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Abstract

We describe the large strain implementation of an elasto-plastic model for structured soils into G-PFEM, a code developed for
geotechnical simulations using the Particle Finite Element Method. The constitutive model is appropriate for naturally structured
clays, cement-improved soils and soft rocks. Structure may result in brittle behavior even in contractive paths; as a result, localized
failure modes are expected in most applications. To avoid the pathological mesh-dependence that may accompany strain localiza-
tion, a nonlocal reformulation of the model is employed. The resulting constitutive model is incorporated into a numerical code by
means of a local explicit stress integration technique. To ensure computability this is hosted within a more general Implicit-Explicit
integration scheme (IMPLEX). The good performance of these techniques is illustrated by means of element tests and boundary
value problems.

Keywords: PFEM, structured soils, nonlocal elasto-plasticity, constitutive modeling

1. Introduction

Inspired by a large body of experimental evidence (Ler-
oueil and Vaughan, 1990) several elasto-plastic constitutive
models incorporating structure have been proposed (Gens and
Nova, 1993; Rouainia and Muir Wood, 2000; Liu and Carter,
2002). These models can represent the behavior of soft rocks
(e.g. Lagioia and Nova, 1995; Ciantia and di Prisco, 2016;
Ciantia et al., 2018), natural clays (e.g. Wheeler et al., 2003)
or artificially cemented soils (e.g. Rios et al., 2016). Struc-
ture enhances the brittleness of response along compression-
dominated paths. Adding this realistic feature to constitutive
descriptions is beneficial for more accurate predictions of struc-
tural response (Taiebat et al., 2010; Gonzalez et al., 2012; Ar-
royo et al., 2012; Yapage et al., 2014). Because of the relative
complexity of these models numerical solution is required for
practical applications. Unfortunately, the simulation of brittle
material responses is conductive to strain localization.

Strain localization poses two numerical challenges - mesh
dependency of the solution and computability of the solution
(Oliver et al., 2008)- that need to be addressed to develop re-
liable numerical algorithms. In the context of Finite Elements,
strain localization tends to take place along single element-wide
zones and the direction of the shear band is typically controlled
by the preferential alignment of the elements (Zienkiewicz
et al., 1995; Galavi and Schweiger, 2010). A numerical size ef-
fect also appears since, as the mesh is refined, the thickness of
the shear band decreases and the energy dissipated in the shear
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band tends to zero. As a consequence, the load-displacement
curves and structural responses are also mesh-dependent.

This pathological mesh-dependence is not exclusive of
elasto-plastic problems, appearing also in other constitutive
models that exhibit brittle or quasi-brittle behavior, e.g. damage
models (de Pouplana and Oñate, 2016; Jin and Arson, 2018a).
This has increased the interest on regularization techniques and
several, applicable across different constitutive models, have
been developed. These regularization techniques incorporate
a length scale to the constitutive law, which mitigates the mesh-
dependency of the problem by enforcing the width of the local-
ized region.

Within regularization techniques, the nonlocal integral type
solution has the advantage of not changing the field equa-
tions which facilitates numerical implementation (Bažant and
Jirásek, 2002; Lu et al., 2009; Galavi and Schweiger, 2010; Jin
and Arson, 2018a,b; de Pouplana and Oñate, 2016; Summers-
gill et al., 2017a; Goodarzi and Rouainia, 2017; Mánica et al.,
2018). In this approach chosen nonlocal variables are valuated
from spatially averages of field variables in a neighborhood, and
the constitutive models is updated by replacing a local variable
with its nonlocal counterpart. Consequently, the constitutive
response of a Gauss point is influenced by all the integration
points within a neighborhood, which size is determined with a
characteristic length.

Strain localization may also pose another numerical diffi-
culty when an implicit time-marching scheme is used for the
global problem: the numerical convergence rate may be se-
riously affected. In cases where strain softening appears in
the constitutive model, the global system of non-linear equa-
tions becomes highly sensitive to small changes. The stiff-
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ness matrix of the Newton-Raphson method may become so ill-
conditioned that no convergence might be achieved even if us-
ing very small time-steps (Alfano and Crisfield, 2001; Lorentz
and Badel, 2004; Oliver et al., 2008; Lu et al., 2009). Alterna-
tive ways to solve the nonlinear system of equations, namely
arc-length methods (Riks, 1979), are not always reliable and
may also fail to achieve convergence (Hellweg and Crisfield,
1998; Alfano and Crisfield, 2001).

To address these issues, Oliver et al. (2008) proposed a nu-
merical technique, the so-called IMPLEX, for the integration
of constitutive models that provides enhanced robustness and
computability with respect to usual methods. This scheme,
or variations of it, has been successfully applied to thermo-
mechanical problems (Rodrı́guez et al., 2016, 2017), single-
phase geomechanical problems with simple elasto-plastic con-
stitutive responses (Prazeres et al., 2016) and even the inte-
gration of gradient-enhanced damage models (Titscher et al.,
2019).

Little attention seems to have been paid to the numeri-
cal problems associated with strain localization in structure-
enhanced elasto-plastic models or to their generalization for
large strain problems. This may be related to an initial appli-
cation focus on the pre-failure small-strain range. However,
robust and accurate algorithms able to deal with the post-peak
range are necessary for a broad range of engineering applica-
tions. For instance, models at large strains are necessary to
simulate in situ test like the CPTu (Gens et al., 2016; Monforte
et al., 2018) or to understand the complex behavior of piles in-
stalled in chalk (Jardine et al., 2018).

This work aims to fill that gap, describing the procedures fol-
lowed to achieve a stable mesh-independent implementation of
an elasto-plastic structure-enhanced constitutive model into a
numerical finite element code for simulation of boundary value
problems involving large strains. In what follows the constitu-
tive framework employed is first described, including the algo-
rithm applied for large strain stress-point integration. Then we
describe how, to alleviate mesh dependency, that algorithm was
modified to incorporate nonlocal effects. We then introduce the
specific IMPLEX stress integration scheme developed to en-
sure computability in boundary value problems. The accuracy
and robustness of the numerical schemes are first illustrated in
a number of elementary-level laboratory tests. Finally, a set
of representative simulations, namely biaxial tests and the in-
dentation of a rigid footing into a poromechanical medium, are
presented to showcase the reliability of the numerical approach.

2. Constitutive equations

In this section first the constitutive framework in which the
model is formulated -large strain elasto-plasticity (Simo and
Hughes, 1998)- is briefly described. Afterwards, the constitu-
tive model for structured clays will be presented.

2.1. Constitutive framework at large strain

Objective stress transformation and frame invariance are key
requirements for any large strain constitutive framework, nec-

essary to avoid spurious stress variations under rigid body mo-
tions. Two different such frameworks are currently in use for
the formulation of large deformation elasto-plasticity (Simo,
1998; Simo and Hughes, 1998).

The first one is based on the use of hypoelastic rate models
and an additive decomposition of the spatial rate of deformation
tensor into an elastic and plastic part. These kind of schemes
are regarded as extension of usual small strains algorithms to
the large strain regime, since additional terms are added in or-
der to deal with the rigid body rotation and ensure the objec-
tivity of the resulting stress increment. Because of this, it is
believed that the use of such formulation is more appropriate
for problems involving large displacements and rotations but
small strains (Bathe, 2006).

In the second approach, deformation itself (and not a rate)
is decomposed multiplicatively into an elastic and plastic
part (Simo and Hughes, 1998). This approach is best suited to
problems involving large displacements and large deformations
and is the one adopted in this work.

The main difference with the small strain theory is the re-
placement of the additive decomposition of the infinitesimal
strain field by a multiplicative decomposition of the deforma-
tion gradient into elastic and plastic parts. To do so an interme-
diate configuration of irreversible (plastic) deformations is in-
troduced, relative to which the elastic response of the material
is characterized. Using the chain rule the deformation gradient,
F, is defined as:

F =
∂φφφ(X, t)
∂X

= Fe · Fp (1)

where φφφ(X, t) is the motion of the continuum body whereas Fe

and Fp are, respectively, the elastic and plastic deformation gra-
dients.

For ease of reference, the main governing equations for non-
associative plasticity within this framework are summarized in
Table 1(first column) (Simo and Meschke, 1993; Simo, 1998).
It is assumed that both the hyper-elastic and plastic responses
are isotropic; the hyperelastic model is formulated in terms of
the Hencky strain. There are a set of internal variables (strain-
like), β, whose temporal derivative is a function of the plastic
velocity gradient, lp; stress-like internal variables (z) may be
explicitly computed from the evolution of the strain-like ones.

2.2. Constitutive model for structured soils

The constitutive model for structured clayey materials pro-
posed in this work is built around the Modified Cam Clay
model. Therefore, the yield surface is defined simply as:

f (τττ, ps, pt) =

( q
M

)2
+ p? (p? − p?c ) (2)

where q =
√

3 J2 and J2 is the second invariant of the Kirchhoff

stress tensor τττ. M is the slope of the Critical state line in the
p′ − q plane and

p? = p′ + pt (3)

p?c = pt + ps + pm (4)
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Table 1: Basic relations of the elasto-plastic local and nonlocal models. If not redefined, the nonlocal model inherits the expression of the local model.

Local model Nonlocal model

Strain decomposition: F = Fe · Fp

Hyperelastic model: τττ =
∂w(εεεe)
∂εεεe

where εεεe =
ln

(
Fe · Fe T

)
2

Yield surface: f (τττ, z) ≤ 0 f (τττ, z̃) ≤ 0

Flow rule: lp = γ̇
∂G(τττ, z)
∂τττ

lp = γ̇
∂G(τττ, z̃)
∂τττ

Hardening law: β̇ = h(lp) z = z(β) β̇ = h(lp) z̃ = z(β̃)

Nonlocal relation: β̃ =

∫
Ω

w β dΩ∫
Ω

w dΩ

Kuhn-Tucker conditions: γ̇ ≥ 0 f ≤ 0 γ̇ f = 0

Consistency condition γ̇ ḟ = 0

Figure 1: Yield surface in the p − q plane for axisymmetric compression.

where p′ = tr(τττ)/3 is the first invariant of the Kirchhoff stress
tensor.

The shape of the yield locus in the triaxial plane and the plas-
tic variables ps, pt, pm and p?c are graphically illustrated in Fig-
ure 1. The variable ps acts as the preconsolidation stress of the
unstructured soil. In contrast, pt and pm account for the effects
of structure implying: (i) a non-zero tensile strength (pt > 0)
(Gens and Nova, 1993; Ciantia et al., 2015) and (ii) an increase
in the yield stress along radial loading paths, thus, pm corre-
sponds to such an increase in case of an isotropic compression
path.

The quantities pm and pt can be considered as two indepen-
dent hardening variables; however, they are usually assumed to
be related to each other by the simple proportional rule (Ciantia
and di Prisco, 2016):

pt = k pm (5)

The hardening variables evolve in terms of the volumet-
ric and distortional plastic flow (Tamagnini and Ciantia, 2015,
2016):

ṗs = ρs ps

tr (lp) + χs

√
2
3
‖dev (lp) ‖

 (6)

ṗt = ρt pt

|tr (lp) | + χt

√
2
3
‖dev (lp) ‖

 (7)

where ρt, χt, ρs, and χs are constitutive parameters and lp is the
spatial plastic velocity gradient, which may be also described
as (Simo, 1998):

lp = Fe · Ḟp · F−1 = l − le (8)

where l = ∇v(x, t) and le are, respectively, the total and elastic
velocity gradients whereas v(x, t) stands for the velocity of the
deformable body.

It is of interest for the later formulation of nonlocal effects
to obtain an explicit expression in terms of the plastic internal
variables of ps and pt by integrating in time Equations (6) and
(7). Note first that the trace of the plastic velocity gradient co-
incides with the temporal derivative of the plastic Hencky vol-
umetric strain, hence,

ε̇
p
v = tr(lp) (9)

and let us define,

α̇ = ‖dev (lp) ‖ ε̄
p
v =

∫ t

0
|tr(lp)| dt (10)

Then, the stress-like hardening parameters -Equations (6)
and (7)- might be explicitly computed from the plastic internal
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variables ε p
v , ε̄ p

v and α as:

ps = ps0 exp

ρs

ε p
v + χs

√
2
3
α

 (11)

pt = pt0 exp

ρt

ε̄ p
v + χt

√
2
3
α

 (12)

The elastic response is characterized by means of an hypere-
lastic model incorporating a tensile range (Houlsby, 1985; Tam-
agnini et al., 2002), which in this work it is formulated in terms
of the Hencky strain and the Kirchhoff stress tensor. Finally,
please note that the current formulation has been developed to
include non-associative plasticity, although in the current work
only results for the associative case are presented.

3. Explicit integration of the constitutive equation

3.1. Local integration
The evolution of state variables at Gauss points adapts an ex-

plicit stress integration technique proposed by Monforte et al.
(2015), which is now briefly summarized. Since an hypere-
lastic model is adopted the problem is framed as one of elas-
tic deformation evolution; once the elastic strain is known the
stress state is obtained just by evaluating the hyperelastic law.
In this regard, the elastic Left Cauchy Green tensor in the new
configuration, be

n+1 = Fe
n+1 ·

(
Fe

n+1

)T
, may be expressed, assum-

ing an exponential approximation of the variation of the plastic
deformation gradient (Simo, 1998) and employing an explicit
approach (forward Euler), as:

be
n+1 = Fn+1 · F−1

n · exp
(
−∆γ

∂G(τττ, z)
∂τττ

∣∣∣∣∣
n

)
· (13)

·be
n · exp

(
−∆γ

∂G(τττ, z)
∂τττ

∣∣∣∣∣
n

)T

· F−T
n · F

T
n+1

whereas the evolution of a generic strain-like hardening vari-
able, β, is:

βn+1 = βn + h (lp) = βn + ∆γ h
(
∂G(τττ, z)
∂τττ

∣∣∣∣∣
n

)
(14)

where the subscripts n + 1 and n stands for quantities evaluated
at configuration tn+1 and tn, respectively.

In the previous two expressions, Equations (13) and (14), all
the terms are known with the exception of the plastic multiplier
increment, ∆γ. This might be obtained as:

∆γ =

∂ f
∂τττ

: DDDe : ∇s∆u

H +
∂ f
∂τττ

: DDDe : ∂G
∂τττ

(15)

where H = −
∂ f
∂z ·

∂z
∂β
· h

(
∂G
∂τττ

)
is the plastic modulus, z and β

stand for the stress-like and strain-like, respectively, internal
variables (see Box 1) and ∇s∆u is the symmetric gradient of
the incremental displacements.

The adopted hyper-elastic model has been formulated in
terms of the elastic Hencky strain and the Kirchhoff stress.

Therefore, once the elastic Cauchy-Green tensor, Equa-
tion (13), has been calculated, the stress state is obtained by
first computing the elastic Hencky strain, εεεe = ln(be), and then
evaluating the hyper-elastic model.

Finally, to use the developed algorithm in the context of a Fi-
nite Element code with implicit integration of the global prob-
lem, an expression for the stiffness matrix is required; the Lie
derivative of the Kirchhoff stress tensor may be expressed as:

Lvτττ =

DDDe −
DDDe : ∂G

∂τττ
⊗

∂ f
∂τττ

: DDDe

H +
∂ f
∂τττ

: DDDe : ∂G
∂τττ

 : d (16)

where DDDe is the elastic stiffness matrix and d = ∇sv is the sym-
metric part of the velocity gradient.

In the case of purely elastic straining -null increment of the
plastic multiplier- Equations (13) and (16) reduce to the usual
large deformation elastic update equations:

be
n+1 = Fn+1 · F−1

n · b
e
n · F

−T
n · F

T
n+1 (17)

Lvτττ = DDDe : d (18)

Explicit stress integration techniques have several draw-
backs: (i) the resulting stress typically may not lay in the yield
surface, (ii) the accuracy of the technique is heavily influenced
by the magnitude of the strain increment and (iii) special tech-
niques are required when, in a single strain increment condi-
tions cross from elasticity into elasto-plasticity (Potts and Gens,
1985; Sloan et al., 2001). To overcome those drawbacks, the
update equations are solved by employing both a yield surface
drift correction algorithm (Potts and Gens, 1985) and an adap-
tive substepping algorithm (Sloan et al., 2001).

In the literature, typically, two different order Runge-Kutta
methods are used in the adaptive substepping algorithm (Sloan
et al., 2001; Lloret-Cabot et al., 2016); the difference between
both stress approximations is used to define an error measure,
which is used for adjusting the time step. As noted previously,
in this work the update equations have been developed only for
the forward Euler method (see Equation (13)). Then, each de-
formation increment is computed with two different temporal
discretizations: one using only one deformation increment and
the other using three deformation increments. The difference
between these two approximations is used as error measure in
the adaptive substepping algorithm.

3.2. Nonlocal reformulation

In numerical simulations where softening is encountered,
the solution typically exhibit a pathological mesh dependence,
leading to unrealistic results. This numerical pathology may
be mitigated by employing a nonlocal approach. This means
that the constitutive model is evaluated by utilizing one or more
nonlocal variables instead of their local counterpart. The ex-
pression of a nonlocal variable β̃ employing an isotropic inte-
gral type method is:

β̃(x) =

∫
Ω

w(x, ‖y − x‖) β(y) dΩ∫
Ω

w(x, ‖y − x‖) dΩ
(19)
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where w(x, χ) is the weighting function for point x controlling
the influence of its neighbors in terms of their relative distance
χ = ‖y − x‖.

This expression is typically numerically discretized, for point
i, as:

β̃(xi) =

∑
j

w(xi, χi j) β(x j)∑
j

w(xi, χi j)
(20)

where χi j = ‖xi − x j‖ is the distance between integration points
i and j.

Several expressions have been employed for the weight-
ing function w(x, χ): Gaussian distributions (de Pouplana and
Oñate, 2016), bell-shaped functions, which do not require a cut-
off (Jin and Arson, 2018a), and that proposed by Galavi and
Schweiger (2010).

The nonlocal formulation also depends on which variable or
variables are chosen to be nonlocal. In the literature, several
variables have been considered, such as strains, plastic strains,
the rate of the plastic multiplier or hardening variables, among
others (Bažant and Jirásek, 2002; Jirásek and Rolshoven, 2003).

As outlined in Table 1 (last column), in this work three
strain-like hardening parameters are treated as nonlocal vari-
ables, namely ε p

v , ε̄ p
v and α, defined in Equations (9) and (10).

Afterwards stress-like hardening variables (ps, pt and pm) are
directly computed by evaluating Equations (11) and (12). The
weighting function proposed by Galavi and Schweiger (2010) is
employed here as it has been found to outperform other weight-
ing functions in removing the mesh bias (Summersgill et al.,
2017a; Mánica et al., 2018). This weighing function may be
expressed:

w(x, χ) =
χ

lc
exp

− (
χ

lc

)2 (21)

where lc is the characteristic length introduced by the averaging
function. This function is equal to zero for χ = 0 and maxi-
mum for χ =

√
2 lc/2. Thus, values of the local variables at

a Gauss point do not influence its nonlocal counterpart; mean-
while, their influence is maximum for points located at a dis-
tance

√
2 lc/2.

When nonlocal models are used for regularization purposes
the characteristic length is usually conceived of as a numeri-
cal artifact to introduce a length scale to the constitutive be-
havior and to the solution (Summersgill et al., 2017b). How-
ever, even if the characteristic length does not necessarily reflect
univocally an intrinsic material length -the thickness of shear
bands observed experimentally, say- the selection of character-
istic length values should also take into account the constitu-
tive model and be calibrated alonside other parameters (Mánica
et al., 2018).

The availability of computational resources also play a
role in the definition of the characteristic length (Galavi and
Schweiger, 2010; Mánica et al., 2018), because a sufficient
number of neighbor Gauss points in the area where the weight-
ing function is significantly larger than zero are required to ob-
tain a reliable solution.

Algorithm 1 Pseudo-code for the numerical implementation of
the nonlocal problem using a time split approach.

n = 0
while n ∆t < Tend do

1-. Evaluate the nonlocal internal variables:
nε̃

p
v =

∫
w nε

p
v dΩ∫

w dΩ

n ˜̄ε p
v =

∫
w n ε̄

p
v dΩ∫

w dΩ

nα̃ =

∫
w nα dΩ∫

w dΩ

2-. Evaluate the stress-like variables:

n p̃s = ps0 exp
(
ρs

(
nε̃

p
v + χs

√
2
3 nα̃

))
n p̃t = pt0 exp

(
ρt

(
n ˜̄ε p

v + χt

√
2
3 nα̃

))
3-. Solve the governing equations with a suitable solver

for local elasto-plasticity. At each Gauss point, the constitu-
tive model is evaluated as:[

n+1σσσ, n+1ε
p
v , n+1ε̄

p
v , n+1α

]
= ...

StressIntegration
(
Fn, Fn+1, nε̃

p
v , n ˜̄ε p

v , nα̃, n p̃s, n p̃t

)
4-. Once convergence is achieved, update the local vari-

ables:
n+1ε

p
v = nε

p
v +

(
n+1ε

p
v −n ε̃

p
v

)
n+1ε̄

p
v = nε̄

p
v +

(
n+1ε̄

p
v −n ˜̄ε p

v

)
n+1α = nα +

(
n+1α −n α̃

)
n = n + 1

end while

3.3. Numerical implementation of nonlocal effects
The numerical implementation of most nonlocal elasto-

plastic models might be somewhat cumbersome, since, strictly
speaking, the inclusion of the nonlocal strategy couples the con-
stitutive response of all the Gauss points of the entire finite ele-
ment mesh. As such, stress integration would no longer involve
an isolated strain-driven routine to be solved at each integration
point but instead would become a very large system of coupled
equations that couples the constitutive behavior of all the inte-
gration points of the mesh.

To save computational resources, it is customary to solve
nonlocal elasto-plastic problems by employing a time split ap-
proach (Rolshoven, 2003; Mánica et al., 2018). This approach
is based on a temporal relocalization during stress point inte-
gration. Variables are computed considering nonlocal effects
once at the beginning of each loading increment but, during the
solution of the governing equations, they evolve independently
of its neighbors. By doing so stress integration becomes again a
small, independent problem at each Gauss point, preserving the
usual strain-driven form and requiring minimal modifications
to an already existing code for the local problem.

Algorithm 1 presents the pseudo-code developing such ap-
proach for the constitutive model employed in this work. Once
the nonlocal variables are evaluated by geometrical averaging
of their local counterpart, nonlocal stress-like hardening param-
eters are explicitly evaluated from the internal variables, Equa-
tions (11) and (12). Then, the governing equations are solved
using a suitable solver for the local problem, but (at each Gauss
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point) employing the nonlocal variables in the stress integration
model. After equilibrium is reached, local variables are updated
with their increment during that solution step. This process is
repeated for each loading or displacement increment.

4. IMPLEX integration

The convergence of the Newton-Raphson procedure of the
global problem depends, for instance, on the time step, but,
most importantly, on the spectral properties of the resulting tan-
gent matrix (Oliver et al., 2008). In problems that involve a
large amount of softening, the convergence of the global prob-
lem may be challenging because the tangent matrix becomes
singular or ill-conditioned at certain stages of the simulation.
This problem may be aggravated by the use of a nonlocal plas-
tic model, as it may increase the number of negative eigenvalues
of the stiffness matrix with respect to its local counterpart (Lu
et al., 2009). Therefore, very small time-steps and a large num-
ber of iterations may be required to attain convergence of the
global problem (if possible).

Oliver et al. (2008) presented an integration scheme (IM-
PLEX integration) for non-linear constitutive models whose
aim is to provide additional computability and robustness and
reduce the computational cost in the analysis of Solid Mechan-
ics problems. The algorithm may be summarized as a two
step solver with a prediction or extrapolation step and a cor-
rection step. In the case of elasto-plastic problems, the first step
(extrapolation step) consists on computing the boundary value
problem using an extrapolated value of the increment of the
plastic multiplier; that is, the magnitude of plastic strains are
assumed beforehand. In the second step (correction step) the
constitutive equations are correctly evaluated at each integra-
tion point using the displacement field obtained in the extrap-
olation step; the resulting increment of the plastic multiplier is
used in the next extrapolation step.

An important property of the IMPLEX technique is that,
for a set of constitutive models, the global problem becomes
step-linear: that is, the iterative solving process converges in
a unique step (Oliver et al., 2008; Sánchez et al., 2008). For
the rest of constitutive models or in cases where the govern-
ing equations are formulated using the concept of large strains,
the number of iterations required to converge the global prob-
lem drastically decrease with respect to usual algorithms. This
benefit, due to the extrapolative nature of the technique, comes
with a price: each IMPLEX iteration introduces some error to
the solution that depends on the size of the time step (Titscher
et al., 2019).

In the original proposal of the method, the equations for
the evaluation of the constitutive response in the extrapolation
step (with an assumed increment of the plastic multiplier) and
the correction step are discretized employing an implicit ap-
proach (Oliver et al., 2008; Titscher et al., 2019). This is not the
only possibility, for instance, Prazeres et al. (2016) employed an
explicit approach for the extrapolation step.

In this work, both evaluations of the constitutive model use
explicit approaches. In the extrapolation step, the model is inte-
grated explicitly in a single step. In the correction step, stresses

are evaluated using the previously introduced explicit stress in-
tegration technique, including adaptive substepping and yield
surface drift correction.

4.1. Extrapolation step
In the extrapolation step, the governing equations are solved

by evaluating the constitutive model with a plastic multiplier
known beforehand, ∆γ; they are thus independent of the dis-
placements. Following the Modified IMPLEX method devel-
oped by Prazeres et al. (2016), an explicit equation is employed
for the extrapolation step. The elastic deformation in the new
configuration -the IMPLEX counterpart of Equation (13)- is
then expressed as:

be
n+1 = Fn+1 · F−1

n · exp
(
−∆γ

∂G(τττ, z)
∂τττ

∣∣∣∣∣
n

)
· (22)

·be
n · exp

(
−∆γ

∂G(τττ, z)
∂τττ

∣∣∣∣∣
n

)T

· F−T
n · F

T
n+1

and the internal hardening variables:

βn+1 = βn + ∆γ h
(
∂G(τττ, z)
∂τττ

∣∣∣∣∣
n

)
(23)

It is important to emphasize that in the previous two expres-
sions all the quantities are known with the exception of the de-
formation gradient at the new configuration, Fn+1, that is re-
trieved solving by the global problem.

During the extrapolation step the linearized material stiffness
matrix becomes:

Lvτττ = DDDe : d (24)

that is, it coincides with the elastic stiffness matrix since in
Equation (22) the terms related to plastic flow are assumed be-
forehand (i.e, the plastic flow is assumed beforehand and inde-
pendent of the displacement field). Therefore, by employing
this modified IMPLEX technique the global problem has the
same formal structure than an elastic problem.

4.2. Correction step
During the correction step, the constitutive model is eval-

uated (at each integration point) employing the usual elasto-
plastic constitutive model, where the increment of strain that is
integrated is that obtained in the extrapolation step. The incre-
ment of plastic multiplier that will be used in the subsequent
extrapolation step (∆γ) is that obtained in this correction phase.

5. Application to single-element tests

The performance of the explicit and the IMPLEX integra-
tion algorithms is first tested by simulating a series of labora-
tory tests (oedoemeter and drained triaxial tests). To assess the
convergence rate of the numerical solution, these problems are
computed with several step sizes. Due to the complexity of the
constitutive model, no closed-form solution exists for the evolu-
tion of stress and strains during loading; therefore, a reference
solution is obtained using a very large number of steps (one
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Table 2: Constitutive parameters adopted in this work

Section E ν M k ps pt ρs ρt χs χt

(kPa) (kPa) (kPa)

5: Elementary tests 5 · 104 0.2 1.4 5 1200 320 16.6 -30.0 0 0.5
6.2: Biaxial tests 5 · 104 0.2 1.4 5 500 50 16.6 -15.0 0 0.3
6.3: Footing indentation 5 · 104 0.2 1.4 5 500 100 16.6 -15.0 0 0.5

million steps). For stresses, the relative error may be defined
as:

Errorσ =

√
‖σσσ −σσσ?‖2 + ‖z − z?‖2

‖σσσ?‖2 + ‖z?‖2
(25)

where z = [ps, pt, p?c ] are the stress-like hardening variables
and σσσ? stand for values obtained from the reference solution.

Meanwhile, for the Hencky strain, εεε = ln
(
F · FT

)
, the error

is measured as:

Errorε =
‖εεε − εεε?‖

‖εεε?‖
(26)

where, again, εεε? is the reference Hencky strain and εεε is the
solution obtained with a finite number of steps.

The constitutive parameters of all the simulations of this sec-
tion are given in Table 2. Although this parameter set has not
been calibrated to represent any specific material, the values in
Table 2 are within the range employed in previous work (Ar-
royo et al., 2005; Tamagnini and Ciantia, 2016) to simulate the
behavior of calcarenites, which are highly porous soft carbon-
ate rocks. Finally, the initial stress state is characterized by
p′ = 120 kPa and q = 0 kPa.

5.1. Oedometer test

The first example is an oedometric test. It corresponds to a
strain-driven problem; thus, only the explicit stress integration
scheme is considered, since the IMPLEX technique is only rele-
vant in cases where a non-linear system of equations needs to be
solved. The total vertical strain increment is applied in a num-
ber of equal strain increments, ranging from 6 to 106, which is
taken as the reference solution.

Figure 2 characterizes the stress path of the problem. During
the elastic regime, the trajectory of the stress path is governed
by the Poisson’s ratio of the soil. Once the stress strain reaches
the yield surface the soil suffers from severe softening due to
destructuration; at the same time, the preconsolidation pressure
of the reconstituted soil, ps, increases. Once the effect of the
structure has been erased (pt = 0), the soil hardens. During
the whole problem, the soil experience compressive volumetric
strains (Figure 2(b)).

Figure 3 presents the convergence analysis; the slope of this
curve is close to 1; this is in line with the expected performance
of a first-order accurate algorithm, such as the forward Euler
employed in this work (Tamagnini and Ciantia, 2016; Sołowski
and Sloan, 2014). A plateau is observed for the cases computed
between 20 and 100 steps; in this region the error is in the order

of 10−5 and it is related to the tolerance imposed in the substep-
ping algorithm. For cases computed with less than 20 steps, the
convergence curve exhibits again a linear tendency and the er-
ror increases again, more steeply. In this region the substepping
scheme computes several increments with the imposed mini-
mal increment size without converging, thus adding error to the
solution.

5.2. Drained triaxial test
The second example corresponds to a drained triaxial test.

This test requires mixed control conditions (i.e. imposed strain
and stress increments) and, thus, a nonlinear system of equa-
tions has to be solved each loading step, which is done follow-
ing a similar rational than that proposed by Bardet and Chou-
cair (1991). During the solution of this nonlinear system the
IMPLEX technique may be also applied instead of the pre-
established explicit integration algorithm. This allows an ini-
tial assessment of this technique in this simple single-element
setting.

Figure 4(a) presents the stress path and also the evolution of
the stress-like plastic variables. The solid black curve repre-
sents the initial yield surface and the dotted black curve the ini-
tial reference surface (i.e. the yield surface of the unstructured
soil). Once the soil reaches the initial yield surface, its size
gradually decreases due to the combined effects of destructura-
tion and dilatancy, until it reaches a critical state. Brittleness in
mechanical response is showcased in Figure 4(b) depicting the
evolution of the deviatoric stress, q = σ1 − σ3, in terms of the
axial Hencky strain. First, deviatoric stresses increase in elas-
tic regime until the soil yields, when deviatoric stresses sharply
reduce.

When using the explicit stress integration scheme, the results
show little influence of the number of time-steps used to com-
pute the solution (see Figure 4). This can be also seen in the
convergence analysis reported in Figure 5, where the slope of
the convergence curve in terms of stresses and strains is slightly
larger than 1, in good agreement with the expected convergence
rate of a first-order accurate algorithm.

Larger errors are generally obtained with the application of
the IMPLEX technique, particularly at low step numbers. At
this stage it would therefore seem then that the application of
the IMPLEX technique is superfluous or even counterproduc-
tive. However, this is just because the most important bene-
fit derived from the IMPLEX technique -a tangent matrix with
positive eigenvalues- does only enter into play when addressing
boundary value problems, as will be shown in the next section.
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Figure 2: Strain-controlled oedometer test. Stress trajectory in the p− q plane,
(a), and εv − p plane, (b). Results are labeled by the number of increments used
to compute the solution; the reference solution is obtained with one million
steps
. In (a), the initial yield surface is depicted in black whereas the
final one in green.

6. Application to boundary value problems

A number of two-dimensional analyses are reported to assess
the performance of the developed numerical algorithms along-
side of the constitutive model. The first set of numerical simu-
lations correspond to biaxial tests, which are used to showcase
the mesh-independence properties of the nonlocal approach and
to compare both stress integration schemes in a boundary value
problem. Secondly, in order to demonstrate the ability of de-
veloped algorithms to handle problems involving large defor-
mations, the insertion of a rigid footing is presented. Whilst for
the biaxial compression tests the material is considered to be
dry, the rigid footing simulations will consider transient cou-
pled hydro-mechanical conditions.

6.1. G-PFEM
This work uses the numerical code G-PFEM (Geotechnical

Particle Finite Element Method), which has been specifically
developed for the analysis of large strain contact problems in
geomechanics (Monforte et al., 2017, 2018). G-PFEM is im-
plemented into Kratos Multiphysics framework (Dadvand et al.,

10 0 10 2 10 4 10 6
10 -10

10 -8

10 -6

10 -4

Figure 3: Oedometer test. Evolution of the relative error of stresses, Errorσ, in
terms of the number of steps.

2010), an object-oriented multi-disciplinary open-access plat-
form for numerical analysis tool development.

The Particle Finite Element method (PFEM) is a Lagrangian
numerical technique suitable for large deformation problems;
PFEM combines the standard FEM with an efficient remeshing
algorithm (Oñate et al., 2004). A particularity of PFEM is that
only low order elements are used -linear triangle in 2D and lin-
ear tetrahedrons in 3D- and the governing equations are written
in an Updated Lagrangian approach. The method has been ap-
plied to a variety of multi-physics problems, ranging from its
original proposal to fluid-structure interaction (Idelsohn et al.,
2004; Oñate et al., 2008; Franci et al., 2015) to geomechanics
(Larese et al., 2008; Carbonell et al., 2013; Zhang et al., 2014;
Monforte et al., 2017, 2018).

A typical solution algorithm involves the following
steps (Oñate et al., 2004):

1. Discretize the domain with a Finite Element mesh,
2. Identify the external boundaries and apply the boundary

conditions,
3. Compute some time-steps of the problem,
4. Construct a new mesh and interpolate state variables be-

tween the previous mesh and the new one with suitable
algorithms,

5. Go back to step 2 and repeat the solution process for the
next time-steps.

An additional feature of the original algorithm is the resource
to h-adaptive techniques and mesh smoothing technique (see
Rodrı́guez et al., 2016, 2017, for further details). This feature is
relevant here, since h-adaptive techniques refine the discretiza-
tion in areas where localization takes place. This is particularly
convenient for the nonlocal approach, because for it to be ef-
fective nonlocal variables should be computed with a sufficient
number of neighboring Gauss points (Galavi and Schweiger,
2010). The use of nonlocal approaches in conjunction with
h-adaptive techniques has been repeatedly advocated by vari-
ous researchers using damage models (Rodrı́guez-Ferran and
Huerta, 2000; Rodrı́guez-Ferran et al., 2004; de Pouplana and

8



0 1000 2000 3000
0

500

1000

1500

2000

2500

(a)

0 0.05 0.1 0.15 0.2 0.25
0

500

1000

1500

2000

2500

(b)

Figure 4: Drained triaxial test. Stress trajectory in the p − q plane, (a), and
εz − q plane. Results are labeled by the number of increments used to compute
the solution; the reference solution is obtained with one million steps. In (a),
the initial yield surface is depicted in solid black whereas the final one in green.

Oñate, 2016). Indeed, since the failure pattern is generally
not known a priori, nonlocal approaches that rely on a fixed
mesh are penalized by the need to lay out a very fine discretiza-
tion (Mánica et al., 2018; Summersgill et al., 2017a).

In this work, the refinement criterion used in the h-adaptive
routines is the product of the accumulated plastic shear strain,
α, and the area of the element. Only elements that reach a crit-
ical value are refined. Elements might be continuously refined
until a specified minimum element size, hc, is reached. This
minimum element size, hc, is defined as a fraction of the charac-
teristic length of the nonlocal model, lc. By using this approach,
the region of strain softening is automatically identified and the
element resolution is increased so that a sufficient number of
Gauss points exists to accurately evaluate nonlocal variables.

As already mentioned, only linear triangular elements are
used in PFEM. Therefore, in the case of the hydromechani-
cal problem, displacements and water pressure are discretized
with the same shape functions, which is known to cause in-
stabilities in the undrained limit (Pastor et al., 1999; Monforte
et al., 2019); thus, the mass conservation equation of the bypha-
sic medium is stabilized with the Polynomial Projection tech-

10 0 10 2 10 4 10 6

10 -5

10 0

Figure 5: Drained triaxial test. Evolution of the relative error, Errorσ and
Errorε , in terms of the number of steps for the Explicit and the IMPLEX inte-
gration techniques.

nique (Bochev et al., 2006; Monforte et al., 2017, 2018).

6.2. Biaxial tests

In this set of numerical simulations, unstructured triangular
meshes are employed with all the nodes equally distributed.
The occurrence of strain localization may lead to distortion
of elements and local concentration of nodes in the same re-
gion. The PFEM algorithms are applied to keep the quality of
the mesh but without sharply varying the number of elements
and nodes in the discretization; thus, without using yet the h-
adaptive part of the algorithms.

The meshes employed are illustrated in Figure 6 in the ini-
tial and final configurations. The width of the domain is equal
to B = 0.1 m whereas the height is H = 1.75 B = 0.175
m. At the top boundary, a prescribed downwards vertical dis-
placement equal to 0.1H (a tenth of the original height) is im-
posed whereas horizontal displacements are null. Meanwhile,
null displacements in all directions are imposed on the bottom
boundary. This simulates a biaxial cell with perfectly rough
platens, to develop the non-homogeneous stress field that will
trigger strain localization. The vertical displacement at the top
is applied in a number of equal increments, different in magni-
tude for different simulations. The soil constitutive parameters
are listed in Table 2 (second row), and the characteristic length
of the nonlocal approach is set to lc = 0.15 B = 0.015 m.

6.2.1. Robustness and efficiency of stress integration proce-
dures

Prior to analyze the mesh dependence of the solution, a base
case is computed with Mesh A, composed by 602 nodes and
1100 triangular elements (Figure 6). Results obtained using the
nonlocal formulation, using both the IMPLEX and the explicit
stress integration approach, are presented in Figure 7. The same
problem has been computed repeatedly, employing a different
number of equal displacement increments. Results are reported
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Figure 6: Biaxial test. Mesh A, (a) and (c), and Mesh F, (b) and (d), at the
beginning and end of the problem; see Table 4.

in terms of nominal engineering strain, given by the ratio of in-
cremental displacement imposed at the top boundary, ∆h, nor-
malized by the initial height of the specimen, H.

The nonlocal algorithm does not degrade the step-
independence of the explicit stress integration results (see Fig-
ure 7(a)). However, the drawback is also clear: most simula-
tions could not continue until the specified final displacement
due to numerical divergence in the global problem. For in-
stance, in the case with the lowest value of increments, the so-
lution diverges at the fourth time step, which is indicated with a
circle in the load-displacement curve presented in Figure 7(a)).
This is partly a consequence of the high non-linearity of the
global problem but also of the appearance of negative eigenval-
ues in the system of nonlinear equations to be solved.

On the contrary, the robustness of the IMPLEX technique is
demonstrated, since all the cases converged until the final dis-
placement was attained, even for the smallest number of dis-
placement increments. This is a consequence of the extrapola-
tive nature of the technique: the stiffness matrix has the same
formal structure than an elastic problem, thus the tangent matrix
is always symmetric and positive definite.

Due to the different nature of the local stiffness matrix, the
number of iterations to solve the global problem is also dif-
ferent. By using the IMPLEX technique less than 4 iterations
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Figure 7: Biaxial test. Evolution of the vertical pressure imposed at the
top plate in terms of the axial deformation for different stress integration ap-
proaches: explicit approach, (a), and Implex scheme, (b). The lack of conver-
gence on some simulations is indicated with a red circle.

are required to achieve the desired tolerance whereas more than
10 are needed in the explicit approach. Consequently, the IM-
PLEX technique also reduces the computational cost. This is
shown in Table 3, where the computational costs of the two
techniques are compared for cases in which the prescribed final
displacement was attained. As shown, the IMPLEX scheme is
more than four times faster than explicit stress integration.

Again, using the IMPLEX technique with a very low number
of loading increments may introduce errors in the solution (see
Figure 7). However, once a sufficient number of steps is em-
ployed, the influence of the time discretization error is largely
mitigated.

6.2.2. Mesh independence
In this section mesh independence is evaluated considering

examples for which the number of steps is such that the Implex
based stress integration is equivalent to the explicit technique.
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Table 3: Biaxial test. Computational cost using the explicit integration scheme,
texpl, and the Implex technique, timplex, for different number of steps, nsteps.
Mesh A. Cases with spontaneous numerical break-down are marked with a ”-”.

∆h/H nsteps texpl (s) timplex (s) Speed-up

1.25 · 10−5 8000 - 1811.1 -
2.5 · 10−5 4000 - 962.6 -
5 · 10−5 2000 2432.8 531.18 4.58
1 · 10−4 1000 1543.4 327.13 4.72
2 · 10−4 500 - 182.79 -
4 · 10−4 250 - 105.42 -

To this end, the biaxial test of the previous section is computed
with several Finite Element meshes, whose metrics are defined
in Table 4; the finest and coarsest discretizations are also shown
in Figure 6 at the beginning and end of the simulation.

Figure 8 depicts the results of the biaxial tests obtained by
either employing the nonlocal approach or not. It is remark-
able how the nonlocal approach is capable of alleviating the
pathological mesh-dependency of softening in the Finite El-
ement methods. Numerical results still show a small mesh-
dependency for the nonlocal approach (Figure 8), of a similar
relative magnitude to that observed in previous works (Sum-
mersgill et al., 2017a,b).

The load-displacement curves of both local and nonlocal
computations indicate that, in most instances, the rate of soft-
ening is controlled by element size. However, the coarser mesh
(Mesh A) does not seem to agree with this tendency. This fact
may be attributed to slight differences in the preferential mesh
alignment between meshes: Pastor and Quecedo (1995) demon-
strated that mesh alignment has a paramount importance on the
failure mechanism in simulations involving low order finite el-
ements and softening, such as in this work. An in-depth ex-
amination of the complex interplay between remeshing, prefer-
ential alignment and nonlocal model evaluation algorithms is a
worthy topic for further research, but out of the scope of this
work.

Figure 9 presents the (local) accumulated plastic deviatoric
strain, α, (defined in Equation (10)) and the vertical component
of the Green-Lagrange strain tensor, computed using the nonlo-
cal approach for all the Finite Element discretizations. All the
simulations present the same failure mechanism and the res-
olution of the plastic variables increases with the number of
elements of the discretization. Figure 9 clearly shows that, in-
dependently from the finite element mesh used, the thickness of
the shear band is very similar to the length scale parameter, lc
(see Figures 6 and 9); this result is consistent with previous re-
search on nonlocal implementations of other elasto-plastic con-
stitutive models (Galavi and Schweiger, 2010; Mánica et al.,
2018).

6.3. Indentation of a rigid strip footing

The last example selected to showcase the proposed numeri-
cal approach simulates the indentation of a rigid, strip footing in
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Figure 8: Biaxial test. Mesh sensitivity. Evolution of the vertical pressure im-
posed at the top plate in terms of the axial deformation for different Finite Ele-
ment meshes using a nonlocal approach, (a), and local elasto-plasticity model,
(b).

a porous soft rock. In this example a fully coupled hydromech-
nical analysis is performed and permeability is varied by six
orders of magnitude in the simulations, to cover the full spec-
trum of behavior from drained to undrained conditions. The
geometry of the problem may be seen in Figure 10, which re-
ports the initial Finite Element mesh at the end of the problem.
Vertical symmetry is applied to reduce the problem size. The
domain expands 10 B in the horizontal direction and 7.5 B in the
vertical direction, being B the width of the footing that is equal
to 2m. Both displacements are restricted in the lower boundary,
whereas null horizontal displacements are imposed in the ver-
tical boundaries; null excess water pressure is imposed at the
free surface. The footing is considered fully rigid and its inter-
face with the soil completely rough (i.e. perfect adherence). A
footing indentation rate of B/2 per day is assumed.

All the simulations of this subsection are obtained using
the IMPLEX technique with the nonlocal elasto-plastic model.
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Figure 9: Biaxial test. On top, accumulated plastic deviatoric strain, α, (defined on Equation (10)). On the bottom, vertical component of the Green-Lagrange strain
tensor. The number of elements increases from left to right, see Table 4.

Table 4: Initial number of nodes and elements, in terms of the element charac-
teristic size he, of the meshes employed in the mesh-dependency analysis.

Mesh Number of nodes Number of elements
A 602 1100
B 1037 2474
C 2289 4394
D 3302 6382
E 5122 9968
F 20320 40088

Also all the remeshing capabilities of G-PFEM are enabled.
Whilst in the previous sections, the PFEM algorithms to in-
sert or eliminate nodes were just used to maintain the qual-
ity of the Finite Element mesh additional h-adaptive meshing
routines are here employed (Carbonell et al., 2013; Rodrı́guez
et al., 2016). Therefore, new nodes are inserted in areas were
plastic flow is large; in particular the value of is employed as a
mesh-refinement criterion.

The constitutive parameters are reported in Table 2 (last row),
and assumed homogeneous along the whole domain. In this
set of simulations soil self weight is also considered; the initial
stress profile is constructed with K0 = 0.5. The characteristic
length of the nonlocal model is set as lc = 0.025B.

Figure 11 presents the footing penetration curves for differ-
ent values of permeability. All the simulations show similar
overall behaviour: a stiff initial elastic response until a fairly
marked structural yielding takes place at around 1350 kPa. The

Figure 10: Rigid, strip footing. Initial finite element mesh.

post yield behaviour, on the other hand, is highly dependent on
permeability. For the two lowest permeability values the ap-
plied footing pressure does not increase post-yield, but rather
decreases, with a sudden collapse at a footing indentation close
to 0.14 B breaking a plastic plateau. For the two larger per-
meabilities the footing shows structural hardening and, despite
some jumps, the applied pressure increases during penetration.

These structural responses are partly clarified in Figure 12
where several field variables (pore water pressure, the bond-
ing related plastic internal variable and the accumulated plas-
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Figure 11: Rigid, strip footing. Curve of the footing resistance in terms of the
normalized indentation for different soil permeabilities, expressed in meters per
day.

tic shear strain, α), are plotted at the final simulation stage -
corresponding to a footing indentation of 0.5 B. For instance,
the pore pressure field shows that, for the larger permeability
the footing penetration is practically drained. For lower perme-
ability a significant bulb of positive excess pore pressure ap-
pears beneath the footing, reducing in size but increasing in
pressure as the material becomes more impermeable. For the
lower permeabilities the overpressure bulb is accompanied by
bands of underpressure that go towards the surface.

The accumulated plastic shear strain plots confirm that the
underpresurized bands correspond to shear bands, where dila-
tion is taking place. For the impermeable cases the localized
shear bands define a shearing mechanism, reminiscent of clas-
sical bearing capacity. It is interesting to note that, in the case
with the lowest permeability, the drop of resistance in the load-
displacement curve of the footing (Figure 11) that appears at
0.14 B corresponds to the moment where the full failure mech-
anism is formed and along these shear bands all the resistance
due to the soil structure is lost (pt ≈ 0).

In the two cases with highest permeabilities, a punching-type
failure mechanism appears. In the plastic bulb beneath the foot-
ing the material structure is completely degraded (the variable
pt is much lower than the initial one), whereas all the rest of
the soil mass remains in intact conditions; qualitatively, this in
accordance with physical evidences for circular footings in soft
highly porous rocks (Ciantia et al., 2018; Ciantia, 2018)

The remeshing routines employed maintain a coarse mesh in
most areas in elastic regime but decrease the element size in
zones with plastic shearing. The remeshing is clearly visible in
Figure 13, where the finite element mesh at the end of penetra-
tion is represented.

7. Conclusions

A large range of fine grained natural and artificial geomate-
rials exhibit more brittleness in compression than observed in
the reconstituted analogues that are often used to model them
in the laboratory and that inspire reference constitutive mod-
els, such as Cam-clay. Brittleness is conducive to localization
and, in turn, localization leads to numerical problems. Thus,
it is necessary to ensure numerical robustness to extend simu-
lation capabilities into the post-yield range for structured soils
and soft rocks.

This work has presented a numerical strategy in which sev-
eral techniques are combined towards that goal. The Particle Fi-
nite Element Method (PFEM) has the advantage of facilitating
the link to well-established FEM techniques, like mixed field
formulations or stabilization procedures for low-order elements
(Monforte et al., 2017, 2019)). Here this advantage has been
exploited again to incorporate:

• a constitutive model which is representative of a wider and
successful family of structure-enhanced constitutive mod-
els -with applications to natural clays, cemented soils and
rocks- reformulated for large strains, something that, to the
best of our knowledge, had not been attempted before for
this constitutive family.

• a nonlocal integral type reformulation of the model to
avoid the pathological mesh-dependence that may accom-
pany strain localization.

• an IMPLEX integration scheme, which provides extra ro-
bustness that is required when addressing localized failure.

All this numerical technology has been applied to a num-
ber of numerical simulations involving both element tests and
boundary value problems. It has been found that:

• The nonlocal approach is capable of alleviating mesh-
dependency intrinsically appearing when softening con-
stitutive models are used within a Finite Element method
framework. Indeed, the thickness of the shear band is sim-
ilar to the characteristic length of the averaging function
proposed by Galavi and Schweiger (2010) and is indepen-
dent of the element size.

• When compared to the reference explicit stress integra-
tion scheme, the IMPLEX technique provides extra com-
putability capacities and a reduction of computational
cost; an speed-up higher than 4.5 has been obtained.

• Nonlocal integration is also facilitated by the inbuilt mesh
adaptivity of PFEM, diminishing the computational cost.

The good performance demonstrated by the numerical sim-
ulations reported in this work provides additional confidence
to explore further the presented approach for the simulation
of more challenging problems; for instance problems involving
contact, such as cone penetration or pile installation.
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Figure 12: Indentation of rigid, strip footing. Water pressure, plastic variable that accounts for the available bonding resistance, pt , and accumulated deviatoric
plastic strain, α, (in logarithmic scale). From left to right: k = 10−7 m/d, k = 5 · 10−4 m/d, k = 5 · 10−3 m/d and k = 10−1 m/d.
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