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Abstract: In applied settings, tests of hypothesis where a nuisance parameter

is only identifiable under the alternative often reduces into one of Testing One

Hypothesis Multiple times (TOHM). Specifically, a fine discretization of the space

of the non-identifiable parameter is specified, and the null hypothesis is tested

against a set of sub-alternative hypothesis, one for each point of the discretization.

The resulting sub-test statistics are then combined to obtain a global p-value.

In this paper, we discuss a computationally efficient inferential tool to perform

TOHM under stringent significance requirements, such as those typically required

in the physical sciences, (e.g., p-value < 10−7). The resulting procedure leads

to a generalized approach to perform inference under non-standard conditions,

including non-nested models comparisons.

Key words and phrases: Multiple hypothesis testing, bump hunting, non-identifiabily

in hypothesis testing, non-nested models comparison.

1. Introduction
{intro}

A fundamental statistical challenge in scientific discoveries is the so called

“bump-hunting” problem (Choudalakis, 2011), where researchers aim to



distinguish peaks due to a signal of interest (the new discovery) from peaks

due to random fluctuations of the background. In the framework of hypoth-

esis testing, the null model specified by H0 is typically the background-only

model, and a signal bump is added in the alternative model specified by

H1. Consider for example a dark matter search where we aim to distinguish

events associated with a power-law (Pareto type I) distributed background

from the signal of a dark matter source modeled as a narrow Gaussian

bump with unknown location over the search area Θ ≡ [L,U ] ⊂ R. We can

specify the model of interest using a mixture model

(1− η)
1

kφyφ+1
+

η

kθ
exp

{
−(y − θ)2

0.02θ2

}
for y ≥ 1, (1.1) {ex1}

where kφ and kθ are normalizing constants, y ≥ 1, φ > 0, and θ ≥ 1. Notice

that the parameter θ characterizes both the location of the signal over the

search region and its standard deviation. Specifically, the bump becomes

wider the further its position is in the tail of the background distribution.

The model in (1.1) is a toy example which simplifies the models involved in

the context of searches for γ-ray emissions ina cluster of galaxies (Anderson

et al., 2016); where for example the width of the signal may be a more

complex function of its location. Despite its simplicity, the model in (1.1)



introduces the key statistical issues arising in the context of dark matter

searches, as described below.

In order to assess the evidence in favor of the signal, we test

H0 : η = 0 versus H1 : η > 0. (1.2) {testex1}

where η is the proportion of events due to the dark matter emission, and

typically 0 ≤ η ≤ 1. Despite its straightforward formulation, testing (1.2)

is non-trivial. Difficulties arise because θ is not defined under H0. Conse-

quently, classical asymptotic properties of, e.g., Maximum Lixelihood Es-

timates (MLE) and the Likelihood Ratio Test (LRT), fail. Analogously,

complications may arise when using resampling techniques, such as boot-

strapping (Efron and Tibshirani, 1994), to derive the null distribution of

the test statistic, in the presence of stringent significance requirements. For

searches in high energy physics for instance, the significance level necessary

to claim a discovery can be in the order of 10−7 (see Lyons, 2013, Table

1). Hence, a large (e.g., O(108)) simulation may be infeasible when deal-

ing with complex models. This is a key motivation for a computationally

efficient inferential solution.

To address these difficulties, in this paper, we consider the bump-



hunting problem as a special case of what is known in statistical literature

as “testing statistical hypotheses when a nuisance parameter is present only

under the alternative”. In addition to bump-hunting, classical examples

may include regression models where structural changes, such as break-

points and threshold-effects, occur (Andrews, 1993; Hansen, 1992b, 1999;

Davies, 2002).

The general problem has long been studied, starting at least from the

seminal work of Hotelling (1939) and Davies (1977, 1987), and further inves-

tigated in the econometrics literature by several authors including Andrews

and Ploberger (1994) and Hansen (1991, 1992a, 1996). In their practical

implementation, these methods reduce the problem of testing with uniden-

tifiable parameters under H0 into one of Testing One Hypothesis Multiple

times (TOHM), where a single null hypothesis H0 is tested against differ-

ent sub-alternative hypotheses of the form H1(θ), one for each fixed θ in Θ,

and a corresponding ensemble of sub-test statistics indexed by θ, namely

W (θ), is specified. The goal is to provide a global p-value as the standard

of evidence for comparing H0 and the global alternative hypothesis H1, of

which each H1(θ) is a special case. Unfortunately, existing methods often

require case-by-case mathematical computations (e.g., Davies, 1977), esti-

mating the covariance structure (e.g., Hansen, 1991), choosing weighting



functions (e.g., Andrews and Ploberger, 1994), or full simulations of the

empirical process (e.g., Hansen, 1992a, 1996).

In this paper we discuss a computationally efficient method to perform

TOHM which overcomes these limitations. Specifically, as in Davies (1977,

1987) we consider a stochastic process, {W (θ)}, indexed by θ ∈ Θ ≡ [L,U ],

and with covariance function ρ(θ, θ†). We consider the global p-value

P

(
sup
θ∈Θ
{W (θ)} > c

)
, (1.3) {pval}

where c is the observed value of the global test statistic, supθ∈Θ{W (θ)}.

The central difficulty of this approach is to derive or approximate (1.3).

One possible way forward is to consider the Extreme Value Theory (EVT)

argument developed by Cramér and Leadbetter (2013, p. 272), where a

bound for (1.3) is obtained considering the upcrossings of c by {W (θ)} (see

Figure S.1). Specifically, {W (θ)} has an upcrossing of a threshold c ∈ R

at θ0 ∈ Θ if, for some ε > 0, W (θ) ≤ c in the interval (θ0 − ε, θ0) and

W (θ) ≥ c in the interval [θ0, θ0 + ε) (Adler, 2000). Let Nc be the number

of upcrossings of c by {W (θ)}. Using Markov’s inequality, Cramér and



Leadbetter (2013, p. 272) show that (1.3) can be bounded as in (1.4),

P

(
sup
θ∈Θ
{W (θ)} > c

)
≤ P (W (L) > c) + E[Nc] (1.4) {general_bound}

where P (W (L) > c) is typically known. Davies (1977, 1987) consider the

cases where {W (θ)} is a Gaussian or a χ2-process, estimate E[Nc] via total

variation, and show that (1.4) becomes sharp, as c→∞ (under long-range

independence, i.e., if ρ(θ, θ†)→ 0 as |θ− θ†| → ∞). Unfortunately, Hansen

(1991) points out that situations exist where the total variation diverges.

An alternative solution can overcome this problem and has had sig-

nificant impact in physics (Gross and Vitells, 2010). Consider a set of

observations y1, . . . , yn, and let Tn(θ) the LRT statistics used to test (1.2)

and evaluated on y1, . . . , yn when θ is fixed. We denote the LRT-process

indexed by different values of θ with {Tn(θ)}. Under H0 and suitable uni-

formity conditions (Hansen, 1991), {Tn(θ)} d−−−→
n→∞

{Wχ(θ)}, where Wχ(θ) is

a χ2-process with components Wχ(θ) ∼ χ2
s, for each θ ∈ [L,U ] fixed. Let

E[Nχ
c ] be the expected number of upcrossings of c by {Wχ(θ)} over Θ. One

possible way to compute (1.4) is to estimate E[Nχ
c ] via Monte Carlo sim-

ulations. However, when dealing with stringent significance requirements,

the corresponding significance threshold c is typically very large. Hence,



upcrossings of c are expected to occur infrequently when simulating under

H0, and thus a massive simulation is required to estimate E[Nχ
c ] directly.

Gross and Vitells (2010) exploit the χ2 distribution of {Wχ(θ)}, and rewrite

E[Nχ
c ] as a function of E[Nχ

c0
], see (1.5), for some c0 << c,

P

(
sup
θ∈Θ
{Wχ(θ)} > c

)
≤ P (Wχ(L) > c) +

(
c

c0

) s−1
2

e−
c−c0

2 E[Nχ
c0

]. (1.5) {gv_bound}

where E[Nχ
c ] =

(
c
c0

) s−1
2

e−
c−c0

2 E[Nχ
c0

]. This allows a drastic reduction in

the computational effort needed to compute E[Nχ
c ]. Specifically upcrossings

of c0 << c are expected to occur often, and thus E[Nχ
c0

] can be estimated

accurately with a small Monte Carlo simulation.

Gross and Vitells (2010) do not formally justify (1.5). In Section 2, we

derive (1.5), we generalized it to any process {W (θ)}, and we clarify the

conditions under which (1.5) and its generalization hold. Efficient choices

of c0 are discussed in Section 3 and a simple graphical tool is proposed to

validate the adequacy of the number of sub-tests conducted.

The resulting procedure leads to a generalized approach to perform in-

ference under non-standard regularity conditions including, as discussed in

Section 3, comparisons of non-nested models. This can be done by spec-

ifying a comprehensive model that includes the two (non-nested) models



under comparison as special cases. Two tests of hypothesis where a nui-

sance parameter is present only under the alternative are then performed

to select among the two models (Algeri et al., 2016).

In principle, the problem of testing in presence of a nuisance parameter

which is present only under the alternative can be formulated as a multiple

hypothesis testing (MHT) problem, where several tests are conducted over

a grid of possible values of θ, and corrected using Bonferroni’s correction

(Bonferroni, 1935, 1936) or similar methods to control for the probability

of type I error. Although the Bonferroni correction is easy to implement,

it is often dismissed by practitioners both because of its stringent control

of the overall false detection rate and its artificial dependence on the num-

ber of tests conducted. In Section 4 we compare TOHM and Bonferroni’s

correction via a suite of numerical studies and data applications; we also

discuss how the tools introduced in this manuscript can be used to identify

situations where, by virtue of its relationship with TOHM, Bonferroni can

be used without worry about obtaining an overly conservative result.

The remainder of the paper is organized as follows. In Section 2, we

define the framework for TOHM, and we derive a computable upper bound

for (1.3) by generalizing (1.5). In Section 3, we illustrate how TOHM can be

used to distinguish among non-nested models, we validate our results with



simulation studies and we discuss graphical tools to select the necessary

quantities involved in the computation of the bound proposed in Section 2.

In Section 4 we investigate the relationship between TOHM and the clas-

sical Bonferroni correction, and we apply both methods on several realistic

data sets. A summary and a discussion of our findings appear in Section 5.

Additional figures, data and proofs are collected in the Supplementary Ma-

terial.

2. TOHM via EVT
{sec3}

2.1 Definition and formalization
{GV}

In this section, we generalize the testing procedure of Gross and Vitells

(2010) beyond the LRT and the χ2 case and formalize it in statistical terms.

This allows us to establish a general theoretical framework to efficiently

bound/approximate the global p-value in (1.3).

Recall that {W (θ)} is a generic stochastic process indexed by θ ∈ Θ ≡

[L;U ] with covariance function ρ(θ, θ†). Following Davies (1987) we stipu-

late {cond31}

Condition 1. {W (θ)} has continuous sample paths; {W (θ)} has contin-

uous first derivative, except possibly for a finite number of jumps; and its

components W (θ) are identically distributed for all θ ∈ Θ.

To exploit (1.4), we aim to conveniently estimate E[Nc] and bound or



2.1 Definition and formalization

approximate (1.3). Results 2 and 3 allow this.
{theo1}

Result 2. Let c ∈ R be an arbitrary threshold, a(c) be a function which

depends on c but not on θ, and b(Θ) be a function which does not depend

on c, and to be calculated over Θ. Under Condition 1, if E[Nc] can be

decomposed as

E[Nc] = a(c)b(Θ) (2.6) {decompose}

then,

E[Nc] =
a(c)

a(c0)
E[Nc0 ] ∀c0 ≤ c, c0 ∈ R. (2.7) {expect}

The function b(Θ) typically involves integration over the interval Θ,

and should not be confused with a function of θ. Deriving a closed-form

expression of b(Θ) in (2.6) may be challenging, and may require knowledge

of ρ(θ, θ†). Conversely, the form of a(c) typically depends on the marginal

distribution of the components W (θ) of {W (θ)}, hence the requirement

of identical distribution in Condition 1. The continuity assumptions on

{W (θ)} and its first derivative prevent E[Nc] from diverging.

Equation (2.7) offers a simple way to compute E[Nc], provided that, as

discussed below, E[Nc0 ] can be estimated accurately. Result 3 follows from

(1.4), (2.6), and (2.7).
{coroll1}



2.2 TOHM bounds for Gaussian-related processes

Result 3. Under Condition 1, if (2.6) holds, (1.3) can be bounded by

P

(
sup
θ∈Θ
{W (θ)} > c

)
≤ P (W (L) > c) +

a(c)

a(c0)
E[Nc0 ] (2.8) {bound2}

for all c0 ≤ c, c0 ∈ R. If additionally, ρ(θ, θ†) → 0 as |θ − θ†| → ∞, the

difference between the left and the right hand side of (2.8) approaches zero

as c→∞.

2.2 TOHM bounds for Gaussian-related processes
{bounds}

The bound in (1.5) and the analogous bounds for Gaussian and related

processes such as F and t-processes, can be derived using results of random

fields theory as discussed in Algeri and van Dyk (2018). In this setting,

it can be shown that, under mild smoothness conditions (see Taylor and

Adler (2003, p. 547)), E[Nc] enjoys the decomposition in (2.6), where a(c)

only depends on the distribution of the marginals of {W (θ)}, whereas b(Θ)

corresponds to the so-called Lipschitz-Killing curvature of first order (e.g.,

Adler and Taylor, 2009) and is typically difficult to compute. Here, we

report explicit forms of the right hand side of (2.8) for Gaussian, F and t

processes which can be obtained on the basis of these results (see Taylor

and Worsley, 2008; Adler and Taylor, 2009; Algeri and van Dyk, 2018, for



2.2 TOHM bounds for Gaussian-related processes

more details).

Gaussian process. Let {Z(θ)} be a mean zero and variance one Gaussian

process, such that Z(θ) ∼ N(0, 1) for all θ ∈ Θ, and let NZ
c be the process

of upcrossings of c0 by {Z(θ)} over Θ ≡ [L,U ]. The TOHM bound in

equation (2.8) takes the form

P

(
sup
θ∈Θ
{Z(θ)} ≥ c

)
≤ Φ(−c) + e−

c2−c20
2 E[NZ

c0
]. (2.9) {z_bound}

where Φ(−c) is the cumulative density function of a standard normal ran-

dom variable evaluated at −c and the ratio a(c)
a(c0)

is givan by e−
c2−c20

2 . For

the stationary case, the same result can be obtained by expressing E[NZ
c ]

via Rice’s formula (Rice, 1944) i.e.,

E[NZ
c ] =

|L − U|
2π

√
ρ′′(θ, θ)e−

c2

2

where ρ′′(θ, θ) = ∂θ
∂θ∂θ†

ρ(θ, θ†)
∣∣
θ†=θ

is the second spectral moment of {Z(θ)}

and is assumed to be finite, and |L−U| is the length of Θ. As discussed in

Davies (1987), for a two-sided test, the excursion probability of interest is

P (supθ∈Θ |{Z(θ)}| ≥ c); the bound of which is twice the right hand side of



2.2 TOHM bounds for Gaussian-related processes

(2.9).

The rate of convergence of the difference between the right and left hand

side of (1.5) and (2.9) are discussed in Section S.1 of the Supplementary

Material. We further study the sharpness of the bounds in (1.5) and (2.9),

as c→∞ in Section 3 via a suite of simulation studies.

F -process. Consider an F -process {F (θ)} with s and v degrees of free-

dom such that F (θ) ∼ Fs,v for all θ ∈ Θ. Let E[NF
c0

] be the expected

number of upcrossings of c0 by {F (θ)}, then the TOHM bound in equation

(2.8) takes the form

P

(
sup
θ∈Θ
{F (θ)} ≥ c

)
≤ P (F (L) ≥ c) +

(
c

c0

) s−1
2
(
v + s · c
v + s · c0

)− s+v−2
2

E[NF
c0

]

(2.10) {F_bound}

for all c0 ≤ c, c0 ∈ R, and with a(c) = c
s−1
2 (v + s · c)− s+v−2

2 .

t-process. Consider a t-process {V (θ)} with s degrees of freedom such

that V (θ) ∼ ts. Let E[NV
c0

] be the expected number of upcrossings of c0 by



2.3 Testing one hypothesis multiple times in practice

{V (θ)}, then the TOHM bound in equation (2.8) takes the form

P

(
sup
θ∈Θ
{V (θ)} ≥ c

)
≤ P (V (L) ≥ c) +

(
1 + c2

1 + c2
0

)− s−1
2

E[NV
c0

] (2.11) {t_bound}

for all c0 ≤ c, c0 ∈ R, and with a(c) = (1 + c2)−
s−1
2 .

2.3 Testing one hypothesis multiple times in practice
{Ncrdef}

In practice, we evaluate {W (θ)} on a fine grid of points, namely ΘR =

{θ1, . . . θR} ⊆ Θ, with R being the typically large number of grid points.

Let {W (θr)} be the random sequence which coincides with {W (θ)} at each

θr ∈ ΘR and {w(θr)} be its observed value. We approximate supθ∈Θ{W (θ)}

with its discrete counterpart maxθr∈ΘR{W (θr)}, the observed value of which

is given by

cR = max
θr∈ΘR

{w(θr)}. (2.12) {cR}

Let the process of upcrossings of cR by {W (θr)}, namely ÑcR , be events of

the type {W (θr−1) ≤ cR,W (θr) > cR}. We assume that ΘR is sufficiently

dense, so that the right hand side of (2.8) can be approximated by (2.13),

as R→∞,

P (W (L) > cR) +
a(cR)

a(c0)
E[Ñc0 ] ∀c0 ≤ cR, c0 ∈ R (2.13) {real_bound}



where E[Ñc0 ] can be replaced by its Monte Carlo estimate, namely Ê[Ñc0 ].

Notice that the null hypothesis, H0, is tested versus an ensable of alter-

native hypotheses H1r, one for each value of θr fixed. The observed sub-test

statistics {w(θ1), . . . , w(θR)}, realizations of {W (θ)}, are combined into the

global test statistic cR and an approximated bound for the global p-value

is computed via (2.13). Thus, the problem of testing (1.2) is reduced to

testing H0 versus the R sub-alternative hypotheses H1r, i.e., Testing One

Hypothesis Multiple Times.

Cramér and Leadbetter (2013, p. 63 and 195) discuss adequate choices

of ΘR for which c, Nc and supθ∈Θ{W (θ)} are well approximated by cR, ÑcR

and maxθr∈ΘR{W (θr)}, respectively. However, since in practice ΘR may be

determined by the experiment, in Section 3 we discuss graphical tools to

assess whether these approximations hold.

3. Practical matters
{practice}

3.1 Case studies: description
{examples}

Here we illustrate the implementation of TOHM in the context of three

case studies, i.e., the “bump hunting” problem introduced in Section 1, a

non-nested models comparison, and a logistic model with a break point.

Hereafter, we refer to these as Examples 1, 2 and 3, respectively. Data



3.1 Case studies: description
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Figure 1: Data and fitted models. Left panel: histogram of the Fermi-LAT re-
alistic data simulation for Example 1 (on log-scale), null model (blue dashed
curve) fitted under the assuption of background only counts (φ̂ = 1.350), and
fitted alternative model (red solid curve) with η̂ = 0.045, φ̂ = 1.406. The green
dotted vertical line indicates the location of the observed Gaussian bump, i.e.,
θ̂ = 3.404. Central panel: histogram of the Fermi-LAT realistic data simulation
for Example 2 (log-scale), the null model when testing (1.2) is fitted as a power-
law distributed cosmic source with φ̂ = 1.395 (blue dashed curve). The null model
when testing (3.16) is the dark matter model in (3.14) with θ̂ = 27.89 obtained
via MLE (red solid curve) . Right panel: Down syndrome data and fitted regres-
sion model (red piecewise-linear solid lines), with break-point (green triangle) at
θ̂ = 31.266. {real_plots}

for Examples 1 and 2 were generated using simulations of the Fermi Large

Area Telescope (LAT) obtained with the gtobssim package and include

representations of detector effects and systematic errors. The Fermi-LAT

is a γ-ray telescope on the orbiting Fermi satellite (Atwood et al., 2009).

In Example 1, our data analysis aims to properly distinguish between

γ-ray signals induced by dark matter annihilations and those induced by the

astrophysical background. As in (1.1), dark matter events are modeled as

a Gaussian bump with mean energy θ and standard deviation varying with

http://fermi.gsfc.nasa.gov/ssc/data/analysis/software

http://fermi.gsfc.nasa.gov/ssc/data/analysis/software
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θ. The astrophysical background is power-law (Pareto type I) distributed

with index φ. In our simulation, we set θ = 3.5GeV (where GeV denotes

Giga electron-volt), φ = 1.4, η = 0.02, and we consider the energy band y ∈

[1; 35]. This setup resulted in 64 dark matter events and 2274 background

events. For more physics details, see Algeri et al. (2016).

In Example 2, the non-nested models to be compared are a dark matter

emission with probability density given by

g(y, θ) ∝ y−1.5 exp

{
−7.8

y

θ

}
, (3.14) {DMmodel}

with y ≥ 1, φ > 0 and θ ≥ 1 (see Bergström et al., 1998) and a power-law

distributed cosmic source with density f(y, φ) ∝ 1
kφyφ+1 . In our simulation

we set the putative dark matter emission to occur at θ = 35GeV, and the

power-law index to φ = 1.4. In this way, we obtained 200 dark matter

events over the energy band y ∈ [1; 100].

Since the models f(y, φ) and g(y, θ) are non-nested, the classical asymp-

totic properties of the MLE and LRT fail. However, as shown in Algeri et al.

(2016), the framework of Section 2 can be extended to compare non-nested

models by reformulating this comparison as a test in which a nuisance pa-

rameter is identified only under H1. Specifically, following Cox (1962) and
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Atkinson (1970), we specify a comprehensive model that embes two non-

nested models, i.e.,

(1− η)f(y, φ) + ηg(y, θ) 0 ≤ η ≤ 1. (3.15) {comprehensive}

This reduces the problem to a nested models comparison and we test (1.2).

However, in contrast to the bump-hunting example in (1.1), here η has

no physical interpretation. Rather, as in Quandt (1974), η is an auxiliary

parameter which allows us to exploit the normality of its MLE to apply

well-know asymptotic results. In addition to (1.2), the hypotheses

H0 : η = 1 versus H1 : η < 1 (3.16) {flipping}

should also be tested in order to exclude intermediate situations (e.g., Cox,

1962, 2013). I.e., we want to avoid treating (3.15) as a mixture and focus

on comparing the two models. Testing both (1.2) and (3.16) is particularly

suited to particle physics searches where researchers typically assign differ-

ent degrees of belief to the models being tested. Specifically, as described in

van Dyk (2014), the most stringent significance requirements (e.g., Lyons,

2013, Table 1) are typically used only in the detection stage, i.e., when test-

ing (1.2) to assess the presence of a new signal. Conversely, in the exclusion
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stage, i.e., when testing (3.16) to exclude the hypothesis of a signal being

present, a significance level of 0.05 is typically sufficient. The Fermi-LAT

datasets for Examples 1 and 2 are plotted in the first two panels of Figure 1.

Both simulations are downloadable among the Supplementary Materials.

Finally, in Example 3 we consider the Down Syndrome dataset available

in the R package segmented (Muggeo et al., 2008). The dataset records

whether babies born to 354,880 women are affected by Down Syndrome.

We use (3.17) to model the probability, πi, that a woman of age xi has a

baby with down syndrome, where xi ∈ [17; 47], and we let θ ∈ [20; 44]. The

logit of the ratio between the number of down syndrome cases and number

of births by age group is plotted in the right panel of Figure 1.

log

(
πi

1− πi

)
= φ1 + φ2xi + ξ(xi − θ)1{xi≥θ} ∀i = 1, . . . , n, (3.17) {ex3}

where θ ∈ R is the location of the unknown break-point. In this case, we

test H0 : ξ = 0 versus H1 : ξ 6= 0.

In Example 1 and 2 we use the LRT, Tn(θ), as the sub-test statistic.

Since both tests are of the form in (1.2), the test is on the boundary of the

parameter space and for each θ fixed the asymptotic distribution underH0 is

a mixture of χ2
1 and zero (Chernoff, 1954; Self and Liang, 1987), also known
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as χ̄-distribution and which we dentote with χ̄2
01. It can be shown (Algeri

and van Dyk, 2018) that in this setting the bound in (2.8) has the same

form as in the χ2
1 case, i.e., it is given by (1.5) with s = 1. In Example 3,

we use the signed-root of the LRT Qn(θ) = sign(η̂θ − η0)
√
Tn(θ), hence the

sub-tests statistics are asymptotically normally distributed under H0 (e.g.,

Davies, 1977).

3.2 The choices of c0 and R
{choosingR}

One way to select an appropriate thresholds c0 is to perform a sensitivity

analysis based on few Monte Carlo simulations of the traces of the underly-

ing processes under H0. As discussed in Section 2, under suitable regularity

conditions and when H0 is true, the LRT and signed-root LRT processes

{Tn(θ)} and {Qn(θ)} converge uniformly to {Wχ(θ)} and {Z(θ)}, respec-

tively, as n→ +∞. More generally, given a test statistics Wn(θ) to be eval-

uated on the data y1, . . . , yn for each θ fixed, we write {Wn(θ)} d−→ {W (θ)}.

Consequently, for each sample generated under H0, we compute {Wn(θ)}

over a fine grid of values of θ and which approximates {W (θ)} when n

is large. In all our simulations, the nuisance parameters under the null

model have been estimated via MLE and each simulated sample under H0

is obtained via parametric bootstrap (Efron and Tibshirani, 1994). We plot

the results of our simulation in order to visualize the traces of {Wn(θ)} as
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Figure 2: Left panel: simulated sample paths of the LRT process, {Tn(θ)}, un-
der H0 in Example 1. Both plots consider different widths of the Gaussian bump.
Right panel: upcrossings plot showing Monte Carlo estimates of E[Ñc0 ] and stan-
dard errors (whiskers), under H0, for Example 1, and evaluated over grids of
R = 15, 30, 50, 100, 200, 500 points, and for three choices of the Gaussian width,
namely σ = 0.1θ, σ = 0.5θ and σ = θ. {upc_Gauss}

shown in Figure 2 for Example 1. (The analogous plots for Examples 2

and 3 appear in Figure S.2.) In order to calculate (2.8), it is important

to provide an accurate estimate of E[Nc0 ]. Hence, we choose c0 to be at

a level (on the y-axis) around which the process {Wn(θ)} oscillates often,

and thus, with respect to which the upcrossings occur with high frequency.

For Examples 1, 2 and 3, this leads to values c0 equal to 0.1, 0.3 and 0,

respectively. Inspecting the smoothness of the trace plots also allows us to

qualitatively assess Condition 1 and verify the goodness of the approxima-

tion of E[Nc0 ] by E[Ñc0 ], necessary for the validity of the results of Section

2.
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As discussed in Section 1, the implementation of our procedure requires

the specification of a grid ΘR over Θ ≡ [L;U ], where R is the number of

times H0 is tested versus the ensemble of sub-alternatives H11, . . . , H1R. In

practice, R must either be chosen arbitrarily by the researcher or determined

by the nature of the experiment. In either case, R must be sufficiently large

to guarantee robustness of the results, yet small enough to ensure compu-

tational efficiency when calculating (2.13). One possibility is to choose R

large enough so that, for a given c0, E[Ñc0 ] converges to a finite limit, which

we expect, for sufficiently dense ΘR, to correspond to E[Nc0 ]. This strategy

requires us to set c0 before setting R.

In order to identify the value of R that best negotiates the trade-off

between accuracy and computational efficiency, one can consider different

values of R and for each of them compute an estimate of E[Nc0 ] by means

of a small Monte Carlo simulation. The results can then be summarized

in an upcrossing plot where the values for R considered are reported on

the x-axis and the respective Ê[Ñc0 ] estimates of E[Nc0 ] are reported on

the y-axis. The upcrossing plot in the right panel of Figure 2 displays

Monte Carlo estimates Ê[Ñc0 ] for the LRT in Example 1, under H0, as a

function of R (with R = 15, 30, 50, 100, 200, 500, 1000). For each value of

R considered, the grid points have been chosen to be equally spaced over
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Θ. Analogous plots for Examples 2 and 3 appear in Figure S.2. For each

R considered we computed 100 Monte Carlo simulations, each of size 1000.

In all our examples, 100 simulations are sufficient to achieve small Monte

Carlo errors.

As a rule of thumb, if the number of upcrossings increases with R but

does not converge, it means that the resolution is not sufficiently high to

catch all the crossings or, the underlying process is not sufficiently smooth

to guarantee E[Nc0 ] < ∞. Conversely, if the number of upcrossings con-

verges, as in the well-known scree-plot used for Principal Component Anal-

ysis (PCA) (e.g., James et al., 2013, p. 383), we look for an “elbow” in the

plot of Ê[Ñc0 ]. The value of R corresponding to the elbow is the smallest

value for which Ê[Ñc0 ] converges to its limit, E[Nc0 ], up to Monte Carlo

error. In physics terms, this corresponds to the minimal value of R for

which Ê[Ñc0 ] well approximates the number of upcrossings of the underly-

ing continuous time process.

We also investigate the relationship between the width of the signal

in the bump-hunting example, and the grid resolution. In particular, we

replicate the simulation for three choices of the Gaussian width, namely σ =

0.1θ, σ = 0.5θ and σ = θ. (In our actual analysis σ = 0.1θ.) As expected,

wider signals correspond to smoother underlying processes (Figure 2, left



3.2 The choices of c0 and R

0 5 10 15
c

lo
g 1

0(p
.v

al
ue

s)
0.

00
01

0.
01

0.
1

1

3σ

0 5 10 15
c

lo
g 1

0(p
.v

al
ue

s)
0.

00
01

0.
01

0.
1

1
3σ

0 1 2 3 4
c

lo
g 1

0(p
.v

al
ue

s)
0.

00
01

0.
01

0.
1

1

3σ

Figure 3: Estimated bound/approximation in (2.13) (blue solid line), simulated
global p-values (on log10-scale), Monte Carlo estimates of P (supθ∈Θ{W (θ)} > c)
(red dashed line), and Monte Carlo Errors (pink areas) for increasing values
of the threshold c, for Example 1 (left panel), Example 2 (central panel) and

Example 3 (right panel). Monte Carlo errors associated with Ê[Ñc0 ] on the bound
in (2.13) are plotted in grey, but are too small to be visible. {assess}

panel) and Ê[Ñc0 ] converges (Figure 2, right panel) at lower grid resolution.

In general, R impacts the upper bound/approximation for the global p-

value in (2.8), as well as the observed value of the test statistics, cR, which

we assume converges to c, as R → ∞. Specifically, if the gap between

θr and θr+1 is wider than the signal width, cR may underestimate c, and

the signal may be missed. Thus, if the signal is suspected to be localized

over a small region of the search interval, a higher resolution is required to

accurately estimate (2.13) and avoid false negatives, which would in turn

adversely affect the power of the test.

Conversely, in Examples 2 and 3, the signal is spread either over the

whole parameter space or over a large portion of it. In these cases the
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choice of R should be based on the desired level of accuracy of both cR as

an estimate for the maximum of the underlying process and of the value of

θ at which the maximum occurs, i.e.,

θ̃ = argmaxθr∈ΘR
{W (θr)}. (3.18) {thetatilde}

Finally, based on the elbow in the upcrossing plots in Figures 2 and

S.2, the values of R we select are R = 100 in Example 1 (with σ = 0.1θ

as in (1.1)), R = 50 in Example 2, and R = 30 in Example 3. In order

to guarantee accuracy of at least 0.5 for the identified location, θ̃, of the

break-point, however, we set R = 50 in Example 3. For each of the models

considered, we computed (2.13) using the R and c0 selected above. The

results obtained are compared in Figure 3 with the Monte Carlo estimates

of P (supθ∈Θ{W (θ)} > c) for increasing values of c, obtained using 100,000

simulations, each of size 10,000. The pink areas correspond to the respec-

tive Monte Carlo errors. The Monte Carlo errors associated to the estimate

Ê[Ñc0 ] for E[Ñc0 ] in (2.13) (and displayed on a lower scale in the upcross-

ing plots) are also incorporated in Figure 3, but they are too small to be

visible. As expected, the estimated TOHM bounds approach the “truth”



as c → ∞. Convergence appears to be slower for Example 1. The plots,

however, are presented on log10-scale, and thus in all cases we obtain a good

approximations of the global p-values.

4. Comparing TOHM and Bonferroni’s bounds
{analysis}

In fields such as high energy physics and astrophysics, experiments are often

characterized by the search of one signal over a wide pool of possibilities.

The simplest possible way to tackle this problem using classical Multiple

Hypothesis Testing (MHT) is by means of Bonferroni correction (Bonfer-

roni, 1935, 1936). The Bonferroni bound for the global p-value is

pBF = R · min
θr∈ΘR

P (W (L) ≥ w(θr)) = R · P (W (L) ≥ cR). (4.19) {bonfcorr1}

The standard Bonferoni correction, pBF , used to bound statistical signifi-

cance in multiple testing also yields a bound on P (maxθr∈ΘR{W (θr)} ≥ cR).

Specifically,

P

(
max
θr∈ΘR

{W (θr)} ≥ cR

)
= P

(
∪θr∈ΘR{W (θr) > cR}

)
≤
∑
θr∈ΘR

P (W (θr) > cR)

= R · P (W (L) > cR) = pBF .



            Threshold c   
(Significance of TOHM in σ)

R
at

io
 B

F
/T

O
H

M
 (

lo
g 1

0−
sc

al
e)

R=15
R=30
R=50

R=100
R=200
R=500

R=1000

1
5

15
50

15
0

20
(3.54)

40
(5.63)

60
(7.16)

80
(8.42)

100
(9.52)

            Threshold c   
(Significance of TOHM in σ)

R
at

io
 B

F
/T

O
H

M
 (

lo
g 1

0−
sc

al
e)

R=15
R=30
R=50

R=100
R=200
R=500

R=1000

1
5

15
50

15
0

20
(3.91)

40
(5.88)

60
(7.36)

80
(8.60)

100
(9.68)

            Threshold c   
(Significance of TOHM in σ)

R
at

io
 B

F
/T

O
H

M
 (

lo
g 1

0−
sc

al
e)

R=15
R=30
R=50

R=100
R=200
R=500

R=1000

1
5

15
50

15
0

4
(3.29)

8
(7.58)

8
(7.58)

10
(9.64)

12
(11.69)

Figure 4: Ratio of Bonferroni and TOHM’s bounds at increasing values of c
(and corresponding significance for TOHM), and considering different resolutions
(grey curves). The left, central and right panels correspond to Example 1, 2 and
3, respectively. {EVTBonf}

In this section, we investigate the relationship between the TOHM and

Bonferroni bounds using simple constructs from EVT in order to individu-

ate situations where the latter can be used without leading to overly con-

servative results.

First, we introduce the distinction between upcrossings and exceedances

of {W (θr)}. Specifically, an exceedance of cR by {W (θr)} occurs at θr

if {W (θr) > cR}. An illustration of the difference between upcrossings

and exceedances is given in Figure S.1. We denote by ÑcR , the process of

exceedances of cR by {W (θr)}, and let ṄcR be the process of upcrossings as



defined in 2.3. Notice that

E[ṄcR ] =
R∑
r=1

P

(
W (θr) ≥ cR

)
=

R∑
r=1

P

(
W (θr) ≥ max

θr′∈ΘR
{w(θr′)}

)
(4.20) {derivationBF1}

= R min
θr∈ΘR

P (W (L) ≥ w(θr)) = pBF (4.21) {derivationBF2}

Because each upcrossing requires at least one exceedance, E[ṄcR ] ≥

E[ÑcR ]. Moreover, we expect that the clusters of exceedances correspond-

ing to each upcrossing to be smaller, and consequently E[ṄcR ] to approach

E[ÑcR ] as cR increases. E[ṄcR ] can be easily computed using pBF in (4.20)-

(4.21); whereas, when {W (θ)} satisfies Condition 1, E[ÑcR ] is approxi-

mately equal to the second term in (2.13), for large R. Further, E[ÑcR ]

dominates the first term in (2.13), as cR → ∞. Thus, it is natural to

consider if there are situations where (2.13) and pBF are approximately

equivalent bounds on P (maxθr∈ΘR{W (θr)} ≥ cR), i.e,

P (W (L) > cR) +
a(cR)

a(c0)
E[Ñc0 ] ≈ pBF , (4.22) {approximation}

for c0 ≤ cR, cR → +∞ and R → +∞. Unfortunately, simultaneously

quantifying the rates at which cR and R must increase for (4.22) to hold

is not an easy task; hence, we investigate the approximation in (4.22) by



means of a numerical simulation where we compare the performance of

Bonferroni and the TOHM bounds with respect to the number of tests

considered and the level of significance for Examples 1, 2 and 3.

The results are reported in Figure 4, where we plot the ratio of the

two bounds for increasing values of c, using different grid sizes, R. Because

the signed-root LRT, {Qn(θ)}, is used in Example 3 rather than the LRT,

smaller values of c correspond to equally significant results. In the horizon-

tal axes, the statistical significance is reported in terms of σ-significance,

i.e., the number of standard deviations from the mean of a standard nor-

mal distribution that corresponds to the tail probability expressed by the

one-sided p-value, i.e.,

#σ = Φ−1(1− p-value),

where Φ is the standard normal cumulative function.

In Examples 2 and 3, Bonferroni is always more conservative than the

TOHM bound when at least 30 tests are performed. For R = 15, Bonferroni

becomes less conservative only when the level of significance achieved is of

the order of 6σ and 11σ, respectively.

A more interesting situation is observed for Example 1. Here, equiv-



alence of pTOHM and pBF occurs for values of c much smaller than those

for which the same limit is achieved in Examples 2 and 3. Further, when

R ≤ 50, Bonferroni quickly becomes less conservative than the TOHM

bound as c increases. For R = 50 for instance, Bonferroni performs better

than TOHM when c > 30 (∼ 4.5σ significance).

Finally, all the plots in Figure 4 suggest that the TOHM bound is

preferable to Bonferroni with very high resolutions, i.e. R ≥ 500, for all the

significance levels considered (up to ∼ 10σ).

It is important to point out that the value of R selected via the upcross-

ing plots discussed in Section 3.2 is the minimum number of grid points

(among those considered) for which Ê[Ñc0 ] converges to its limit. As R

increases beyond this point, the estimated TOHM bound remains constant,

whereas Bonferroni’s continues to increase. This implies that, when the

number of tests to be conducted can be selected arbitrarly, Bonferroni will

not be overly conservative if the “elbow” in the upcrossings plot appears at

a relatively small value of R and the observed value of c is large. However,

practitioners should keep in mind that when attempting to identify the sig-

nal location, θ̃, a higher resolution is typically required and thus TOHM is

preferable.
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Example Test Method R cR θ̃ p-value
(Significance)

Example 1
H0 : η = 0 Bonferroni

100 38.326 3.404
2.99 · 10−8 (5.42σ)

H1 : η > 0 TOHM 2.11 · 10−8 (5.48σ)

Example 2

H0 : η = 0 Bonferroni
50 21.021 27.265

1.14 · 10−4 (3.69σ)
H1 : η > 0 TOHM 2.51 · 10−5 (4.06σ)
H0 : η = 1 Bonferroni

50 0.606 27.890
> 1 (0.00σ )

H1 : η < 1 TOHM 7.201 · 10−1 (0.58σ)

Example 3
H0 : ξ = 0 Bonferroni

50 11.826 31.266
1.43 · 10−30 (11.43σ)

H1 : ξ 6= 0 TOHM 5.06 · 10−31 (11.52σ)

Table 1: Summary of the results of TOHM and MHT via Bonferroni on real data
for Examples 1, 2 and 3. {real_table}

4.1 Data analyses
{application}

In this section we compare the TOHM and Bonferroni bounds for Examples

1, 2 and 3. The results are summarized in Table 1. In the dark matter search

problem of Example 1, we obtain a significance in favour of the presence of

a dark matter emission of about 5.4σ using both TOHM and MHT. This

result is not surprising since cR = 38.326 and as shown in the central panel

of Figure 4, at c ≈ 40 the gray line associated with R = 100 is very close the

red dashed line. The signal location selected is close to the truth (3.5GeV),

and the estimated model is plotted as a solid red line in the left panel of

Figure 1; the signal location selected, θ̃ = 3.404, is indicated by the green
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dotted vertical line.

In Example 2 both TOHM and Bonferroni reject the hypothesis that

the observed emission is due to a power-law distributed cosmic source at

4.06σ and 3.69σ respectively. Because this example involves a non-nested

models comparison, we invert the null of the hypotheses in order to avoid

meaningless results (see Section 3.1 for more details). In the inverted test,

the power-law model cannot be rejected. Both the fitted dark matter model

and the fitted power-law cosmic source model are displayed in the central

panel of Figure 1. In Example 2, when testing (1.2), the value of θ (i.e.,

the signal annihilation of the dark matter model) selected by TOHM is

θ̃ = 27.265GeV. This is somewhat off from the true value used to simulate

the data (θ = 35GeV), perhaps because our analysis does not account for

instrumental errors. Our analysis also only uses the spectral energy of the

γ-ray signals, whereas in practice the directions of the γ-ray would also be

used, thus increasing the statistical power.

Finally, for the break-point regression model in Example 3, both TOHM

and MHT give similar inferences (11.52σ and 11.43σ respectively) when

rejecting the hypothesis of a linear model with no break-point. The equiv-

alence among the two procedure is likely due to the very high statisti-

cal significance, and the only moderately large number of tests conducted



(R = 50). The fitted model is displayed in Figure 1 where the green triangle

corresponds to the optimal break-point location, i.e., the maximum of the

signed-root LRT process occurs at a mother’s age of 31.266 years.

5. Discussion
{discussion}

In this paper we discuss a highly generalizable method to efficiently conduct

statistical tests under non-standard conditions, including bump-hunting,

structural change detection and non-nested models comparison.

The main advantages of the method proposed are its easy implemen-

tation and its efficiency in providing accurate inference, while controlling

for very small Type I errors rates. Following Davies (1987) and Gross and

Vitells (2010) we combine the theoretical framework of EVT with the prac-

tical simplicity of Monte Carlo simulations and we generalize their results

beyond the LRT and χ2. Using a suite of simulation studies we show that

as few as 100 Monte Carlo simulations are often sufficient to achieve a high

level of accuracy. Although we do not investigate the power of TOHM

here, readers interested in power are directed to Davies (1977) for a formal

derivation of lower and upper bounds of the power function in the normal

case, or the simulation studies conducted in Algeri et al. (2016) and Algeri

et al. (2016) for the χ̄2
01 case.

From a more practical perspective, we propose simple graphical tools



to select the threshold c0 and to specify an appropriate number of sub-tests

R to guarantee robustness of the resulting inference. Finally, we investi-

gate the relationship between the TOHM and Bonferroni bounds and we

implement both procedures on our running examples. Extensions of our

results to the case where the nuisance parameter specified only under the

alternative, θ, is multi-dimensional are the subject of a forthcoming paper

(Algeri and van Dyk, 2018).

It is important to point out that the stringent significance requirements

play a critical role in both the theory discussed in Section 2 and practical

applications. Specifically, this setup is particularly well suited for searches

in high energy physics, where the significance level necessary to claim a

discovery is of at least 5σ. However, in light of the recent “p-value crisis”,

culminated with the Journal Basic and Applied Social Psychology banning

the use of the p-value in future submissions (Wasserstein and Lazar, 2016;

Leek and Peng, 2015), stringent significance criteria may become more pop-

ular in other scientific communities.

Supplementary Materials In Section S.1 we discuss the error rate

of (2.8) for Gaussian, χ2 and χ̄2
01 processes. Proofs of Result 2 and Result

3 are collected in Section S.2. Additionally figures are reported in Section

S.3. Data used in Examples 1 and 2 are also downloadable among the
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Supplementary Materials.
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