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We develop a slender-body theory for plasmonic
resonance of slender metallic nanoparticles, focusing
on a general class of axisymmetric geometries with
locally paraboloidal tips. We adopt a modal approach
where first one solves the plasmonic eigenvalue
problem, a geometric spectral problem which governs
the surface-plasmon modes of the particle; then, the
latter modes are used, in conjunction with spectral-
decomposition, to analyse localized-surface-plasmon
resonance in the quasi-static limit. We show that
the permittivity eigenvalues of the axisymmetric
modes are strongly singular in the slenderness
parameter, implying widely tunable, high-quality-
factor, resonances in the near-infrared regime. For
that family of modes, we use matched asymptotics
to derive an effective eigenvalue problem, a singular-
nonlocal Sturm-Liouville problem, where the lumped
one-dimensional eigenfunctions represent axial voltage
profiles (or charge line densities). We solve the
effective eigenvalue problem in closed form for
a prolate spheroid and numerically, by expanding
the eigenfunctions in Legendre polynomials, for
arbitrarily shaped particles. We apply the theory to
plane-wave illumination in order to elucidate the
excitation of multiple resonances in the case of non-
spheroidal particles.

1. Introduction

Metallic nanoparticles exhibit extraordinary optical
properties when illuminated by light in the visible regime
[1]. Specifically, when the incident radiation resonantly
excites localized-surface plasmons, namely, collective
oscillations of electron-surface charge and electric field,
absorption, scattering and the magnitude of the electric
near-field are enhanced. This phenomenon, known as
localized-surface-plasmon resonance, holds promise for
a wide range of applications including bio-sensing,
targeted heating, nonlinear optics, metamaterials and
microfluidics.
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Extreme nanometallic geometries are commonly used in plasmonic applications in order
to tune resonance frequencies and generate giant field enhancements [2]. Accordingly, in
recent years the plasmonic properties of such structures have been extensively investigated. A
range of analytical methods, including separation of variables, transformation optics, matched
asymptotic expansions and layer-potential techniques, have been used to study idealised singular
geometries, involving sharp edges and touching particles [3-8], as well as nearly singular, or
multiple-scale, geometries, with a particular emphasis on nearly touching particles and particles
in close proximity to a substrate [9-19].

Our interest here is in another important family of multiple-scale geometries: slender particles
in three dimensions. Owing to their unique optical properties, slender metallic nanoparticles have
been widely employed as plasmonic rulers [20], orientation sensors [21], nano-antennas [22],
bio-sensors [23, 24] and nanoscale heating devices [25]. The use of high-aspect-ratio particles
in nanoplasmonics is primarily based on the excitation of low-order longitudinal modes; the
latter are characterized by long wavelengths (roughly proportional to aspect ratio) and surface-
charge densities that vary mainly along the long scale of the geometry. Such longitudinal modes
efficiently couple to both light and near-field sources, enabling low-frequency (near-infrared),
high-quality-factor, optical resonances [26-32].

In comparison to configurations of nearly touching particles, high-aspect-ratio particles
have received far less theoretical attention; their optical properties have typically been studied
numerically, or based on classical analytical solutions for ellipsoids [33, 34]. The latter solutions
are exact in the quasi-static limit but cumbersome and highly specialized; for example, ellipsoids
support only a single longitudinal mode that is dipolar, i.e., able to efficiently couple with incident
light. Accordingly, and following recent singular-perturbation analyses of nearly touching
particles [14-17], we propose to asymptotically study the plasmonic properties of generically
shaped elongated particles in the high-aspect-ratio, or slender-body, limit. Our goal is not just to
develop a convenient calculation scheme in this limit, but also to gain physical insight into the
dependence upon shape and aspect ratio in particular.

To this end, we shall build on slender-body theory (SBT), a classical asymptotic methodology
developed mainly in the context of Stokes [35-39] and potential [40-43] flows; SBT has
had immense impact on multiple scientific and engineering fields including aerodynamics,
hydrodynamics, electrostatics and transport phenomena and remains particularly influential in
the field of biological microhydrodynamics [44]. SBT is based on the fact that in the slender-
body limit the particle geometry degenerates to a zero-thickness curve; the disturbance caused
by the particle is accordingly considered to arise from singularities distributed along that curve.
The minimal appropriate distribution of singularities, for a given order of approximation, is
determined by asymptotically matching the above outer limit, valid on the scale of the particle,
with an inner expansion valid at distances from the centreline scaling with particle thickness
[37, 38, 45]. The simplification is that in the inner limit the particle is locally approximated by
an infinite cylinder whereas in the outer limit the solution satisfies matching requirements along
the particle’s centreline.

Our goal is to develop and demonstrate the efficacy of a slender body theory for localized-
surface-plasmon resonance. To this end, it will be convenient to adopt a modal approach based
on spectral decomposition. In particular, in the quasi-static limit pertinent to subwavelength
metallic nanoparticles in the visible range [33, 46], the established modal approach entails solving
the so-called plasmonic eigenvalue problem, a purely geometric spectral problem governing the
permittivity eigenvalues and corresponding eigenfunctions of the particle [34, 47-58]. Once the
latter problem is solved, the frequency response of an arbitrary lossy metallic nanostructure,
for arbitrary external forcing, is explicitly provided in terms of the geometry’s eigenvalues
and eigenfunctions. At near-resonance frequencies often a single mode dominates the spectral
expansion; the modal approach is thus not only efficient but also offers unique insight by
providing a clear linkage between physical resonances and mathematical eigenfunctions.
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In light of the above, the key step towards developing our SBT for plasmonic resonance
will be to asymptotically solve the plasmonic eigenvalue problem, with the slenderness of
the shape providing the single small parameter. For the sake of simplicity, we focus here on
axisymmetric particles, in which case the longitudinal modes are the lower-order axisymmetric
ones. In particular, we consider a general class of axisymmetric geometries for which the thickness
profile varies on a single scale (the long scale of the particle) and the tips are locally paraboloidal.
Non-axisymmetric modes and geometries with blunt tips are both briefly addressed though their
detailed analysis is left for future work, along with other extensions to more general geometries
and physical models.

It is useful to mention a distinction commonly made between local and nonlocal SBT. Local
SBT are much simpler but typically provide only a crude approximation, with a relative error
scaling inversely with the logarithm of the slenderness parameter. In contrast, nonlocal SBT
typically provide an accurate approximation, algebraic in the slenderness parameter; the penalty
is that a nonlocal integral operator enters the formulation. In the context of Stokes flows, for
example, local and nonlocal SBT physically differ in whether hydrodynamic interactions between
different segments of the body are accounted for. As it turns out, the plasmonic eigenvalue
problem is nonlocal even at the level of a logarithmic approximation, owing to the appearance of a
differential operator relating charge and voltage. In our analysis we aim to derive an algebraically
accurate SBT.

The paper is organized as follows. In §2 we formulate the general problem of scattering
from a metallic nanoparticle and discuss its spectral solution in terms of the eigen-solutions
of the plasmonic eigenvalue problem. In §3 we study the axisymmetric modes in the slender-
body limit, arriving at an equivalent one-dimensional eigenvalue problem. In §4 we find closed
form solutions to the effective eigenvalue problem in the case of a prolate spheroid and develop
a semi-analytical scheme to efficiently compute solutions in the case of an arbitrary smooth
body of revolution; the non-axisymmetric modes are briefly discussed in §5. In §6 we use the
spectral solution together with the asymptotic eigenvalues and eigenfunctions to study plane-
wave illumination for both spheroids and non-spheroids. We conclude in §7 with a discussion of
possible applications, generalizations and extensions to our theory.

2. Problem formulation

(a) Quasi-static scattering problem

Consider the scattering problem wherein a metallic nanoparticle surrounded by a homogeneous
dielectric medium is subjected to plane-wave illumination and perhaps also a distribution of
near-field sources. We assume the quasi-static limit and work at constant angular frequency w,
adopting the usual language of phasors. Thus, the electric potential p(x) satisfies

V- (V) = EOLWV .J, 2.1)

where the relative permittivity e(x; w) is a piecewise constant function of the position vector x,
equal to the complex relative permittivity e.(w) inside the inclusion and the positive relative
permittivity €, in the background medium; furthermore, ¢q is the vacuum permittivity and J(x)
is the prescribed current-source density, which is assumed to vanish inside the particle. The
near-field problem is closed by the far-field condition

pr~—Ex-x+0(1l) as |x|— o0, (2.2)

where Eo is the amplitude of the incident plane wave and we specify the error as o(1) in order
to eliminate a physically immaterial additive freedom in the potential.

We note that (2.1) corresponds to the long-wavelength limit of Maxwell’s equations, whereas
(2.2) arises from matching the scattered field with outward-propagating solutions of Maxwell’s
equations on the large scale of the wavelength [46].
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(b) The plasmonic eigenvalue problem

The plasmonic eigenvalue problem consists of finding those values (eigenvalues) of e./¢;, for
which there exist non-trivial homogeneous solutions to (2.1)—(2.2) with both J(x) and Eso set
to zero. It is well known that the eigenvalues are scale invariant, negative-real and for smooth
shapes discretely distributed with an accumulation point at —1. We denote the eigenvalues by
&™), where the index n counts multiplicities. Without loss of generality, we shall always choose
the corresponding eigenfunctions <p(") (x) to be real valued, dimensionless and to attenuate at
large distances. We shall also choose the eigenfunctions so as to satisfy the orthogonality relation

JV@(”) V™AV =0 Vn#£m, 2.3)

where the integral is taken over the interior volume of the particle. Any two eigenfunctions
corresponding to different eigenvalues necessarily satisfy (2.3) [52]; if there are degenerate
eigenvalues then the set of eigenfunctions can still be chosen so as to satisfy (2.3).

(c) Modal solution to the scattering problem

We return to the scattering problem formulated in §§2(a), assuming that the plasmonic eigenvalue
problem described in §§2(b) has been solved for the prescribed shape of the particle. An explicit
modal solution to the scattering problem is then given as [34, 47, 54-56]

ec/ep — 1 IVL,O(Z) . ch(”) dVv (n)

o0
_ @
p(x) =0 (x)+ D e £ [V v av

n=0

(%), (2.4)

where (! (x) is the solution to the electric potential in the absence of the particle and the volume
integrals are taken over the interior of the particle.

Starting from the modal solution (2.4), many important optical quantities can be calculated,
e.g., optical cross sections, field enhancements and the local density of states [34, 55, 59]. Ignoring
a possible dependence of the incident potential (*) (x) upon frequency, both the overlap integral
in the numerator and the normalization integral in the denominator are frequency independent.
The frequency response of the nanoparticle thus enters solely through the metal’s complex
permittivity ec(w); the latter is available empirically for given metals [60] but for the sake of
illustration it is useful to also consider the Drude model

2.5)

wherein wy, is the plasma frequency (typically in the ultraviolet range) and +y is a loss parameter.
Note that Re(ec(w)) < 0 for w below approximately wp.

An important feature of the modal solution is that it suggests that the nth mode may become
resonantly enhanced for frequencies such that ec(w)/e, =& (") Since the eigenvalues are real,
whereas e.(w) is complex, such resonant enhancements are always bounded. Intuitively, a weakly
damped resonance due to excitation of the nth mode is only possible for sufficiently weak losses
such that Im(ec(w) /) /€™ < 1 for Re(ec(w) /) ~ £™); note that for negative-large permittivity
eigenvalues, corresponding to low frequencies [cf. (2.5)], this condition does not actually demand
small Im(ec(w)). The occurrence of resonances and their sharpness also depend upon the overlap
of the excited modes with the incident field and interference effects; the latter are especially
important in the dense part of the spectrum (€ () ~ 1), corresponding to frequencies w = wp.

(d) Axisymmetric particles

We henceforth consider the particle geometry to be a smooth body of revolution of length 2a. As
shown in Fig. 1, we introduce cylindrical coordinates (ar, az, f) and write the particle’s boundary
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Figure 1. Dimensionless schematic of the axisymmetric particle geometry. Our interest is in slender particles (h < 1).

as
r=hf(z) for —1<z<1, (2.6)

where h is a dimensionless slenderness parameter and f(z) >0 is a thickness function that is
independent of h. We assume that the tips of the particle are locally paraboloidal, so that

1/2

f(z)~kx(zF1) as z— =1, (2.7)

where k4 are two positive constants.
Consider the plasmonic eigenvalue problem for the above family of geometries. Given the
axial symmetry, we write the eigenvalues and eigenpotentials in the form

cos(mb)

g(n,:l:m)’ (p(n,:l:m) (X) _ w(n,m) (T, Z) { , (2.8)

sin(m#)

where instead of a single index n we use (n, £m), where m =0, 1,2, ... is the azimuthal number,
n now enumerating the modes for fixed m and the sign + indicating the cos(m#) and sin(m#@)
solution, respectively. According to our convention of working with real-valued eigen-potentials,
the reduced potentials 1/)("7’”) are also real valued. In what follows, when there is no risk
of confusion we shall omit the superscript (n,m) and adopt a convention where 1) and
respectively represent the reduced potential in the interior and exterior of the particle.

We can now formulate a dimensionless eigenvalue problem for fixed m. It follows from (2.1),
with J set to zero, that the reduced potentials ¢ and 9 satisfy Laplace’s equations

2.7 n 27 2
O  19% O ng=0, (2.9a)

or?2 " ror 922 r
Py 10y 0% m?
-Z¥ = 2.9b
oz Vror T oz r2w 0. (2.9)
respectively in the interior and exterior of the particle; furthermore, at the particle boundary we
have continuity

V=1 (2.10)
and displacement continuity
90 dfO0N _ 0%, df 0%
& <8r hdz 82') T oor hdz 9z’ @11)

where £ is the permittivity eigenvalue. The eigenvalue problem is closed by the attenuation
condition

v—0 as r’+22 o0, (2.12)

which follows from (2.2) with Es set to zero.
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(e) Slender-body limit

Our goal is to study the plasmonic properties of high-aspect-ratio particles for which the
slenderness parameter h is small. The first step is to obtain asymptotic solutions to the
dimensionless plasmonic eigenvalue problem (2.9)-(2.12) in the limit 2~ — 0. The asymptotic
analysis in the axisymmetric case m = 0 turns out to be inherently different from that in the non-
axisymmetric case m # 0. We shall therefore consider these two cases separately, focusing on the
former, which corresponds to the longitudinal modes discussed in the introduction. The second
step is to use the asymptotic eigen-solutions in order to approximate the modal solution (2.4) for
small h.

In our analysis of the eigenvalue problem, we will employ the method of matched asymptotic
expansions [40, 45], separately analysing an inner region close to the particle’s symmetry axis
and an outer region that describes the potential on the scale of the particle; we will also need to
consider additional asymptotic regions close to the particle tips.

A common feature of slender-body theory is that the asymptotic expansions include
logarithms, alongside algebraic powers, of the slenderness parameter h. Unless where explicitly
stated otherwise, we adopt the notion of collecting together terms that are only logarithmically
separated from each other so as to ensure a relative error that is algebraic in & [38, 40, 61].

3. Axisymmetric modes

(@) Inner limit and singular eigenvalue scaling

Consider first the axisymmetric case m =0. On the cross-section scale, the particle is locally
approximated by an infinite circular cylinder. To take advantage of this, we consider the inner
limit: h — 0 with the inner coordinates

p=r/h, ze(-1,1) (3.1)

fixed. Laplace’s equation (2.9) accordingly becomes

10 [ o 0%
9 (p%) + n? ang =0 for p<f(2), (3.20)
10 (8 o2

Similarly, (2.10) and (2.11) provide the boundary conditions
Y=1 at p=f(2) (3.3)

and ~ -
& (871/’ ,thaj) _% ,hQQ%

op 8z 0z ) 0Op 0z 0z at p=f(2), (3.4)

respectively. There is a slight abuse of notation here as we are now considering ¢ and ¢ as
functions of the inner coordinates.

Since % and ¢} are determined only up to a multiplicative constant, we may assume without
loss of generality that they are O(1) in the inner region. This, together with the continuity
condition (3.3) suggests the expansions

Y(p,z;h) ~o(p,z;h) +--- as h—0, (3.5q)
’lZ(p,Z,h)NQZJ()(p,Z,h)+h2’lZ2(p,Z,h)+ as hi}Ov (35b)

where it is to be understood that the i dependence of the functions on the right hand side is
at most logarithmic. The need to consider the algebraic correction in (3.5b) will soon become
apparent.
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The eigenvalue £ appearing in (3.4) is a key unknown and its scaling with & is determined as
part of the problem. To this end, consider the leading-order balance of (3.24):

10 ( 81/;0)
-— | p—=— ) =0. (3.6)
pOp \" Op
Integrating with respect to p and requiring vy to be bounded shows that the latter function is
independent of p. We accordingly write

Yo(p, z; h) =v(z; h), (3.7)

where v(z; h) represents the cross-sectionally uniform voltage along the particle axis. With (3.5)

and (3.7), the displacement boundary condition (3.4) implies that the eigenvalue possesses the

singular asymptotic expansion

a(h)
h2

where « is a reduced eigenvalue which depends at most logarithmically upon k. Thus we see that

En~— +--- as h—0, (3.8)

in the slender-body limit the axisymmetric modes vary mainly with z, rather than radially, and
correspond to large-negative permittivity eigenvalues.
Using (3.8), the displacement condition (3.4) gives

O _ _, (002
67__&(

_ A dv

o dzdz> at p=f(2). (3.9)

Because of the singular scaling of £, this leading balance involves the algebraic correction ba.
From (3.2a) we find that the latter satisfies

10 [ 0o d?v

= p== — =0 f . 1
0 9p (p 8p>+dz2 0 for p<f(z) (3.10)
Multiplication by p, followed by integration from p =0 to p = f(z) and enforcing boundedness
gives the derivative appearing in (3.9) as

Oy o d*v _
P 242 at p= f(2). (3.11)
Consider now the leading-order balance of (3.2b):
10 8’!/)0)
—=— | p—=—)=0. 3.12
p Op (p op (3.12)

Integration of (3.12) and using the leading-order continuity condition

Yo=v at p=f(2), (3.13)
which follows from (3.3) and (3.7), yields

Yo,z h) = v(z;h) + A(z; 1) In (3.14)

P

f(z)’
where A(z; h) is an integration function. Substituting (3.11) and (3.14) into (3.9), we find a relation
between A(z; h) and the other two unknowns v(z; h) and a(h):

=M d (o d
A(z; h) = 5 ds (f (%) dzv(z,h)) . (3.15)
(b) Outer limit and asymptotic matching

The inner potential (3.14) grows logarithmically and therefore does not directly satisfy the far-field
attenuation condition (2.12). This growth is resolved by asymptotic matching with the outer limit:

h — 0 with r fixed. In the outer limit the particle degenerates to the finite line segment —1 < z < 1
along the symmetry axis.

H
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In particular, the logarithmic growth of the inner potential suggests the outer expansion

P(r,z;h) ~Po(r,z;h) +--+ as h—0, (3.16)
where L
)
Wo(r, 25 h) = 1 L —rzqf{g L = (3.17)

is the potential due to monopole sources distributed along the degenerate line segment with
charge density per unit length g(z; k). For the purpose of matching with the inner region, we
note that for —1 < z < 1 we have (see, e.g., [45, 62, 63])

n2\/1—z2
r

o(r,250) ~ 2

Y

1 . .
+$L de—kO(rzlnr) as r—0. (3.18)

Using (3.18), it is straightforward to match the inner potential (3.14) with the outer potential
(3.17) (1-1 Van Dyke matching [40]). We thereby obtain the relations

A(z;h) = —L;h), (3.19)
, . _aqlzh), 2vVT=2% 1 (Y q(Gh) —q(zh)
v(z;h) — A(z; h) In f(2) = o In 3 + = J—1 Wd(. (3.190)

(c) Effective eigenvalue problem

Substituting (3.15) into (3.194) and (3.19b) yields a coupled system of equations for the voltage
v(z; h) and charge line-density ¢(z; h):

q(z;h) + ﬂ'a(h)diz (fz(z)%v(z; h)) =0, (3.20m)
oy alzh) 2VT—22 1 g(¢Gh) —a(zh)

The differential equation (3.204), which is essentially Gauss’s law, relates the longitudinal
variation of the cross-sectional electric-field flux to the charge. The integral equation (3.20b)
is a nonlocal capacitance relation between the local voltage and the charge distribution along
the particle axis. Together with appropriate boundary conditions at z==+1, (3.20) constitute
an effective eigenvalue problem for the reduced eigenvalues «(h) and one-dimensional
eigenfunctions v(z; h) (or ¢(z; h)).

To determine the appropriate boundary conditions at z= =1 it is necessary to consider
additional asymptotic regions close to the tips. In the appendix we identify the scalings of these
tip regions and construct asymptotic approximations for the potential there that match with both
the inner and outer regions. Besides extending the asymptotic description of the eigenfunctions to
the tips, the analysis in the appendix shows that the eigenfunctions v (and hence g) are regular at
z = %£1. These regularity conditions, which are consistent with the degeneracy of the differential
operator in (3.20a) as z — %1 [cf. (2.7)], appear to close the effective eigenvalue problem.

We note that integration of (3.20a) in conjunction with the regularity of v at the tips yields

1
J q(z;h) dz =0, (3.21)
-1

which shows that, as expected, the net polarization charge of the particle vanishes. Thus the
charge accumulation in the tip regions is negligible.

(d) Logarithmic approximation

We derived the effective eigenvalue problem by collecting together logarithmically separated
asymptotic terms so as to ensure an algebraic relative error. As a consequence, the effective
problem remains dependent upon h through the logarithmic factor in (3.20b). While our focus will
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be on solving the effective problem exactly, it is illuminating to first briefly consider a perturbative
expansion in inverse logarithmic powers.
Indeed, inspection of (3.20) readily suggests the expansions

a(h)~G—— +0 (;) (3.22)
lnE In "
and
()~ 52 +0 [ 1), gz~ 26+ 0 [ — ), (3.23)
In 7 In 7 In”® &
where the leading-order eigenfunction 9(z) satisfies
d (,2, .d, 2, _
= (f (z)av(z)> + gv(z) =0 (3.24)

in conjunction with regularity at z = =+1. In light of the assumed behaviour of f(z) at the tips
[cf. (2.7)], the above problem for & and ¥(z) constitutes a singular Sturm-Liouville problem [64].
We note that the “full” effective eigenvalue problem (3.20) is an example of a nonlocal-singular
Sturm-Liouville problem.

In the particular case where the particle is a prolate spheroid, f(z) = v/1 — 22 and hence (3.24)
coincides with Legendre’s differential equation. The eigenfunctions are then clearly the Legendre
polynomials [65] with eigenvalues

2

5(n) —
“ “n(n+1)’

n=12,... (3.25)

In the next section we shall show that for a prolate spheroid the effective eigenvalue problem
(3.20) can actually be solved exactly, in closed form, without the need to expand in inverse
logarithmic powers. Building on the latter solution, we shall also develop a scheme for solving
(3.20) for arbitrarily shaped particles.

4. Exact solutions to the effective eigenvalue problem

(a) Prolate spheroid

In this section we aim to solve the effective eigenvalue problem exactly, that is, without expanding
the eigenvalues and eigenfunctions in inverse logarithmic powers. We first consider the case of a
prolate spheroid. Thus, substituting f(z) = v'1 — 22 into (3.20) gives

q(z;h) + 71'046% {(1 — z2) dizv(z; h)] =0, (4.1a)

. 1 . .
U(Z; h) _ Q(Zv h) n 2 1 J ) Q(Cv h) — Q(zv h) dC (41b)

I¢ — 2]

The solution in this case is based on the remarkable coincidence that the Legendre polynomials
Py (z) are eigenfunctions of both the differential operator appearing in (4.1a), and the nonlocal
operator appearing in (4.1b). Indeed, on the one hand we have Legendre’s identity [65]
d d

— {(1 - z2) aPn(z)] =—n(n+1)Pu(z), n=12,..., 4.2)

while, on the other hand, we have

Jl Pa(¢) = Pu(2)
-1

1
d¢ =—2P, Z n=1,2,..., 43
T <z>kglk n (43)
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an identity which appears frequently in the literature on slender-body theory [62, 63, 66]. Using
the above two identities, we readily find the eigenvalues as

(n) 1y 1 2
a'(h) = - 4.4
= e D e/ - S /) 9
and their corresponding eigenfunctions (up to a multiplicative constant) as
q(") (z;h) = Pu(z2), U(")(z; h)= P (2) n=12,.... (4.5)

n(n+ Dral® (h)’

Fig. 2 compares the predictions of slender-body theory and the exact eigenvalues obtained
using separation of variables in spheroidal coordinates (see, for example, [34]). For fixed mode,
the approximations are clearly asymptotic to the exact values in the limit ~ — 0. For fixed h,
however, the approximation deteriorates with increasing mode number; this will be discussed
in §7. Fig. 2 also shows the eigenvalues for several non-axisymmetric modes (see section §5).

(b) Arbitrary body of revolution

Consider now an arbitrary thickness profile f(z) that is smooth and satisfies the end conditions
(2.7). For f(z) # fs(z), where fs(z)= (1 — 22)1/ 2 is the thickness profile of a prolate spheroid,
the differential operator in (3.204) is no longer diagonalized by the Legendre Polynomials.
Nevertheless, the regularity boundary conditions and (4.3) suggest expanding the eigenfunctions
in Legendre Polynomials:

a(z:h) =Y ai(h)Pi(2), o(zh) =) u(h)Pi(2), (4.6)
=0 =0

m #0

100

L | L L L
-1 0
10 h 10
Figure 2. First few permittivity eigenvalues of a prolate spheroid: asymptotic (dashed lines) vs. exact values (solid

lines). For m = 0 the asymptotic predictions are provided by (3.8) and (4.4); for m # 0 the eigenvalues approach the
accumulation permittivity value —1 as h — 0 (see §5).
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where gy = 0 because of (3.21). Substituting (4.6) into (3.20), and using (2.7), orthogonality of the
Legendre polynomials and integration by parts yields the algebraic system of equations

oo 1
g — (1 + Drav = Sra(2l + 1) ka APedPy b2 g2y o193 (47a)
2 = _1 dz dz
l 0 1
(2 o t), 2 I
u=gs <ln 5 > k) q + = 2 qk J_1 PP In 7 dz, 1=0,1,2,... (4.7D)

In practice, expansions (4.6) are truncated whereby the system of equations (4.7) becomes a
generalized matrix-eigenvalue problem. The latter problem is easily solved numerically for a
prescribed shape function. Note that the solution procedure does not involve the zeroth equation
in (4.7b), which is used a posteriori to determine vy.

Clearly, for f(z) = fs(z) we recover the analytically solvable case of a prolate spheroid. To
illustrate the solution of (4.7) we show in Fig. 3 the first three voltage eigenfunctions of a spheroid
against those of a non-spheroidal shape lacking fore-aft symmetry.

spheroid
— [ —
—— /
asymmetric

Figure 3. First three asymptotic eigenfunctions of a prolate spheroid f(z) = (1 — 22)1/2 (solid lines) and an asymmetric
shape f(z) = (1 — 22)1/2(1 + 2/3) (dashed lines) for h = 0.07; the corresponding approximations for the permittivity
eigenvalues are respectively —& = {86.75, 36.72,22.39} and {93.91, 39.97, 24.24}.
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5. Non-axisymmetric modes

Consider next the non-axisymmetric modes (m # 0). The formulation of the inner problem is
similar to that in §§2(a), only that (3.2) are generalized to [cf. (2.90) and (3.1)]

19 (99 m? 0%
pdp (”87) TV TG =0 for p<f2), (5.10)
10 (o) m? 2020
pdp (%7) YT G =0 for p>f(2). (5.1b)

The reduced potentials 1) and 1) are expanded as in (3.5). At leading order, (5.1a) gives

10 [ 9 m? -
o (p 9 ) e Yo=0 for p< f(z). (5.2)
Solving (5.2) in conjunction with boundedness at p = 0 yields

Yo(p, z;h) = C(z;h)p™, (5.3)

where C(z;h) remains to be determined. Given the dependence of vy upon p [cf. (3.7)], the
displacement continuity condition (3.4) suggests an O(1), rather than an asymptotically large,
permittivity eigenvalue. Accordingly, for m # 0 we pose the eigenvalue expansion

E(h)~&(h)+--- as h—0. (5.4)

The problem governing the external potential 19 is obtained from the leading-order balances
of (5.1b), (3.3) and (3.4):

o [ o 2
Lo (h5e) - Trw=o for > (), (5:50)
Yo=10 at p=f(2), (5.5b)
5088—1/;0:% at p=f(2), (5.5¢)

together with matching with the outer region as p — oco. Solutions of (5.5a) either grow or decay
algebraically with p; since the asymptotic order of the outer potential cannot be larger than that
of the inner potential, matching implies the condition

Yo —0 as p—oo. (5.6)
Solving (5.5a) together with the continuity condtion (5.5b) [cf. (5.3)] yields
Yo(p,z;h) =C(z;h)p~ ™. (5.7)
Substitution of (5.3) and (5.7) into the displacement condition (5.5¢c) then gives
Eo=-1. (5.8)

Thus, the eigenvalues corresponding to non-axisymmetric modes tend to the accumulation
point of the plasmonic spectrum as h — 0. This is consistent with the fact that, for fixed z, the
leading-order eigenfunctions (5.3) and (5.7) are identical to the planar eigenfunctions of an infinite
circular cylinder, all of which correspond to the eigenvalue —1.

It is noticeable that we did not need to determine C'(z; h) in order to obtain &y. To find C'(z; k),
we would need to proceed to one higher order in the inner analysis and match the inner and
outer regions. It is clear from (5.7) that the leading-order outer potential would involve a line
distribution of dipoles, for m = 1, quadrupoles for m =2, etc. Such an analysis would complete
the description of the non-axisymmetric modes and yield the first correction in the eigenvalue
expansion (5.4).
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Figure 4. (a) Angle-averaged absorption cross section divided by particle volume for slender gold particles in vacuum.
Exact solution for a prolate spheroid [33] (solid line); slender-body asymptotics (§6) for a prolate spheroid (dash-dotted
line) and the asymmetric shape from Fig. 3 (dashed line). Parameters: h = 0.07, €, = 1 and for €. (w) we use the Drude
model (2.5) with wy, = 1.96 - 1016 (rad/sec) and v = 9.05 - 103 (rad/sec).

6. lllustration: plane-wave illumination

In this section we aim to illustrate the use of the asymptotic eigenvalues and eigenfunctions
developed in §3 and §4 to study localized-surface-plasmon resonance. We focus on the scenario
where an electromagnetic plane wave is incident on an axisymmetric metallic nanoparticle
surrounded by vacuum; then the total potential ¢ (x) is obtained from the spectral solution (2.4) in
terms of the eigenvalues and eigenfunctions of the geometry, with go(i) (x)=—Es - xand ¢, = 1.

Of particular interest are the optical cross-sections. In the quasi-static limit, those can be
extracted from the far-field expansion of ¢(x),

x
ap(x)NEoo-(fx+M-W+~-) as |x|— oo, (6.1)

where M is a polarization tensor. For instance, assuming randomly oriented particles, the angle-
averaged absorption cross section is given by [33]

27
(Coe) = 23T (Tr(M), (62)
where A = 27c/w, c being the speed of light in vacuum, is the wavelength of the incoming plane
wave and Tr(M) denotes the trace of M.
Consider first the contributions of the axisymmetric modes to M. To this end, we inspect the
far-field behaviour of the asymptotic eigenpotentials found in §3; starting from the outer solution
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(3.17), and using (3.21), we find

1
(”’O)N;J' MW (& h)de as r?+ 22— oo, 6.3
@ T2 1 2 L (& h) dg (6.3)
Using this relation, we can evaluate the spectral solution (2.4) in the far field and compare the
result with (6.1) in order to extract an asymptotic approximation for the polarization tensor; in
doing so, the overlap and normalisation integrals in (2.4) are asymptotically evaluated using
(3.5D), (3.7), (3.20a) and integration by parts. We thereby find

M~é.e. Y M™ as h—o, (6.4)
where )
1 (n)
M(")/a?’ _ ec(w) —1 (f—1 zq dz) 2 ©5)
_g(n0 n ’
celw) €00 oy 1 (a0 )P g,

represents the contribution of the nth longitudinal mode to the polarization tensor.
In (6.5), we have [cf. (3.8)]
g0) —a(")(h)/hQ +oee (6.6)

where the reduced eigenvalue o™ is calculated as discussed in §4. From (6.6), it is clear that the
longitudinal resonances of a slender particle occur when the real part of the metal permittivity
scales as —el, = O(1/h?). In this low-frequency regime [cf. (2.5)], the imaginary part of the metal
permittivity is usually large; nevertheless, as long as ¢/, < 1/h?, (6.5) still predicts weakly damped
resonances. We note that in the (unrealistic) case that €, is small compared to the first algebraic
correction in (6.6) then the latter correction becomes important in (6.5) and needs to be considered.

In deriving (6.4) we ignored the contributions of the non-axisymmetric (transverse) modes.
These contributions can be roughly estimated based on the asymptotic structure obtained in
§5 together with (2.4). In particular, out interest is in the low-frequency regime e. = O(1/h?)
relevant to the excitation of the low-order axisymmetric (longitudinal) modes. In that regime,
each transverse mode generally contributes to M/ a® at O(h); this is asymptotically negligible
compared to the longitudinal contributions (6.5), which are typically O(1/h%) and O(1) near
and away from resonance, respectively. While there are infinitely many transverse modes, the
contributions decay rapidly with mode number in the case of plane-wave illumination.

The integrals in the numerator of (6.5) are clearly proportional to the dipole moments of the
longitudinal modes along the z direction. Referring to (4.6), the expansion of the eigenfunctions
in Legendre Polynomials, it is readily seen that

1

n 2 n
J zq( )dz:gqg ), (6.7)
-1

(n)

Thus modes with ¢,/ = 0 are not excited by the incident plane wave. In particular, for a spheroid

q(”)(z) x Pp(z) and therefore qln) and M) both vanish for n # 1. Thus for a spheroid only
the fundamental longitudinal mode is excited; this in fact remains true also for non-slender
spheroids [33]. In contrast, for non-spheroidal slender shapes qln) does not generally vanish and
we accordingly expect multiple resonances.

As an example, in Fig. 4 we compare the above predictions for a slender spheroid and the
asymmetric shape studied in §§4(b). The figure also shows excellent agreement between our
approximation and an exact formula for (C,s) available for spheroidal particles [33].

7. Concluding remarks

We have demonstrated the use of slender-body theory (SBT) to describe the localized-surface-
plasmon resonances of high-aspect-ratio nanometallic particles. For the sake of simplicity, we
have assumed the quasi-static model of plasmonic resonance and a certain general class of
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axisymmetric geometries. The above-mentioned assumptions, however, are in no way essential
to SBT. Accordingly, we conclude with a discussion of several possible extensions to our theory.
We anticipate that these extensions will provide significant insight into the plasmonic properties
of complex configurations of metallic nanoparticles.

In particular, it would be relatively straightforward to generalise our scheme to particles
having a curved centreline, which can be either open ended or closed, as well as to clusters
of interacting particles. In fact, such geometries are routinely studied using SBT in the context
of Stokes flow [37-39]. For such geometries, the outer solution is generated by distributing
potential singularities along the curved centreline, which introduces more complicated nonlocal
integral operators into the formulation [67]. Furthermore, we anticipate that the assumption of
axial symmetry could be relaxed by use of conformal transformations to treat the quasi-two-
dimensional inner problem [45].

A more subtle limitation of the class of axisymmetric geometries studied herein has to do with
the manner in which the thickness profile of the particle has been prescribed, namely r = h f(z)
with the behaviour (2.7) at the tips. This form implies that the shape is uniformly slender, varying
over a single longitudinal length scale (that of the particle); it also implies that the tips are locally
paraboloidal. Under these conditions, we found an eigenvalue problem involving a singular
Sturm-Liouville (SL) differential operator, supplemented by regularity conditions obtained from
an analysis close to the tips.

Other classes of slender geometries include those with either pointy or blunt tips. Let us briefly
consider the latter class, which is relevant to the metallic nanorod particles commonly employed
in applications. Thus, consider bodies of revolution whose thickness varies on the long scale of
the particle, as herein, except that close to the tips, say on the short O(h) scale, the thickness
rapidly vanishes. As a consequence, the differential operator in the effective eigenvalue problem
is no longer singular and we anticipate that a tip analysis would provide Neumann, rather than
regularity, conditions on the voltage eigenfunctions. Accordingly, to leading logarithmic order
we expect a regular, rather than a singular, SL problem; for example, for a blunt-ended straight
cylinder,

d?e 2 di
S+ Ze=0, I =0, (7.1)
dz a dz|,_14

where we adopted the notation of (3.22)—(3.24); the eigenvalues are clearly A =8/(nm)?

(n=1,2,...) and correspond to eigenfunctions %) harmonic in z. It would be desirable to go
beyond a leading logarithmic approximation in the blunt-tip case, to calculate the eigenvalues
and eigenfunctions to algebraic accuracy; the combination of Neumann conditions and the
nonlocal integral operator appearing in (3.20b), however, would necessitate careful numerical
discretization which is beyond the scope of this paper [67].

We also wish to emphasise that our analysis in §3 of the longitudinal modes is valid in
the slender-body limit h — 0 for a fixed mode. Conversely, fixing h, the longitudinal modes vary
faster and faster along the particle axis, on a scale O(a/n), as we increase the mode number n;
accordingly, the scale disparity between the longitudinal variations and the thickness is reduced
and we expect the slender-body approximation to quickly deteriorate (as indeed observed in
§84(a)). In the latter high-mode-number limit, one of us recently derived a two-term eigenvalue
quantisation rule for a general class of smooth axisymmetric particles, using WKB] methods and
matched asymptotic expansions [68]. In order to connect the present theory, for n fixed, with the
latter one, for h fixed, it would be necessary to consider the intermediate limit n = O(1/h).

Lastly, we anticipate that our plasmonic SBT could be extended to more general physical
scenarios. In particular, let us fix the aspect ratio » and consider the process of either decreasing
or increasing the particle characteristic thickness ha. In the former process, as ha becomes
comparable to the subnanometric Fermi-screening length, the local permittivity model used
herein fails to describe the polarisation of the metal’s electron gas; in that case, quantum
nonlocality and electron-spillage effects may need to be considered [16, 69]. In the opposite
process, the quasi-static formulation of localized-surface-plasmon resonance breaks down as
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the particle length 2a becomes comparable to the optical wavelength. In that case, the present
theory could be extended starting from a generalized spectral decomposition based on Maxwell’s
equations [59, 70, 71]; the outer solution would be constructed by distributing retarded singular
solutions along the centreline [72], while the inner analysis would remain partially quasi-
static owing to the subwavlenegth scale of the cross-section. For collections of particles, or
metamaterials formed of slender particles [73, 74], retardation may be important even for
deeply subwavlength particles, especially when inter-particle distances are comparable to the
wavelength. In that case, each particle could be described quasi-statically, with standard multiple-
scattering techniques used to study the collective response of the system [75].

Appendix: Analysis of the tip regions

(a) Rescaling and parabolic coordinates

Close to the tips, both the inner and outer expansions derived in §3 break down. Specifically,
the locally parabolic behaviour (2.7) of the shape function f(z) suggests considering tip regions,
where both r and |z = 1| are O(h?). In those regions, the transverse and longitudinal variations
of the potential are comparably rapid (unlike in the inner region), whereas the details of the
boundary shape remain discernible (unlike in the outer region).

We choose to analyse the tip region near z = —1. The analysis of the other tip region is similar.
To this end, we consider the limit A — 0 with the stretched coordinates

R=r/h? Z=(z+1)/h? (A2)

fixed. Under this rescaling, the boundary is to leading order the paraboloid Z = R? /x? [cf. (2.7)].
This suggests the use of paraboloidal coordinates (o, 7, §) [76], defined through the relations

7 K2 _ 72—
42

fixed (non-negative) values of either o or 7 correspond to confocal paraboloids of revolution
having the symmetry axis as their axis of rotation and their foci at (R, Z) = (0, &% /4). In terms of

these coordinates, the particle boundary (2.6) can be written as o = S(r, h), wherein

R=r10; (A3)

S(t;h)~og+--- as h—0 (A4)
and o = k— /+/2; the interior and exterior domains respectively become o < S(7; h).
We write the internal and external tip-region potentials as 1 = &(c, 7; h) and ¢ = &(0,T; h),
respectively; these satisfy Laplace’s equation [cf. (3.2)]
19 ( 0d 10 ( 0P
o (08—0) -l-;a—T (TE)—O for o< S(t;h), (A 5a)
19 oP 10 ob
;% (U&) +;E (TE)—O for (7'>S(7',h)7 (A5b)
the transmission conditions [cf. (3.3), (3.4) and (3.8)]
é=0 at o=S(r;h), (A 6a)
@ 0P  dS od oP  dS 0P

as well as asymptotic matching with both the inner and outer regions (in the limits 7 — co and
o — 00, respectively).
(b) Tip interior

The large eigenvalue in the displacement condition (A 6b) suggests that, to leading order, the
interior potential @ satisfies a homogeneous Neumann boundary condition on the nominal
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paraboloid o = 0. This, in turn, implies that & is approximately uniform. Otherwise, (A 51) in
conjunction with the said Neumann condition would give solutions that exponentially grow as
Z — oo; it would not be possible to match the latter behaviour to the inner region.

The above argument assumes that & and @ are comparable in magnitude, as intuitively
suggested by the continuity condition (A 6a). It can be shown that an alternative balance of the
displacement condition (A 6b), with @ >> & and the leading approximation for ¢ vanishing over
the nominal boundary, does not allow matching the external tip potential ¢ with both the inner
and outer regions; this will also become evident from the analysis in §§7(c).

With the conclusion that @ is approximately uniform, leading-order matching with the inner
region suggests that the internal potential ¢ possesses the expansion

&(o,7;h) ~v(—=1;h)+--- as h—0, (A7)

which is consistent with the proposed regularity condition on v(z; h) used to solve the effective
eigenvalue problem (see §§3(c)). To further corroborate this condition, and to complete the
leading-order description of the tip region, we next construct an asymptotic approximation to
the exterior potential ¢ that is consistent with (A 7) and successfully matches with both the inner
and outer expansions.

(c) Tip exterior

Consider now the domain exterior to the tip. The continuity condition (A 6a), together with (A 7),
suggests the expansion

&(o,7;h) ~Po(o,T;h)+--- as h—0, (A8)

where @ satisfies Laplace’s equation
10 9Py 10 0P
-7 =0 2 (=) = A
080<Uaa)+787<787> 0, (A9)

Do(00, T3h) =v(—1;h) (A 10)

the Dirichlet condition

and conditions implied by asymptotic matching of the tip region with the inner and outer regions.

Subject to verification by matching, we attempt a solution in the form ®¢(o, 7; h) = Po(0; h);

we then readily obtain from (A 9) and (A 10) that
®o(o,7;h) =v(—1; h) + B(h) 1n010, (A11)
where B(h) is a constant to be determined.

To that end, we apply 1-1 Van Dyke matching between the (exterior) tip region and the inner
region. Thus, writing (A 11) in terms of the inner coordinates (p, z) and expanding up to leading
algebraic order in h gives v(—1; h) + B(h)Inp/(k— (2 + 1DY2) [cf. (3.1), (A 2) and (A 3) and note
that o ~ R/(22)"/? for large 7 (or Z)]. This expression is required to agree with (3.14), written
in terms of the tip coordinates (R, Z) and then expanded up to leading algebraic order in h. We
thereby find

B(h) = 7(1(_27?) (A12)

It remains to verify that the solution (A 11), with (A 12), also satisfies matching with the outer
region. For this, we require the expansion of the leading-order outer potential (3.17) as the tip is
approached; using standard methods for asymptotically evaluating integrals [45], we find

oy a(=1;h) 4 ir a(Gh) —g(=1;h)
Yy (r,z; h) i In 1 T cos 0) + 7 T T d¢ as t—0, (A 13)

where t= /72 + (2 +1)2 and ¥ denotes the polar angle from (r,z)=(0,—1) with 9=0
corresponding to the negative z direction. Conversely, for the purpose of expanding the tip
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solution (A 11) for large distances, we note that o ~ TY2\/T+cos? as T =VRZ + Z2 — cc.
Using these two expansions, together with the limit of (3.200) as z — —1, it is readily verified
that 1-1 Van Dyke matching between the tip and outer expansions is identically satisfied.

Data Accessibility. The code used in §4 and §6 is available at https://github.com/Matias-Ruiz/

SBT-plasmonics
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