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Persistent C-peptide secretion in Type 1
diabetes and its relationship to the genetic
architecture of diabetes
Paul M. McKeigue1* , Athina Spiliopoulou1, Stuart McGurnaghan2, Marco Colombo1, Luke Blackbourn2,
Timothy J. McDonald9, Suna Onengut-Gomuscu8, Stephen S. Rich8, Colin N. A. Palmer10,
John A. McKnight5, Mark W. J. Strachan5, Alan W. Patrick4, John Chalmers6, Robert S. Lindsay3,
John R. Petrie3, Sandeep Thekkepat7, Andrew Collier11, Sandra MacRury12 and Helen M. Colhoun2

Abstract

Background: The objective of this cross-sectional study was to explore the relationship of detectable C-peptide
secretion in type 1 diabetes to clinical features and to the genetic architecture of diabetes.

Methods: C-peptide was measured in an untimed serum sample in the SDRNT1BIO cohort of 6076 Scottish people
with clinically diagnosed type 1 diabetes or latent autoimmune diabetes of adulthood. Risk scores at loci previously
associated with type 1 and type 2 diabetes were calculated from publicly available summary statistics.

Results: Prevalence of detectable C-peptide varied from 19% in those with onset before age 15 and duration greater
than 15 years to 92% in those with onset after age 35 and duration less than 5 years. Twenty-nine percent of variance
in C-peptide levels was accounted for by associations with male gender, late age at onset and short duration. The SNP
heritability of residual C-peptide secretion adjusted for gender, age at onset and duration was estimated as 26%.
Genotypic risk score for type 1 diabetes was inversely associated with detectable C-peptide secretion: the most
strongly associated loci were the HLA and INS gene regions. A risk score for type 1 diabetes based on the HLA DR3 and
DQ8-DR4 serotypes was strongly associated with early age at onset and inversely associated with C-peptide
persistence. For C-peptide but not age at onset, there were strong associations with risk scores for type 1 and type 2
diabetes that were based on SNPs in the HLA region but not accounted for by HLA serotype.

Conclusions: Persistence of C-peptide secretion varies widely in people clinically diagnosed as type 1 diabetes.
C-peptide persistence is influenced by variants in the HLA region that are different from those determining risk of
early-onset type 1 diabetes. Known risk loci for diabetes account for only a small proportion of the genetic effects on
C-peptide persistence.

Keywords: C-Peptide, Diabetes mellitus type 1, Age at diagnosis, Insulin secretion, Genetics, Cross-sectional studies

Background
Studies using sensitive assays for C-peptide have shown
that some degree of residual insulin secretion commonly
persists for more than 5 years after diagnosis of type 1
diabetes [1–4]. However, few studies have examined the
frequency with which C-peptide secretion persists after
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long duration of type 1 diabetes or across a wide range of
ages of onset. Using an assay with lower limit of detection
17 pmol/l, the prevalence of detectable C-peptide in non-
fasting serum samples was reported to be much lower (6%
versus 78%) in those diagnosed in childhood with long
(> 40 years) duration than in those diagnosed as adults
with short duration (3–5 years) [3]. In another study, fast-
ing C-peptide at diagnosis was found to be lower and to
decline more steeply with time in those with younger age
at onset [5].
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Nonetheless at any age of onset or duration, there is
variation in C-peptide persistence, the determinants of
which are poorly understood but may be partly genet-
ically determined. One recent genome-wide association
study in 3479 people with type 1 diabetes, but mostly diag-
nosed in childhood, identified a locus on chromosome 1
and multiple variants in the HLA region associated with
C-peptide levels adjusted for sex, age at diagnosis and
diabetes duration [6].
The objective of this study was to investigate the rela-

tionship of detectable C-peptide secretion to clinical fea-
tures and to the genetic architecture of diabetes in a
population-based cohort of people with a clinical diag-
nosis of type 1 diabetes spanning a wide range of age at
diagnosis and duration. A specific objective was to test
whether heterogeneity in C-peptide persistence in people
clinically diagnosed as type 1 was explained by inclusion
of misdiagnosed cases of type 2 diabetes or by genetic
heterogeneity in cases of type 2 diabetes.

Methods
Study population
The Scottish Diabetes Research Network Type 1 Biore-
source (SDRNT1BIO) is a cohort of people clinically
diagnosed as type 1 diabetes aged 16 years and older at
recruitment. Questionnaire data and samples obtained
on the day of recruitment were linked to clinical data
from the Scottish Care Information Diabetes Collabora-
tion electronic health record [7]. The cohort comprises
one third of the adult population with type 1 diabetes in
Scotland and its representativeness has been described in
detail [8]. In Scotland, most people diagnosed with dia-
betes do not have auto-antibodies measured at diagnosis,
and the clinical diagnosis of type 1 is based on age at
diagnosis, time to insulin, any history of ketoacidosis, and
exclusion of monogenic subtypes of diabetes.
Of 6127 people recruited into the study, there were

6076 with a clinical diagnosis of type 1 diabetes or latent
autoimmune diabetes of adulthood after excluding those
diagnosed with monogenic subtypes of diabetes (inten-
tionally recruited for the cohort) or diabetes from other
causes. Median age at onset was 21 (interquartile range 12
to 31) years, andmedian duration of diabetes at enrolment
was 21 (interquartile range 11 to 31) years. In 120 of these
individuals, more than 1 year had elapsed from diagnosis
to starting insulin, ascertained from prescription records
and questionnaire responses.

Laboratory measurements
Non-fasting serum samples were obtained at clinic visit in
5928 of those clinically diagnosed as type 1. The median
time from sampling to freezing at − 80 ◦C was 2 h 15min
(interquartile range 1 h 30 min to 3h 10 min). Plasma
glucose measured in these blood samples was greater

than 5 mmol/l in 88% of individuals. Non-fasting ran-
dom C-peptide levels in people with type 1 diabetes
are highly correlated with C-peptide levels after a mixed
meal [9]. C-peptide measurements on these samples were
undertaken at the Exeter Clinical Laboratory using the
Roche electrochemiluminescence assay [10], with a lower
limit of detection of C-peptide of 3 pmol/l. Autoanti-
bodies to glutamic acid decarboxylase (GAD65), tyrosine
phosphorylase-related protein 2 (IA2) and zinc trans-
porter 8 (ZnT8) were measured at the Exeter laboratory,
which participates in the Diabetes Antibody Standardisa-
tion Programme [11].
Antibody titres exceeding the 97.5th percentile of the

reference range were scored as positive. The 97.5th per-
centiles for GAD and IA2 are 11 and 7.5 World Health
Organization (WHO) units/ml respectively. For ZnT8, the
97.5th percentile was 65 WHO units/ml in those aged up
to age 30 years and 9.1 in those aged more than 30 years.
Those with at least one antibody level above the refer-
ence range were classified as autoantibody-positive. These
autoantibody measurements were used in combination
with C-peptide measurements used to identify possible
misdiagnosed cases of type 2 diabetes. The rationale for
this was that in those who have residual beta-cell function
as indicated by high C-peptide levels, we would expect
autoantibodies to be still present if diabetes were caused
by autoimmmune beta cell damage. This classification
based on C-peptide levels and autoantibody status was
validated by examining genotypic scores as described in
the “Results” section.

Genotyping
The cohort was typed with the Illumina Human Core
Exome 24 1.0 chip at the Center for Public Health
Genomics, University of Virginia. After qualitychecks,
genotypes were available on r of those clinically diag-
nosed as type 1 diabetes. Genotypes were phased and
imputed to the UK10K reference panel with the EAGLE
algorithm [12], and the imputed genotypes were filtered
to exclude SNPs with minor allele frequency less than 0.02
or proportion of information extracted less than 0.7.

Calculation of genotypic scores from summary statistics
Genotypic risk scores for type 1 diabetes and type 2 dia-
betes were computed using the GENOSCORES platform
described elsewhere [13]. Univariate regression coeffi-
cients from publicly available meta-analyses [14, 15] were
supplemented with single-SNP scores for additional type
1 diabetes-associated loci reported in a further meta-
analysis fromwhich only one SNP per locus was published
[16]. Other meta-analyses that did not give the magni-
tudes and signs of the effects could not be used to calculate
scores. Diabetes-associated SNPs were filtered at a thresh-
old p value of 10−5. Locus-specific scores were generated
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for regions containing at least one SNP with p value less
than 10−6 and separated from other filtered SNPs by a
gap of at least one megabase. All other filtered SNPs
were combined into a residual genome-wide score. The
threshold p value used to designate a genomic region as
a diabetes-associated locus limits the number of regions
thus designated but does not make any difference to the
genome-wide score.
The GENOSCORES platform adjusts the locus-specific

scores for linkage disequilibrium between SNP genotypes
by premultiplying the vector of univariate SNP coeffi-
cients, obtained from summary GWAS results, by the
generalized inverse of the correlation matrix between
these genotypes. This correlation matrix was estimated
from the 1000 Genomes European ancestry reference
panel. The relative weights of the SNPs obtained by
this procedure approximate the weights that would be
obtained by fitting a multivariate regression model to
the individual-level data. In principle, this method should
capture additive effects across each genomic region, but
not interaction effects between alleles at the same locus
(dominance) or different loci (epistasis).
After restricting to SNPs that were contained in

the type 1 Bioresource genotype dataset, this proce-
dure generated 41 locus-specific scores for type 1 dia-
betes and 60 locus-specific scores for type 2 diabetes.
There were five risk loci that were common to both
types of diabetes—BMP8A, HLA region, CENPW, ASCC2
and BCAR1/CTRB1/CTRB2. Although the HLA region
is not generally considered an established risk locus
for type 2, it was included as a locus-specific score
based on the criterion of at least one SNP with p
value less than 10−6. For each diabetes type, locus-
specific scores and the residual genome-wide score
were summed over loci to obtain the full genome-wide
score.
For type 1 diabetes, separate scores were constructed

for HLA serotypes and for other SNPs in the HLA region.
HLA serotypes at the DQB1 and DRB1 loci were imputed
from the untyped SNPs using the HIBAG program [17]
with reference serotypes based on all European ances-
try individuals in the 1000 Genomes panel [18]. Alle-
les at these loci were grouped as follows: 0301 to 0304
at the DRB1 locus as DR3, 0401 to 0413 at the DRB1
locus as DR4 and 0302 to 0305 at the DQB1 locus as
DQ8. Serotypes at these two loci were classified into
six groups—DR3/DR4-DQ8, DR3/DR3, DR4-DQ8/DR4-
DQ8, DR4-DQ8/X, DR3/X and X/X—to which score
weights were assigned as published by Oram et al. [19].
The HLA region-specific polygenic score for type 1 dia-
betes was regressed on this HLA serotype score, and the
residuals from this regression were included in the anal-
ysis as the “HLA residual” score. The HLA region was
excluded from the genome-wide score for type 2, so that

the type 2 score could be used to discriminate between
liability to type 2 and liability to type 1.
Each locus-specific score was scaled to unit stan-

dard deviation so that effect sizes could be com-
pared. The genome-wide genotypic scores were stan-
dardized to have zero mean and unit standard devia-
tion in White British participants without diabetes in
UK Biobank.

Comparisonwith genotypic scores in UK Biobank participants
To validate the classification of diabetes type in the
SDRNT1BIO cohort, we compared the distributions of
genotypic scores in these groups with the genotypic scores
in UK Biobank participants with and without diabetes
whose self-reported ethnicity was White British. Of these
participants, 16,427 reported that they had been diag-
nosed with diabetes (excluding those diagnosed only with
gestational diabetes). One thousand four hundred thir-
teen of these were categorized as type 1 diabetes based on
questionnaire report that they had been diagnosed before
age 50 years and started insulin within a year of diagno-
sis, and the remaining 15,014 were categorized as type 2
diabetes.

Statistical analysis
For modelling associations of clinical covariates, age at
onset was transformed by taking the square root, and
C-peptide levels were transformed by taking the loga-
rithm to base 10, and setting the log transform of values
below detection threshold to zero. As preliminary analysis
showed that these associations varied with age at onset,
interaction terms with age at onset were included in these
models.
To allow for relatedness, the relationship matrix was

computed from the unimputed genotypes and the R pack-
age GMMAT [20] was used to fit linear mixed models
for age at onset and for C-peptide. The model for C-
peptide was adjusted for sex, age at onset and duration.
Fitting this linear mixed model yields an estimate of her-
itability and allows genome-wide SNP association tests
to be computed efficiently from the gradient of the log-
likelihood (efficient score) at the null.

Results
Relation of C-peptide secretion to age at onset, duration
and auto-antibody status
Table 1 shows the frequency of detectable C-peptide by
age at onset and duration among those classified clinically
as type 1 diabetes. Prevalence of detectable C-peptide
levels varied from 19% in those with onset before age
15 and duration greater than 35 years to 72% in those
with onset after age 35 and duration less than 15 years.
For C-peptide levels above 50 pmol/l—a threshold previ-
ously associated with better glycaemic control [21]—the
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Table 1 Prevalence of detectable C-peptide by age at onset and duration (years)

Age at onset 0 to 15 15 to 25 25 to 35 35–

Duration

0 to 5 76% 13/17 96% 178/186 94% 161/172 92% 262/285

5 to 10 62% 79/128 67% 110/165 78% 107/138 74% 188/253

10 to 15 25% 60/237 55% 89/163 52% 103/197 57% 129/225

15 or more 19% 317/1643 26% 259/996 36% 253/705 42% 174/418

All 23% 469/2025 42% 636/1510 51% 624/1212 64% 753/1181

prevalence rates in the same groups were respectively 4%
and 58%. Geometric mean C-peptide levels by age at onset
and duration (smoothed by LOESS regression) are shown
in Fig. 1.
Table 2 shows that most people who had C-peptide

levels above 600 pmol/l and had been diagnosed at
least 5 years earlier were autoantibody-negative. Accord-
ingly, the 203 individuals with C-peptide greater than
600 pmol/l who were negative for all three autoantibod-
ies were classified as “possible type 2”, and all others as
“definite type 1”.
To examine whether the genetic risk profile of the pos-

sible type 2 individuals was more similar to that of people
with type 2 than type 1 diabetes, we plotted the contours
of the joint probability distribution of the genome-wide
risk scores for type 1 and type 2 diabetes in those classified
as definite type 1 diabetes (Fig. 2). The mean of the type
1 genotypic risk score in the cohort is about 1.6 standard

deviations above the mean for White British UK Biobank
participants without diabetes. The mean genotypic risk
scores for type 1 and type 2 in the cohort members clas-
sified as possible type 2 were close to the mean for UK
Biobank participants classified as type 2. On this basis,
those classified as possible type 2 were excluded from the
further analyses reported below.

Heritability and associations with clinical covariates and
genome-wide genotypic risk scores
Age at onset
The SNP heritability of age at onset (transformed to the
square root and adjusted for gender) was estimated as 0.3.
Age at onset was associated inversely with genotypic risk
score for type 1 diabetes (standardized regression coeffi-
cient -0.23 yr0.5, p= 10-50). However, gender and genotypic
risk scores accounted for only 4% of the variance of age at
onset.

Fig. 1 Geometric mean plasma C-peptide (pmol/l) by age at onset and duration. A smoothed fit of log C-peptide to age at onset and duration was
computed by LOESS regression of polynomial degree 2 and span 0.25, then evaluated over a grid of values of the predictor variables. The C-peptide
level (pmol/l) of each panel is encoded both as its colour and as its coordinate on the vertical axis
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Table 2 Proportion negative for autoantibodies by duration (years) and C-peptide (pmol/l)

C-peptide range [0, 30] (30, 200] (200, 600] (600, 7e+03]

Duration

0 to 5 5% 5/92 9% 15/168 12% 28/243 35% 54/155

5 to 10 15% 49/326 13% 26/196 28% 24/87 69% 47/68

10 to 15 17% 97/568 21% 26/122 45% 25/56 75% 53/71

15 or more 30% 997/3272 36% 108/300 59% 68/116 80% 49/61

All 27% 1148/4258 22% 175/786 29% 145/502 57% 203/355

C-peptide
The heritability of C-peptide (log-transformed and
adjusted for gender and age at onset × duration) was
estimated as 0.26. In a linear regression model with log
C-peptide as dependent variable, 29% of variance in log
C-peptide was explained by age at onset, duration and
gender. As early age at onset was associated in this cohort
with female sex (coefficient with square root of age as
dependent variable − 0.17), some of the association of
female sex with lower C-peptide levels was explained by
age at onset.
Table 3 summarizes a regression model with C-peptide

as dependent variable and plasma glucose (dichotomized
at 5 mmol/l), age at onset, gender, duration, genotypic
risk scores and body mass index as covariates. Terms

for interaction of age at onset with other covariates are
included in this model. To make the results easier to inter-
pret, covariates are centred to have zero mean so that
each main effect represents the predicted effect of that
variable when other covariates are at their mean values.
C-peptide levels were not associated with plasma glu-
cose levels. C-peptide levels were associated positively
with age at onset and higher genotypic score for type 2
diabetes and inversely with female gender, duration and
genotypic score for type 1 diabetes (Table 3). The effects
of gender, duration and body mass index were depen-
dent upon age at onset, and the signs of the coefficients
(main effect and interaction effect in the same direction)
show that these effects were stronger in late-onset than in
early-onset cases.

Fig. 2 Joint probability contours of genotypic scores for type 1 and type 2 diabetes excluding those classified as possible type 2. Labels show
probability enclosed by each contour. Scores standardized to zero mean and unit standard deviation in UK Biobank White British participants
without diabetes
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Table 3 Regression of log C-peptide on gender, age at onset, duration, glucose, body mass index and genotypic risk scores for
diabetes, excluding those with possible type 2 defined by autoantibody status and C-peptide level

Estimate Std. error p value

Plasma glucose > 5 mmol/l 0.0066 0.029 0.8
√
age onset 0.11 0.0083 2e−40

Female gender − 0.074 0.022 0.001

Duration (years) − 0.03 0.00093 2e−206

Type 1 DM risk score − 0.04 0.0088 5e−06

Type 2 DM risk score 0.024 0.0089 0.007

Body mass index (kg/m2) 0.0031 0.0024 0.2
√
age onset × gender − 0.079 0.015 1e−07

√
age onset × duration − 0.0089 0.00059 2e−51

√
age onset × Type 1 score − 0.0087 0.0058 0.1

√
age onset × Type 2 score 0.0042 0.0059 0.5

√
age onset × BMI 0.0044 0.0017 0.008

Associations of age at onset and C-peptide with SNP
genotypes
Genome-wide associations of age at onset and C-peptide
levels with SNP genotypes are summarized in Manhattan
plots in which regions containing diabetes-associated
SNPs (based on those included in the genotypic scores)
are highlighted (Figs. 3 and 4). The regression models
for age at onset included sex as covariate, and regression
models for C-peptide levels included sex, age at onset,
duration and age at onset × duration. The only SNP asso-
ciations with age at onset and C-peptide for which the
p values were less than 10−7 were in the HLA and INS
gene regions. The reported association of the PTPN22
185T variant (rs2476601) with C-peptide persistence [22]

was confirmed (Table 4). Reported associations of SNPs
outside the HLA and INS regions with age at onset [23]
or associations of SNPs in the HLA region with C-peptide
but not age at onset [6] were not confirmed in this study
(Table 4). The SNP rs1983890 near the PFKFB3 gene, pre-
viously reported to be associated with latent autoimmune
diabetes of adulthood [24], was not associated with age at
onset or with detectable C-peptide secretion (Table 4).

Associations of age at onset and C-peptide with
locus-specific genotypic risk scores
In Fig. 5, the effects of locus-specific genotypic scores are
displayed by plotting the regression slope for C-peptide
(adjusted for gender, age of onset and duration) against

Fig. 3Manhattan plot of genome-wide association study of age at onset (vertical axis truncated at 15). Type 1 diabetes-associated regions in green
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Fig. 4Manhattan plot of genome-wide association study of C-peptide levels, adjusted for age at onset, duration and predicted age at onset given
genotype (vertical axis truncated at 15). Type 1 diabetes-associated regions in green

the regression slope for age at onset. The regression
coefficients and p values are given in Additional file 1:
Tables 5, 6, 7 and 8. The HLA residual score for type 1
diabetes, calculated by adjusting the HLA region-specific
polygenic score for HLA serotype score, represents the

residual contribution of the HLA region to risk of type 1
diabetes that is not explained by HLA serotype.
This plot shows that by far the strongest genetic effect

on age at onset is that of HLA serotype. Other type 1
diabetes-associated regions that contribute are the INS,

Fig. 5 Locus-specific genotypic scores for type 1 or type 2 diabetes: plot of univariate effects on log10 C-peptide (adjusted for age at onset and
duration) against univariate effect on square root age at onset. Effect sizes are the effect of a change of one standard deviation in each locus-specific
score
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Table 4 GWAS results for age at onset and for C-peptide adjusted for sex, age at onset and duration: associations with SNPs previously
reported

Chr SNP Position Alleles Freq Score age onset p value age onset Score C-peptide p value C-peptide

1 rs2476601 114377568 A/G 0.83 9.4 0.7 160.8 3e−04

6 rs72975913 128293932 A/C 0.85 − 36.9 0.1 − 16.9 0.7

10 rs1983890 6178614 T/C 0.66 − 28.9 0.4 − 32.4 0.6

6 rs9260151 29911030 T/C 0.91 − 39.1 0.04 − 100.6 0.003

6 rs1264813 29939900 T/C 0.91 96.6 3e−07 123.3 2e−04

6 rs61211515 30100975 C/CT 0.87 79.2 3e−04 107.3 0.005

6 rs3135002 32668439 A/C 0.96 − 124.2 6e−20 − 258.3 3e−28

1 rs559047 238753916 A/T 0.77 − 16.9 0.6 − 37 0.5

Sources for reported association: rs2476601 (C1858T variant in PTPN22) [22], rs72975913 [23], rs1983890 [24], all others [6]

IL21 and CTSH gene regions. Scores for type 2 diabetes
were not in general associated with age at onset.
For C-peptide persistence, the strongest effect was that

of the HLA score for type 2 diabetes. Several locus-
specific scores for type 2 diabetes, including JAZF1 and
TCF7L2, are associated with C-peptide persistence. For a
few loci, the effects on age at onset and the effects on C-
peptide levels appear to be discrepant in direction or size.
Thus, the IL21 score for type 1 diabetes was strongly asso-
ciated with early age at onset but not with low C-peptide
level. The KHL42 score for type 2 diabetes was associated
with late age at onset but not with high C-peptide lev-
els. The score for the CTSH gene region, in which SNP
genotypes were previously reported to be associated with
clinical remission at 1 year from diagnosis in children with
type 1 diabetes [25], was strongly associated with age at
onset but not with C-peptide persistence.
Of the five loci that were common to both types of dia-

betes, there were four—BMP8A, HLA region, CENPW,
ASCC2—for which scores for type 1 and type 2 diabetes
were positively correlated in the type 1 Bioresource imply-
ing that the same alleles or haplotypes are associated
with increased risk of both types of diabetes. For the
BCAR1/CTRB1/CTRB2 region, the scores were negatively
correlated (r = − 0.20), consistent with studies showing
that the G allele of the rs720877 SNP in this region is
associated with increased risk of type 1 diabetes but with
decreased risk of type 2 diabetes [14, 15, 26].

Discussion
Frequency of detectable C-peptide secretion
The high prevalence of detectable C-peptide in this cohort
is consistent withmost other recent studies [3, 4] that have
used highly sensitive assays. Of the 585 patients aged less
than 15 years at onset and with at least 35 years dura-
tion, 85% had no C-peptide detectable with this assay.
Although detectable C-peptide secretion is common, for
those diagnosed in childhood, however, our results do not
support the assertion that “the majority of patients with

long-duration Type 1 diabetes are insulin microsecretors”
[2]. Although we did not use a mixed meal to stimulate C-
peptide secretion, plasma glucose measured on the same
samples (dichotomized at 8 mmol/l) was not associated
with C-peptide level in a regression model. Compar-
isons of the prevalence of detectable C-peptide secretion
between studies are difficult to interpret because these
studies differ in distribution of age at onset, gender, crite-
ria for type 1 diabetes and detection limits of the assays
used.
If this cross-sectional population-based sample repre-

sents the natural history of C-peptide persistence in type
1 diabetes, we can infer that C-peptide falls rapidly within
the first 10 years in early-onset cases, but more slowly
in late-onset cases, continuing to decline more than ten
years after diagnosis. A similar pattern was reported in
a European multicentre study [5]. This is consistent with
cross-sectional results reported previously for individuals
diagnosed after 11 years of age [27]. An unexpected find-
ing was that in late-onset cases, C-peptide levels appear to
fall off more rapidly in women than in men.
The clinical picture labelled as latent autoimmune dia-

betes in adults [28, 29], in which islet antibodies are
present but insulin is not required during the first
6months after diagnosis [30, 31], may simply be one end
of a spectrum from classic juvenile-onset type 1 diabetes
to later-onset cases with slowly progressive loss of beta-
cell function [32, 33]. The absence of auto-antibodies
does not necessarily exclude autoimmune pathogenesis of
diabetes even in people with high C-peptide levels [34].
However, we have validated our classification of type 1 and
possible type 2 diabetes by comparing the mean genotypic
risk scores of these categories in the SDRNT1BIO cohort
with the distributions of those who can be reliably classi-
fied as type 1 or type 2 in the UK Biobank cohort. Further
confirmation that we have managed to exclude misdiag-
nosed cases of type 2 is that age at onset is not associated
with genotypic risk score for type 2 in those we have clas-
sified as type 1. A practical implication is that in late-onset
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cases presenting with a clinical picture that is compatible
with type 1 diabetes, autoantibody testing might be use-
ful in excluding cases of type 2 diabetes who will not need
long-term insulin therapy. We have noted that summary
GWAS results for type 1 and type 2 diabetes show at least
four risk loci where the same alleles are associated with
increased risk of both types, implying some overlap in
aetiologies.

Genetic associations with age at onset and C-peptide
persistence
Other studies of genetic associations with age at onset and
C-peptide persistence in type 1 diabetes have tested indi-
vidual SNPs for association as in a conventional GWAS
[6, 22, 23]. We have undertaken a GWAS but have
also taken a different approach, using publicly available
summary GWAS results to compute genotypic risk scores
for each diabetes-associated genomic region. Because the
prior hypothesis space is far smaller than it would be in
a conventional GWAS, this approach makes it possible
to detect effects that would be missed in a conventional
GWAS of individual SNPs.
As C-peptide persistence depends on age at onset, a

first step in understanding the genetic architecture of C-
peptide persistence is to study genetic effects on age at
onset. Others have reported [35] that average genetic risk
scores for type 1 diabetes are lower in late-onset than
in early-onset cases of type 1 diabetes. To estimate the
relative mixture proportions of type 1 and type 2 on the
assumption that the distribution of genotypic risk scores
in type 1 diabetes is independent of age at onset [36] is
likely to underestimate the proportion of type 1 cases. In
contrast to a recent meta-analysis of 15696 cases typed
with the ImmunoChip [23] which found strong evidence
for association with age at onset in only two genomic
regions—the HLA region and the PTPRK / THEMIS
region on 6q22.33—we find that several other risk loci for
type 1 diabetes are also associated with age at onset. The
strongest effect on age at onset of any region outside the
HLA region is the IL21 gene region, which has a relatively
small effect on risk of type 1diabetes itself.
Because C-peptide persistence is related to age at onset,

to detect specific genetic effects on C-peptide secre-
tion, it is necessary to adjust for age at onset. Although
the SNP heritability of residual C-peptide adjusted for
gender, age at onset and duration is 26%, genetic risk
scores for diabetes explain only an additional 1% of
variance in this adjusted phenotype and most of the
remaining genetic and environmental variance remains
unexplained. By adjusting the polygenic score for type 1
diabetes in the HLA region for HLA serotype at the HLA-
DRB1 and HLA-DQB1 loci, we were able to distinguish
the effects of serotype from the effects of other genes in
the HLA region. The strongest effects on age at onset (as

on type 1 diabetes itself ) are from HLA serotype, but for
C-peptide, the strongest effects are those of variants in
the HLA region that are independent of HLA serotype
and are associated with increased risk of type 1 and type
2 diabetes. To investigate further the effects of the HLA
region on C-peptide persistence that are distinct from the
effects of this region on risk of juvenile-onset diabetes,
it will be necessary to model the joint effects of HLA
genes in case-control comparisons combined with case-
only studies of C-peptide persistence. We note also that
some risk loci for type 2 diabetes are associated with C-
peptide persistence but not with age at onset: this implies
that they influence the clinical phenotype of late-onset
type 1 diabetes even though they do not influence the risk
of developing this condition.

Conclusions
Persistence of C-peptide secretion varies widely in people
clinically diagnosed as type 1 diabetes. Known risk loci for
diabetes account for only a small proportion of the genetic
effects on C-peptide persistence. C-peptide persistence is
influenced by variants in the HLA region that are different
from those determining risk of early-onset type 1 diabetes.
Further exploration of how genetic effects on C-peptide
persistence differ from the established genetic effects on
islet-cell autoimmunity may provide insights into path-
ways that could be targeted to limit or reverse the loss of
beta cell function in type 1 diabetes.
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