 10kb of TSS. Data has been filtered to only include regions where a significant 

change in H3K9me3 occurs. (C) Summary of the data in (A) zoomed in to +- 2.5kb of TSS. (D) Direct 

ChIP-qPCR validation on selected target genes using cells sorted in an independent experiment. (E) 

RNA-seq analysis of HSCs sorted from CreER:Kdm4abcfl/fl or CreER mice two weeks after tamoxifen 

injection (n=4 in each group). (F) Heat map showing the distribution of normalized counts for the 
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listed genes in the RNA-seq dataset. (G) LSK cells were sorted from C57BL6 mice and transduced 

with lentiviruses expressing GFP, Cas9 and sgRNA against Taf1b and Nom1 as well as positive 

(Rps19) and negative controls (non-targeting sgRNA). The percentage of GFP positive cells was 

followed over time by FACS. The percentages have been normalized to the negative control and 

plotted relative to the value at day 3. 
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