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Abstract 17 

Speech comprehension requires rapid online processing of a continuous acoustic signal to extract 18 

structure and meaning. Previous studies on sentence comprehension have found neural correlates of 19 

the predictability of a word given its context, as well as a of the precision of such a prediction. 20 

However, they have focussed on single sentences and on particular words in those sentences. 21 

Moreover, they compared neural responses to words with low and high predictability, as well as with 22 

low and high precision. However, in speech comprehension a listener hears many successive words 23 

whose predictability and precision vary over a large range. Here we show that cortical activity in 24 

different frequency bands tracks word surprisal in continuous natural speech, and that this tracking is 25 

modulated by precision. We obtain these results through quantifying surprisal and precision from 26 

naturalistic speech using a deep neural network, and through relating these speech features to 27 

electroencephalographic (EEG) responses of human volunteers acquired during auditory story 28 

comprehension. We find significant cortical tracking of surprisal at low frequencies including the 29 

delta band as well as in the higher-frequency beta and gamma bands, and observe that the tracking is 30 

modulated by the precision. Our results pave the way to further investigate the neurobiology of 31 

natural speech comprehension. 32 
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Introduction 37 

To understand spoken language, a listener must rapidly process information that unfolds  over several 38 

timescales, including the duration of syllables at around 150 ms, words of about 300 ms, and phrases 39 

of 1 s (Giraud & Poeppel, 2012). Recent studies have shown that cortical activity in the delta, theta and 40 

gamma frequency bands tracks acoustic features of speech such as the speech envelope as well as 41 

phonemic features (Di Liberto, O’Sullivan, & Lalor, 2015; Ding et al., 2018; Ding & Simon, 2014; 42 

Lakatos, Chen, O'Connell, Mills, & Schroeder, 2007; Zion Golumbic et al., 2013). This cortical tracking 43 

of speech features has accordingly been proposed to reflect neural mechanisms of speech processing, 44 

for instance an online segmentation of speech into acoustic speech tokens such as phonemes that occur 45 

on the time scale of a few hundreds of milliseconds (Giraud & Poeppel, 2012; Hyafil, Fontolan, 46 

Kabdebon, Gutkin, & Giraud, 2015).  47 

The processing of higher-level linguistic information in speech may employ cortical tracking 48 

as well. Recent findings showed that cortical activity in the delta and theta frequency bands 49 

synchronized to sequential cues such as the rhythm of phrases and sentences in continuous speech 50 

(Ding, Melloni, Zhang, Tian, & Poeppel, 2016; Keitel, Gross, & Kayser, 2018), to hierarchical cues 51 

such as context-free grammar structure (Brennan & Hale, 2019), as well as to the semantic dissimilarity 52 

between successive words (Broderick, Anderson, Di Liberto, Crosse, & Lalor, 2018). 53 

An important property of word sequences is that they can allow the prediction of an upcoming 54 

word, resulting in a word expectation. The degree to which a word can be predicted is referred to as 55 

precision and reflects the certainty with which a neural population generates its prediction. Predictions 56 

and precision are both closely related to putative implementations of predictive processing (Feldman & 57 

Friston, 2010; Heilbron & Chait, 2017; Kanai, Komura, Shipp, & Friston, 2015). Behavioral studies 58 

have indeed corroborated that the brain makes predictions about upcoming speech segments: words can 59 

be better distinguished from noise when transition probabilities between words are high rather than low 60 

(Miller, Heise, & Lichten, 1951), and a highly-expected word can be perceived as heard even when 61 

obscured by noise (Miller & Isard, 1963). 62 
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Neurophysiological research on event-related potentials elicited by a word in a sentence has 63 

shown that the brain response to a word reflects the word expectancy through modulation of the N400 64 

response (Kutas & Hillyard, 1984). Although this response has not been found to be further modulated 65 

by the precision of the prediction (Federmeier, Wlotko, De Ochoa-Dewald, & Kutas, 2007), precision 66 

can influence the neural power in the alpha and theta band (Rommers, Dickson, Norton, Wlotko, & 67 

Federmeier, 2017). The power in the beta frequency band has been found to be reduced by semantic 68 

and syntactic violations, and may therefore relate to word expectation as well (Bastiaansen, Magyari, 69 

& Hagoort, 2010; Davidson & Indefrey, 2007; Kielar, Meltzer, Moreno, Alain, & Bialystok, 2014). 70 

Gamma power has been observed to increase when a word is highly predictable but not when its 71 

predictability is low (Molinaro, Barraza, & Carreiras, 2013; Wang, Zhu, & Bastiaansen, 2012).  72 

However, these prior studies on neural correlates of word expectancy and precision have 73 

focused on specific words in single sentences, contrasting words with high and low expectancy as well 74 

as with high and low precision. But natural speech often consists of many sentences, and the expectancy 75 

and the corresponding precision of successive words take a range of values that do not fall in only two 76 

classes of 'high' and 'low'. It therefore remains unclear how neural responses to word expectancy and 77 

precision correlate with this graded variability. 78 

Furthermore, assessing the cortical responses to the linguistic features of successive words in 79 

naturalistic stories allows to quantify the cortical tracking of these features. A recent investigation on 80 

word predictability and hierarchical structure in naturalistic speech used such an approach to show 81 

cortical tracking of word surprisal, but did not investigate an influence of precision and did not 82 

investigate power modulation in higher frequency bands (Brennan & Hale, 2019; Frank & Willems, 83 

2017).  84 

Here we therefore set out to investigate cortical tracking, including through power modulation 85 

in higher frequency bands, of word surprisal and the precision of word prediction in naturalistic stories. 86 

The surprisal of a word denotes the log-transformed conditional probability of a word based on the 87 

preceding context. The surprisal has been argued to relate to processing load (Levy, 2008) and predicts 88 

reading time (Frank, Otten, Galli, & Vigliocco, 2015; Smith & Levy, 2013). Precision is the inverse of 89 
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the entropy of the conditional probability distribution over a close vocabulary set. We quantified word 90 

surprisal and precision from naturalistic stories using language modelling as estimated by a recurrent 91 

deep neural network, and then related the obtained word features to electroencephalographic (EEG) 92 

responses of volunteers who listened to the stories. 93 

 94 

Materials and Methods 95 

Participants. 13 subjects (aged 25 ± 3 years, 6 females) participated in the experiment. The volunteers 96 

were all right-handed native English speakers. They had no history of hearing or neurological 97 

impairment. All participants provided written informed consent. The experimental procedures were 98 

approved by the Imperial College Research Ethics Committee. 99 

Experimental Design. We employed naturalistic speech narratives in the subjects' native language 100 

(English). The experiment consisted of one session in which we measured electroencephalographic 101 

(EEG) responses to the short stories 'Gilray’s flower pot' and 'My brother Henry' by J.M. Barrie as well 102 

as 'An undergraduate’s aunt' by F. Anstey (Patten, 1910). The stimuli were sourced from the public 103 

domain 'librivox.org' and were spoken by a male voice. The corresponding text was obtained from the 104 

project Gutenberg (http://www.gutenberg.org/ebooks/32846). The audio material was presented in 15 105 

parts, each of which were 2.6 ± 0.43 min long. The total length of the stories was 40 min. After each 106 

part of a story, participants answered comprehension questions about what they just heard. These 107 

questions were presented as multiple-choice questions on a monitor. Participants were asked 30 108 

questions in total. 109 

Language modeling. We used computational linguistics methods to quantify linguistic features in the 110 

employed stories. Specifically, we employed statistical language modelling to compute word frequency, 111 

entropy and suprisal from the text of the stories. 112 

Word frequency is a property of each individual word out of context, which was computed from 113 

Google N-grams by using only the unigram values. This word feature is an estimate of the unconditional 114 
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probability of the occurrence of a word 𝑤, 𝑃(𝑤). We use the negative logarithm of this probability such 115 

that all our information-theoretic word features are expressed in the same unit. 116 

 Both entropy and surprisal follow from conditional probabilities of a particular word given the 117 

preceding words. We denote by 𝑃(𝑤%|𝑤',… ,𝑤%*') the conditional probability of the mth word in the 118 

sequence, 𝑤%, given the previous 𝑚− 1 words 𝑤',𝑤., … ,𝑤%*'. Taking the negative logarithm of this 119 

probability yields the surprisal value 𝑆(𝑤%) for that word: 120 

𝑆(𝑤%) = − log4𝑃(𝑤%|𝑤',… ,𝑤%*')5 (1) 121 

The surprisal, also referred to as self-information or information content, quantifies the information 122 

gain that an upcoming word generates with respect to the prior sequence of words. It can be related to 123 

how unexpected a word is given the previous words in the sentence. Inasmuch as surprisal informs 124 

about expected words, precision relates to the confidence about the predictions made (Koelsch, Vuust, 125 

& Friston, 2018). A high precision translates in a high confidence about a word expectation, meaning 126 

that the word is predictable. 127 

The entropy 𝐸(𝑚) of the prediction of the mth word 𝑤%, that is, the uncertainty for predicting 128 

the word 𝑤% from the context (𝑤', … ,  𝑤%*'), is given by the sum of the conditional probabilities for 129 

each possible word 𝑤8, weighted by the logarithm of this probability. In other words, the entropy is the 130 

expected surprisal 131 

𝐸(𝑚) =9𝑃(𝑤8|𝑤',… ,𝑤%*')	ln	 log	[𝑃(𝑤8|𝑤',… ,𝑤%*')]
>?

(2) 132 

The precision of the mth word 𝑤% follows as the inverse of entropy 1/𝐸(𝑚). We note that the 133 

precision of the mth word is not a function of that word itself, but of the probability distribution 134 

of the words at that position. 135 

The conditional probabilities for the different words in the sequence, given the preceding 136 

words, were computed through a recurrent neural network language model (Bengio, Ducharme, 137 

Vincent, & Jauvin, 2003; Graves, 2013). The network had a hidden layer with recurrent connections to 138 

encode previous input. Such networks are particularly useful for processing sequences and have 139 



 7 

previously been successfully applied to language modelling (Bengio et al., 2003; Graves, 2013). In 140 

particular, a recurrent neural network can capture long-term dependencies, of variable length, by 141 

encoding preceding words through its recurrent connection into the state of the hidden neurons. This is 142 

enabled by a careful balance between short- and long-term memory and means that there is in principle 143 

no limit on the number of preceding words that such a network can take into account (Pascanu, Mikolov, 144 

& Bengio, 2013). This contrasts with N-gram language models, for instance, that are limited to a context 145 

window of N-1 words (Brown, Desouza, Mercer, Pietra, & Lai, 1992). 146 

The network was implemented using the feature-augmented recurrent neural network language 147 

modelling toolkit (Mikolov, Kombrink, Burget, Černocký, & Khudanpur, 2011). To decrease the 148 

computational time required for training, this toolbox assigns words to classes and factorizes the output 149 

layer into a part that describes the probability of each class given the previous words, as well as another 150 

part that describes the probability of each word within a class given the previous words. This 151 

factorization yields a significant decrease in training time at a small cost to accuracy; importantly, the 152 

network still computes the probability of individual words following the previous words (Mikolov et 153 

al., 2011). We employed 300 classes. As an embedding layer we used the pre-trained global vectors for 154 

word representation trained on the Wikipedia 2014 and the Gigaword 5 datasets (Pennington, Socher, 155 

& Manning, 2014). The recurrent layer encompassed 350 hidden units. The source code was customized 156 

to compute the entropy of each word, a feat that the original code did not allow. The neural network 157 

was then trained on the text8 dataset that consists of 100 MB of data from Wikipedia (Mahoney, 2011), 158 

using back propagation through time, truncated to five words with a starting learning rate of 0.1. The 159 

data was cleaned to remove punctuation, html tags, capitalisation and numbers before training. Since 160 

the network can only train well on words that appear frequently enough in the training data to allow 161 

meaningful training, we limited the vocabulary to the 35,000 most common words in the training 162 

dataset. The remaining words were mapped to an 'unknown' token. Infrequent words in the stories, such 163 

as compound nouns used for style, that appeared repeatedly throughout the stories did therefore not 164 

obscure the results. 165 
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The output of the recurrent neural network was obtained from a softmax function, and could 166 

therefore be interpreted as the probability distribution for an upcoming word given the preceding words 167 

in the input sequence. The network was therefore trained to predict the next word, that is, to compute 168 

an output that was as close as possible to a probability distribution that was one for the actual upcoming 169 

word and zero for all remaining ones. The trained network was then run on the stories that the 170 

participants heard. Precision and surprisal of each word were determined from the network's computed 171 

probability distribution at the corresponding word through Equations (1) and (2). 172 

 173 

Figure 1: Experimental overview.  (A), We employ continuous speech narratives and utilize speech 174 

processing as well as language modelling to extract acoustic and linguistic features, namely word 175 

onset, word frequency, precision and surprisal. (B), The participant's neural activity is recorded 176 

through EEG while they listen to the stories. (C), We extract temporal response functions for each of 177 

the four speech features through computing a linear model that estimates the EEG recordings from the 178 

speech features. 179 
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Speech features. To relate surprisal and entropy to the EEG data, we constructed a time series 181 

for each linguistic feature. We first aligned each word of the speech to the acoustic signal through forced 182 

alignment using the Prosodylab-Aligner software (Gorman, Howell, & Wagner, 2011). We thereby 183 

obtained the time at which each word began. To construct features for surprisal and for precision that 184 

were aligned with the speech stimuli, we assigned each of the time points where a new word started a 185 

spike of a magnitude that corresponded to the surprisal respectively precision of that word (Figure 1A). 186 

A similar procedure has been employed recently for assessing neural responses to the semantic 187 

dissimilarity of consecutive words (Broderick et al., 2018). 188 

Because surprisal and precision are high-level linguistic features of speech, we sought to 189 

ascertain that any putative cortical tracking of them could not be explained by lower-level features. To 190 

this end we added three low-level speech features. First, cortical activity can track the onset of words, 191 

which can partly be based on changes in the acoustics at word boundaries and partly result from the 192 

brain's parsing of the acoustic signal to form discrete linguistic units (Brodbeck, Presacco, & Simon, 193 

2018; Ding & Simon, 2014). To account for this onset response, we constructed a word onset feature 194 

as a series of spikes, each of which had unit amplitude and was located at the onset of a word. Second, 195 

we computed the word position within a sentence. The latter can be correlated with precision, as the 196 

entropy tends to decrease across words within the sentence. The word position feature therefore served 197 

as a control to ensure that the neural response to precision is distinct from any incremental processing 198 

occurring throughout a sentence. Third, the frequency of a word in a given language, outside its context, 199 

is a linguistic feature that acts as a prior probability for computing the probability of a word in a 200 

sequence (Brodbeck et al., 2018). Word frequency can also interfere with surprisal: less frequent words 201 

may indeed often be more surprising. To capture the share of the neural response that could be explained 202 

away by word frequency, we included the latter as a third linguistic feature. This feature was computed 203 

by scaling the amplitude of the spike at each word onset by the negative logarithm of the frequency of 204 

the corresponding word. The logarithm was used such that word frequency and surprisal were expressed 205 

in the same units. 206 
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Finally, to investigate a possible modulating effect that precision may have on surprisal, we 207 

added an interaction term “Surprisal * Precision”. This was computed by multiplying precision values 208 

with surprisal such that the interaction feature effectively stands as a confidence-weighted version of 209 

surprisal. 210 

In summary, we computed five speech features: one acoustic feature, word onset, and four 211 

linguistic features, word position in its sentence, word frequency, precision, and surprisal. To those, we 212 

added the interaction term between surprisal and precision. Each feature was a time series of spikes, 213 

which each spike being located at the onset of a word. The amplitude of the spike was constant for the 214 

word onset feature. For each other feature it was scaled the corresponding value for each respective 215 

linguistic feature. All values of the different linguistic features were standardized to have unit variance 216 

and zero mean. 217 

EEG acquisition and pre-processing. We recorded brain activity using 64 active electrodes (actiCAP, 218 

BrainProducts, Germany) and a multi-channel EEG amplifier (actiCHamp, BrainProducts, Germany). 219 

The presented sound was recorded simultaneously through an acoustic adapter (Acoustical Stimulator 220 

Adapter and StimTrak, BrainProducts, Germany) and was used for aligning the EEG recordings to the 221 

audio signals. Both the EEG and the audio data were acquired at a sampling rate of 1 kHz. The left ear 222 

lobe was used as a reference for the EEG.  223 

The EEG data was processed by first applying an anti-aliasing filter (Kaiser window, FIR filter, 224 

cutoff -6 dB at 125 Hz, transition bandwidth 50 Hz, order 130) and by downsampling the data to 250 225 

Hz to reduce the computation time of subsequent operations. A high-pass filter (Hanning window, sinc 226 

type I linear phase FIR filter, cutoff -6 dB at 0.3Hz, transition bandwidth 0.15 Hz, order 5168), was 227 

then applied to every channel to remove non-stationary trends such as slow drifts and offsets. Bad 228 

channels were identified using the procedure 'clean_rawdata' from the EEGLAB plugin ASR (Artefact 229 

Subspace Reconstruction); they were then removed and interpolated with spherical interpolation. All 230 

channels were then referenced to the channel average. We subsequently ran an ICA decomposition and 231 

removed artifacts from eye blink, eyes movement as well as muscle motion by visual inspection of the 232 

ICA components. The cleaned data were low-pass filtered (Hamming window, linear phase FIR filter, 233 
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cutoff -6 dB at 62 Hz, transition bandwidth 10 Hz, order 138) and further down-sampled to 125 Hz. 234 

The filtered EEG data therefore contained the broad frequency range from 0.3 Hz to 62 Hz. 235 

We computed temporal response functions (TRFs) from EEG data in several frequency bands. 236 

The TRFs followed from a linear forward model that expressed the EEG signal at each electrode as a 237 

linear combination of the speech features shifted by different latencies (Broderick et al., 2018; Ding & 238 

Simon, 2012). We used FIR type I filters, designed with the synced windowed method, and employing 239 

a hamming window. We filtered the EEG data in several frequency bands of interest: delta band (low-240 

pass filter, cutoff at 4.5 Hz, filter order 132), theta band (band-pass filter, cutoff frequencies at 4 Hz and 241 

8 Hz, order 206), alpha band (band-pass filter, cutoff frequencies at 8 and 12 Hz, order 206), beta band 242 

(band-pass filter, cutoff 20 Hz and 30 Hz, order 82) and gamma band (cutoff at 30 and 60 Hz, order 243 

164). For every frequency band other than delta, we computed the power modulation by taking the 244 

absolute value of the Hilbert transform of the band passed data and further band-pass filtered it between 245 

0.5 Hz and 20 Hz (filter order 824) to remove the DC offset and higher frequencies that do not occur in 246 

the speech features.  247 

EEG data analysis. To relate the speech features to the EEG data, we used a linear spatio-temporal 248 

forward model that reconstructed the EEG recordings from the acoustic feature and the three linguistic 249 

features, shifted by different delays (Figure 1). Such an approach has recently been used successfully 250 

for assessing the cortical tracking of the speech envelope, phonemic information as well as semantic 251 

dissimilarity of words in speech (Broderick et al., 2018; Di Liberto et al., 2015; Ding & Simon, 2012). 252 

The coefficients resulting from this regression constitute the TRFs that inform on the brain's response 253 

to each feature at different latencies. 254 

In particular, the forward model sought to express the pre-processed EEG recordings 255 

{𝑥D(𝑡F)}DH'I  of the N = 64 channels at each time instance 𝑡F through the time series J𝑦L(𝑡F − 𝜏8)NLH'
O  of 256 

the F = 6 speech features word onset, word frequency, word position, word precision, word surprisal, 257 

and the product of surprisal and entropy, shifted by T different delays {𝜏8}8H'P : 258 

  259 
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𝑥D(𝑡F) =99𝛽DL(𝜏8)𝑦L(𝑡F − 𝜏8)
P

8H'

S

LH'

(3) 260 

 261 

We hereby considered equally spaced delays {𝜏8}8H'P  that ranged from -400 ms to 1,100 ms. At the 262 

sampling rate of 125 Hz this yielded a number of T = 188 lags. The obtained estimate for the EEG 263 

channel i is denoted by 𝑥D. The coefficient 𝛽DL(𝜏8) is the TRF for the ith EEG channel and speech feature 264 

j at the latency 𝜏8. The preprocessed EEG recording {𝑥D(𝑡F)}DH'I   was either the EEG signal in the delta 265 

band, or the power of the EEG signal in the higher frequency bands. We computed the TRFs for each 266 

participant separately, leading to a set of TRFs on which we could apply group-level statistical analysis 267 

as described below. We then also computed the population average of the subject-specific TRFs; the 268 

population averages are shown in the figures.  269 

The different speech features that we employed were partly correlated. The largest correlation 270 

emerged between surprisal and the interaction term “surprisal * precision”, at a value of 0.61. We 271 

wondered if these correlations would hinder the EEG analysis, and in particular if they would obscure 272 

the neural responses to the individual speech features through the linear regression analysis, an issue 273 

known as multicollinearity (Chatterjee & Hadi, 2015; Kumar, 1975). A high multicollinearity between 274 

features could result in higher variance or leakage between the coefficient 𝛽DL(𝜏8). However, the 275 

Frisch–Waugh–Lovell theorem from econometrics states that linear regression based on correlated 276 

features yields the same results as when the features are first orthogonalized, that is, decorrelated (Frisch 277 

& Waugh, 1933; Lovell, 2008). In addition, in our implementation of the multiple linear regression we 278 

used a singular value decomposition of the design matrix of time-lagged features, resulting in 279 

transformed features that were mutually uncorrelated (Klema & Laub, 1980). The correlation of the 280 

features was therefore not problematic. The only issue that multicolinearity can cause is significantly 281 

increased variance for each 𝛽DL(𝜏8) estimate, which typically emerges when the variance inflation factor 282 

(VIF) is above 5. For our speech features we obtained VIFs between 1.22-2.25, indicating that increased 283 

noise due to correlated features is not an issue. 284 
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As an additional control that our TRFs did not contain leakage from responses to different 285 

features, we developed a null model that was employed to assess the statistical significance of the actual 286 

TRFs (see below). The null model was constructed such that a potential leakage between features would 287 

appear similarly both in the actual model and in the null model, and therefore would not result in 288 

statistically significant results. It follows that any statistically-significant part in the TRFs that we 289 

obtained did not result from leakage between the features. 290 

Statistical significance. In order to determine the statistical significance of the estimated TRFs, we 291 

determined chance-level TRFs as a null model. The chance-level TRFs were computed by constructing 292 

unrelated speech features, and by relating these to the EEG recordings in the same way as for the 293 

computation of the actual TRFs. To establish chance-level linguistic TRFs, only the linguistic 294 

information of interest contained in the spike amplitude of the speech features but not the acoustic 295 

information in the spike timing needed to be unrelated to the EEG. We therefore constructed unrelated 296 

speech features by keeping the timing of the spikes identical to those in the true model. The speech 297 

feature that described word onsets was therefore not altered. However, we changed the amplitude of the 298 

spikes for the other linguistic speech features by taking their values from an unrelated story, that is, a 299 

story that was not aligned with the EEG data. To obtain a large number of null models, we also 300 

considered permutations of our 15 story parts. Through permutating entire story parts, and not the order 301 

of individual words, the statistical relationship between the linguistic features of successive words was 302 

conserved. Because we kept the timing of the spikes in the null model as in the actual stories, the 303 

obtained null model could only be used to determine the significance of the neural responses to the 304 

linguistic features, but not for those to the acoustic word onset.  305 

The actual TRFs were then analyzed for statistical significance through comparison to 1,000 306 

null models. The comparison was obtained from a permutation test together with cluster-based 307 

correction for multiple comparison (Oostenveld, Fries, Maris, & Schoffelen, 2011), where only clusters 308 

of at least four electrodes were kept. Specifically, we used the function spatio_temporal_cluster_test 309 

from the MNE python library. The statistic for each model coefficient, at each electrode and each lag, 310 

were computed using the empirical distribution formed by values from the null models, setting the 311 
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threshold at the 99th percentile of the null distribution. The cluster-level p-values were computed and 312 

we considered only clusters with a p-value greater than 0.05/10. We hereby used the Bonferroni 313 

correction to account for the ten different tests that reflected the different frequency bands and the 314 

different linguistic features.  315 

Data availability. The EEG data from all subjects together with the corresponding speech features are 316 

available on figshare.com (10.6084/m9.figshare.9033983.v1). An exemplary script for computing TRFs 317 

can be obtained from figshare as well (10.6084/m9.figshare.9034481.v1). 318 

 319 

Results 320 

Behavioural assessment. We first assessed to which degree the participants understood the stories 321 

through asking them comprehension questions. These questions were answered with an average of 96% 322 

accuracy, evidencing that the volunteers consistently understood the speech and paid attention. 323 

Cortical tracking of acoustic and linguistic speech features. The cortical tracking of the speech 324 

features can be found in different frequency bands. First, because all four features relate to words, the 325 

frequency range of the features is similar to the rate of words in speech. The latter is about 1 – 4 Hz and 326 

corresponds to the delta frequency range. Cortical activity at low frequencies, including the delta 327 

frequency band, can therefore be evoked by or entrain to the rhythm set by the acoustic and linguistic 328 

word features. Second, the amplitude of the neural activity in higher frequency bands can be modulated 329 

by the speech features. This may in particular occur for the theta band (4 - 8 Hz), the alpha band (8 – 330 

12 Hz), the beta frequency band (20 – 30 Hz, and the gamma frequency band (30 – 100 Hz), the power 331 

of which can be modulated by prediction in sentence comprehensio (Bastiaansen & Hagoort, 2006; 332 

Bastiaansen et al., 2010; Wang, Jensen, et al., 2012; Weiss & Mueller, 2012). 333 

We started by quantifying the neural tracking of the word features at low frequencies. We found 334 

neural responses to word frequency between delays of 300 - 610 ms (Figure 2). The topographic plots 335 

of the responses show large differences between the temporal scalp areas on the one hand and the 336 

parietal and occipital areas on the other hand. 337 
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 338 

 339 

Figure 2: Temporal response functions (TRFs) for acoustic and linguistic speech features. The 340 

temporal response functions for each electrode are shown in bold at time instances where they are 341 

significant compared to a null model that is based on shuffled data. EEG channels that yield a 342 

significant response within a particular range of delays, highlighted in grey, are indicated in white in 343 

the topographic plots. (A), The responses to the word onset appear as insignificant due to the 344 

construction of the null model. (B,C), We obtain significant neural responses to word frequency as 345 
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well as surprisal for delays around 400 ms (D), Significant neural responses to precision arise around 346 

delays of 100 ms as well as around 500 ms. (E), The interaction between surprisal and precision leads 347 

to a neural response at a delay of 400 ms as well as at a long delay of 1,000 ms. 348 

 349 

 350 

Figure 3: Neural responses in the theta frequency band. (A), Word frequency is positively 351 

correlated to theta power at a delay of 300 ms, and is negatively correlated at a delay of 1,000 ms. (B), 352 

Words that can be predicted with higher precision lead to an increased theta power at 150 ms and a 353 

decreased theta power at a latency of 700 ms. 354 

 355 

Importantly, we found significant responses to the word surprisal around a delay of 450 ms 356 

(Figure 2). These responses emerged predominantly in the EEG channels on the temporal and occipital 357 

scalp areas and were lateralized on the left hemisphere. Precision was tracked by cortical activity at 358 

delays of around 100 ms and around 500 ms. Moreover, we observed a significant neural response to 359 

the interaction of surprisal and precision, at an earlier latency of around 400 ms and at a longer latency 360 

of around 1,000 ms. 361 

We also computed the modulation of the power in the theta band, the alpha band, the lower and 362 

higher beta band as well as in the gamma band by the acoustic and linguistic features (Figures 4, 5). 363 

While the power in the alpha band and in the lower beta band was not significantly related to the 364 
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linguistic features, the power in the theta band was shaped by word frequency at delays of around 300 365 

ms and around 1,000 ms (Figure 3). Furthermore, the power in the theta band was significantly 366 

decreased by precision at delays of about 700 ms. 367 

 368 

Figure 4: Neural responses in the higher beta frequency band. (A), There are significant neural 369 

responses to surprisal, emerging at delays of 700 ms and 1,000 ms. (B), Precision causes an increased 370 

power in the higher beta band activity around a delay of 700 ms. 371 

 372 

The power in the higher beta band correlated positively with surprisal at delays of around 700 373 

ms and 1,000 ms (Figure 4). At the latter delay, the influence of surprisal was strongest at the left 374 

temporal channels. Moreover, the power in the higher beta band was modulated by precision at a delay 375 

of about 700ms, with the main contributions coming from the occipital channels. 376 

The power in the gamma band was increased by words with higher surprisal at the long latency 377 

of around 1,000 ms, mainly for the left temporal channels (Figure 5). The interaction of surprisal and 378 

precision shaped the gamma power as well, at the early delay of about 0 ms.  379 
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 380 

Figure 5: Tracking of surprisal by gamma-band activity. (A), The gamma activity is decreased at 381 

around 1,000 ms, mostly in the left temporal and frontal scalp areas. (B), The interaction between 382 

precision and surprisal leads to a modulation of the gamma power at the latency of around 0 ms. This 383 

modulation occurs predominantly for left temporal and frontal channels as well. 384 

 385 

Discussion 386 

We have shown that cortical activity tracks the surprisal of words in speech comprehension. Such 387 

cortical tracking has emerged at low frequencies, that is, within the delta band that encompasses a 388 

similar frequency range as the rate of words in speech. Importantly, we found that the neural activity in 389 

the faster theta, beta and gamma frequency bands tracks the surprisal as well. These frequency bands 390 

have previously been suggested to be involved in the bottom-up and top-down propagation of 391 

predictions and prediction errors (Lewis & Bastiaansen, 2015). 392 

We have further demonstrated that the cortical tracking of word surprisal is modulated by the 393 

precision: the interaction between surprisal and precision lead to responses both in the slow delta band 394 

as well as in the power of the faster gamma band. In particular, word predictions that are made with 395 

high precision but then lead to large surprisal cause an increased gamma power at zero lag. However, 396 

as opposed to a previous study on event-related potentials, we did not observe a significant effect in the 397 

theta or alpha bands (Rommers et al., 2017). This difference may be due to our use of naturalistic 398 
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stimuli, and the inclusion of all words in the analysis, while the previous study used specialized 399 

sentences with final words that had either high or low surprisal, and either high or low precision. 400 

The cortical tracking of surprisal may indicate predictive processing by the brain. Predictive 401 

processing is a framework for perception in which it is assumed that the brain infers hypotheses about 402 

a sensory input and that the hypotheses are constantly updated as new sensory information becomes 403 

available (Bendixen, SanMiguel, & Schröger, 2012; Friston, 2010; Friston & Kiebel, 2009; Kanai et 404 

al., 2015). In particular, the surprisal of a word reflects a prediction error, a key quantity in the 405 

framework of predictive coding (Friston, 2010). However, the expectancy of a word based on previous 406 

words also correlates with the plausibility of a word in a particular context (DeLong, Quante, & Kutas, 407 

2014; Nieuwland et al., 2019). Further studies are therefore required to disentangle neural correlates of 408 

actual word prediction from those that do not require predictive processing, such as word plausibility. 409 

The surprisal of a word can reflect both its semantic as well as syntactic information, and 410 

previous investigations into the neurobiological mechanisms of language comprehension have 411 

manipulated both independently (Henderson, Choi, Lowder, & Ferreira, 2016; Humphries, Binder, 412 

Medler, & Liebenthal, 2006). In contrast, our approach has taken a naturalistic and holistic approach to 413 

surprisal; we employed natural speech without manipulations combined with statistical learning of a 414 

rich variety of natural language cues through a recurrent neural network. Because the neural network 415 

infers both syntactic rules as well as semantic information from the training of the speech material, the 416 

reported neural response to word surprisal can reflect both semantic as well as syntactic information 417 

(Collobert et al., 2011). 418 

It is instructive to compare the reported neural responses to surprisal to the well-characterized 419 

event-related responses that can be elicited by violations of semantics, syntax or morphology in 420 

sentences. In particular, semantic violations can cause the N400 response, a negativity at 200 – 500 ms 421 

at the central and parietal scalp area (Kutas & Federmeier, 2011; Kutas & Hillyard, 1980). Syntactic 422 

anomalies due to ungrammaticality or temporary misanalysis elicit the P600, a broad positive potential 423 

that is located at the posterior scalp area and arises around 600 ms after the anomaly (Friederici, Pfeifer, 424 

& Hahne, 1993; Hagoort & Brown, 2000). More specific syntactic anomalies can lead to negative 425 
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potentials that occur anteriorly and that can be left lateralized, either occurring at 300 – 500 ms ((L)AN) 426 

or earlier, at 125 – 150 ms (ELAN) (Friederici, 2002; Rösler, Pechmann, Streb, Röder, & Hennighausen, 427 

1998; Steinhauer & Drury, 2012; Van Den Brink, Brown, & Hagoort, 2001).  428 

These event-related potentials (ERPs) do presumably not reflect the activation of single static 429 

neural sources, but rather waves of neural activity that propagate in time across different brain areas 430 

(Kutas & Federmeier, 2011; Maess, Herrmann, Hahne, Nakamura, & Friederici, 2006; Tse et al., 2007). 431 

In the case of the N400, for instance, this wave of activity starts at about 250 ms in the left superior 432 

temporal gyrus, and then propagates to the left temporal lobe by 365 ms as well as to both frontal lobes 433 

by 500 ms (Halgren et al., 2002; Helenius, Salmelin, Service, & Connolly, 1998; Van Petten & Luka, 434 

2006). A recent theory suggests that this wave of activity reflects reverberating activity within the 435 

inferior, middle and superior temporal gyri that corresponds to the activation of lexical information,  the 436 

formation of context and the unification of an upcoming word with the context (Baggio & Hagoort, 437 

2011). 438 

The spatio-temporal characteristics of the responses to surprisal that we have measured here 439 

share certain similarities with these ERPs. In particular, we have found neural responses to surprisal at 440 

latencies between 300 ms and 600 ms. These responses show a central-parietal negativity that is 441 

reminiscent of the N400. However, other features of the neural responses that we describe here appear 442 

distinct from these ERPs. The neural response to surprisal in the delta band at the latency of 600 ms 443 

does, for instance, not display the posterior positivity of the P600. Moreover, we have identified late 444 

responses around 700 ms and 1,000 ms. We have also shown that neural responses to surprisal arise in 445 

various frequency bands, beyond the delta band that matters for the ERPs. However, a further 446 

comparison of the neural response to surprisal to the related ERPs is hindered by the lack of spatial 447 

resolution offered by EEG recordings. Future neuroimaging studies using intracranial recordings or 448 

magnetoencephalography may localize the sources of the neural response to surprisal that we have 449 

measured here and quantify potential shared sources with the ERPs.  450 

The difference of the cortical tracking of surprisal to the well-known neural correlates of 451 

semantic, syntactic or morphological anomalies, and in particular the late responses at a delay of around 452 
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one second, may come as a result of our use of natural speech that differs from the artificially 453 

constructed and tightly controlled stimuli used to measure ERPs. First, in our experiment the subjects 454 

encountered no violations of semantics, syntax and morphology, but instead heard naturalistic speech, 455 

within which the words occurred in context. Second, our stimuli did not contain artificial manipulations 456 

of word surprisal or precision. Instead of altering the stimuli, we focused on quantifying surprisal and 457 

precision as they varied naturally in the presented stories. Third, we assessed the responses to surprisal 458 

and precision at each word in the story, and hence for words in every sentence position, rather than for 459 

words at a particular position within each sentence. Because we accounted for word position through a 460 

corresponding control feature, we avoided the possibility of sentence position having an effect on the 461 

results (Bastiaansen et al., 2010). Fourth, we did not employ isolated sentences but continuous stories 462 

so that information of integration occurred over time scales exceeding a few seconds. 463 

While our EEG recordings showed the cortical tracking of surprisal in different frequency 464 

bands, they did not allow us to precisely localize the sources of the activity in the cortex. Pairing EEG 465 

with functional magnetic resonance imaging (fMRI) or employing magnetoencephalographic (MEG) 466 

may allow to add spatial information to the temporal tracking that we have assessed here. A recent fMRI 467 

study, for instance, found that the left inferior temporal sulcus, the bilateral posterior superior temporal 468 

gyri, and the right amygdala responded to surprisal during natural language comprehension, while the 469 

left ventral premotor cortex and the left inferior parietal lobule responded to entropy (Willems et al., 470 

2015). Another recent magnetoencephalographic (MEG) measurement of the brain's natural speech 471 

processing found that entropy and surprisal play a role in the assembly of phonemes into words, and 472 

involves brain areas such as core auditory cortex and the superior temporal sulcus (Brodbeck et al., 473 

2018). Combining the temporal precision of EEG with the spatial precision of fMRI, or harnessing the 474 

ability of MEG to locate neural sources temporally and spatially, will allow to further clarify the spatio-475 

temporal mechanisms of natural language comprehension in the brain. 476 

In summary, we showed that neural responses to word surprisal can be measured from EEG 477 

responses to naturalistic stories. Our results demonstrate that both the slow delta band as well as the 478 

power in higher frequency bands, in particular the theta and higher beta band, are shaped by surprisal. 479 
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Moreover, we also showed that the neural response to surprisal is modulated by the precision of a 480 

prediction. In particular, predictions made with high precision which lead to high surprisal modulate 481 

gamma power in the left temporal and frontal scalp areas. In addition, we also demonstrated that neural 482 

activity in the delta, theta and beta frequency bands is shaped by the precision of word prediction 483 

directly. These responses arise at different latencies and at different scalp areas, suggesting a rich spatio-484 

temporal dynamics of neural activity related to word prediction. 485 
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