
Predation risk influences food-web structure by constraining species1

diet choice2

Hsi-Cheng Ho1, Jason M. Tylianakis1, 2, Jonathan X. Zheng3, and Samraat Pawar13

1Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK4

2School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, NZ5

3Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus London SW76

2AZ, UK7

Corresponding author:8

Hsi-Cheng Ho9

+44 (0)20 7594 221310

W2.6, 1st Floor, Kennedy, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK11

Statement of authorship:12

HH and SP conceived the idea. HH developed it with input from JT and SP. HH conducted the simulation and analysis.13

HH wrote the manuscript with input from all other authors, and all authors assisted with revisions. JZ visualised food14

webs in figures and made the pseudocode.15

Data accessibility statement:16

Empirical food-web data are from published literature, as listed in the SI. The R scripts that can reproduce simulation17

results can currently be accessed via contacting the corresponding author. These will be accessible online once the18

manuscript is published.19

Email addresses:20

HH: h.ho16@imperial.ac.uk21

JT: jason.tylianakis@canterbury.ac.nz22

JZ: jonathan.zheng12@imperial.ac.uk23

SP: s.pawar@imperial.ac.uk24

Short running title:25

Predation risk shapes food-web structure.26

Key words:27

Predation risk, optimal foraging, diet choice, metabolic theory, food-web structure, food-web topology, nestedness,28

modularity.29

Type of article:30

Letters31

Number of words:32

147 in the abstract, 5003 in the main text.33

Number of references:34

88 in the main article, 44 in the supporting information.35

Number of figures and tables:36

5 figures in the main article, 9 figures and 4 tables in the supporting information.37

1



Abstract38

The foraging behaviour of species determines their diet and, therefore, also emergent food-web structure.39

Optimal foraging theory (OFT) has previously been applied to understand the emergence of food-web40

structure through a consumer-centric consideration of diet choice. However, the resource-centric41

viewpoint, where species adjust their behaviour to reduce the risk of predation, has not been considered.42

We develop a mathematical model that merges metabolic theory with OFT to incorporate the effect of43

predation risk on diet choice to assemble food webs. This “predation-risk-compromise” (PR) model44

better captures the nestedness and modularity of empirical food webs relative to the classical optimal45

foraging model. Specifically, compared with optimal foraging alone, risk-mitigated foraging leads to46

more-nested but less-modular webs by broadening the diet of consumers at intermediate trophic levels.47

Thus, predation risk significantly affects food-web structure by constraining species’ ability to forage48

optimally, and needs to be considered in future work.49
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Introduction50

Understanding food-web structure—the arrangement of who-eats-whom interactions—is necessary for51

understanding biomass (ergo, energy) flows and the stability of ecosystems (May 1972; Allesina &52

Tang 2012; Rossberg 2013; Gravel et al. 2016). The trophic interactions in a food web are, in fact,53

accumulations of foraging events between individual organisms; all structural properties of food webs54

therefore emerge from individual foraging behaviours driven by metabolic demands (Brose et al. 2008;55

Petchey et al. 2008; Pawar et al. 2012; Portalier et al. 2019). Although this idea is intuitive, food-web56

structure, foraging behaviour, and metabolic constraints have historically been studied independently57

until recently (Abrams 2010; Beckerman et al. 2010; Loeuille 2010; Stouffer 2010; Valdovinos et al.58

2010). To mechanistically understand the emergence of food-web structure, it is therefore important59

to explore the underpinning, metabolically-driven diet choice of species. To this end, previous work60

has used optimal foraging theory (OFT; Charnov & Orians 1973; Stephens & Krebs 1986; Krebs et al.61

1977) combined with metabolic theory (Brown et al. 2004) to model the diet choice of consumers in62

food webs (Beckerman et al. 2006; Petchey et al. 2008). Optimal foraging theory stochastically models63

a series of decisions for each consumer, between whether to pursue or ignore each encountered resource64

item, such that their final diet composition maximises its net energy intake rate.65

By using metabolically-constrained search and handling parameters in the classical OFT diet-choice66

model as the mechanism for trophic link formation, Petchey et al. (2008), building on previous work67

by Beckerman et al. (2006), showed that the resulting “Allometric Diet Breadth Model” (ADBM)68

could help predict links in real food webs. This result highlighted the importance of metabolic69

constraints (through size-scaling) in determining diet choice, and supported the idea that OFT can70

help explain food-web structure. The ADBM and its variants has since then been used to predict the71

effects of temperature (Petchey et al. 2010) and behavioural size-dependence (Thierry et al. 2011)72

on food-web structure. Nevertheless, the predictive abilities of ADBM type models remain limited,73

raising doubts about the utility of body size and OFT alone for predicting food-web structure (Allesina74

2011). Additional factors may thus be needed to explain how food-web structure emerges from foraging75

decisions (Berlow et al. 2008; Eklöf et al. 2013; van Leeuwen et al. 2013; Jonsson et al. 2018).76

Here, we argue that the ability of OFT to predict empirical food-web structure is limited partly77

because the classical model is consumer-centric, i.e., a consumer chooses without constraints from a78

set of potential resources. In reality, all species in food webs excluding top predators and basal taxa79

are both a consumer and a resource, and must experience risk of predation while foraging. Indeed,80

anti-predator behaviour is common—consumers from practically all taxonomic lineages modify their81

foraging behaviour to mitigate predation risk (Laurila et al. 1997; Schmitz et al. 1997; DeWitt et al.82

1999; Altwegg et al. 2004; Jousset 2012), with these strategies playing a significant role in determining83

the forager’s fitness (Lima 1998). Studies have also found that predation-risk-driven behavioural84

responses of prey can strongly reduce their own consumption rates as predators and influence their diet85

choice (Lima & Valone 1986; Metcalfe et al. 1987; Beckerman et al. 1997; Pangle et al. 2012; McMahon86

et al. 2018). Thus, most consumers cannot possibly forage optimally (in a strict OFT sense) all the87

time, but still need to meet their metabolic demands while living in an “ecology of fear” (Brown et al.88

1999). We therefore propose that predation risk, by modulating optimal foraging (Berlow et al. 2008),89

should be an additional key factor structuring food webs (Beckerman et al. 1997; Schmitz et al. 1997;90

Kondoh 2007; Bucher et al. 2015). Yet, to our knowledge, no study has investigated how predation risk91

and metabolic constraints together influence the foraging decisions that generate food-web structure.92

In this study, we include predation risk and metabolic constraints into the classical OFT diet choice93
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model to study the emergence of food-web structure. Using this “predation-risk-compromise” (PR)94

model, we assemble food webs in silico, and test whether the new model better captures empirically95

observed food-web structure than the ADBM type approach based on classical OFT. We focus our96

discussion on nestedness and modularity as measures of food-web structure (Table S3). Empirical97

food webs are known to be nested and modular (Kondoh et al. 2010; Krause et al. 2003; Teng &98

McCann 2004; Montoya et al. 2006; Guimerà et al. 2010), and both properties have been proposed to99

promote the dynamical stability of food webs (Krause et al. 2003; Thébault & Fontaine 2010; Stouffer100

& Bascompte 2011; Grilli et al. 2016; Gilarranz et al. 2017). We show that the PR model outperforms101

the OF model in capturing empirical food-web structure across multiple communities, and quantify102

the the relative importance of optimal foraging vs. predation risk in determining food-web structure.103

Materials and Methods104

Foraging models105

The OF model derives the optimal diet of an individual consumer that maximises its net energy106

intake rate according to classical OFT (Charnov & Orians 1973; Krebs et al. 1977). We use biomass107

consumption rate as a proxy for energy intake rate, under the assumption that the energy content per108

unit biomass of resource and conversion efficiency (i.e., from biomass to energy) of consumer are both109

approximately constant irrespective of consumer or resource identity (Kondoh 2007; Petchey et al.110

2008), and independent of body size (Peters 1986; DeLong et al. 2010; Lang et al. 2017). The total111

biomass consumption rate of the jth consumer species in a food web can be written as112

C(Dj) =
∑
i∈Dj

(
εaijAijXi

1 +
∑

k∈Dj
akjAkjhkjXk

)
(1)113

where Dj is the set of species in its diet, ε its conversion efficiency (here assumed constant), and, for114

its ith resource species, aij is mass-specific search rate (m2·kg−1·s−1), Aij its attack success probability,115

hij its mass-specific handling time (s) (the time from pursuing to subjugating the resource), and Xi116

the resource’s biomass abundance (density) (kg·m−2). Equation (1) is a multi-resource extension of the117

classical (single-resource) type-II functional response (Holling 1959)(SI section 1.1), and is the expected118

energy intake over a large sample of iterated, stochastically-spaced foraging bouts (Charnov & Orians119

1973). The consumer’s biomass consumption rate depends on its diet set, as well as the abundances120

of those resource species. Using eqn (1), we use OFT to assign trophic links in a community with121

given and fixed species abundances (SI section 1.4) as follows. For a consumer, the profitability of122

each resource species is calculated as its attack success probability divided by mass-specific handling123

time (SI section 1.2; eqn (S12)). According to OFT, given the profitability ranking of resource species,124

lower-rank resource would not be eaten without higher-rank ones being included in the consumer’s125

diet (SI section 1.1). We therefore calculate, for each consumer species in the given community, the126

biomass consumption rate across the whole range of diet breadth, i.e., from eating only the most127

profitable species to sequentially including others ordered by profitability until it eats all species (SI128

section 1.2). The resource set that produces the highest consumption rate, Copt, constitutes the OF129

diet (Fig. 1A–B).130

OF can be seen as a predation-risk-free state of a consumer, where it has the luxury of being “picky”131

by ignoring not-so-profitable resources to achieve optimality. The PR model is an extension of the OF132
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model to include metabolic expenditure and predation risk as additional constraints on (objectives133

for) consumer foraging decisions as follows. First, we include a minimum mass-specific consumption134

rate, Cmin (s−1) that the consumer needs to balance its energy loss to somatic maintenance (Fig. 1C)135

(Rizzuto et al. 2018). Second, we introduce the effect of predation risk on every species as follows.136

First, we quantify realised predation risk (Prisk) for every species as137

Prisk =

(∑
Xreal∑
Xall

)eP

(2)138

where
∑
Xreal is the total biomass of all its realised consumers,

∑
Xall is the total biomass of all139

(including the realised) consumer species, and the exponent eP determines how Prisk increases with140 ∑
Xreal (Fig. S1). Thus, Prisk is bounded between 0 and 1 (Fig. 1D). Then, for a given species’ Prisk141

value, its corresponding risk-compromised consumption rate, Crisk, necessarily lies between the optimal142

(OF) consumption rate Copt and Cmin (Fig. 1C–D), such that:143

Crisk = Cmin + (1 − Prisk)(Copt − Cmin)144

Then, the resource set that yields the closest-but-higher consumption rate than this risk-compromised145

value is the predicted predation-risk-compromise (PR) diet (the diet set above the dashed line in Fig. 1D146

that is closest to it). That is, the Prisk value determines where a species lies between two extremes,147

depending upon its trophic position in the food web. When there is no risk (Xreal = Prisk = 0), predator148

avoidance is unnecessary, and the population can forage optimally (well exceeding its Cmin). This is149

essentially equivalent to the classical OFT condition (i.e, the OF model). At the other extreme, where150

the consumer bears maximum predation risk because all possible species forage on it (Xreal = Xall, so151

Prisk = 1), the need for predator avoidance outweighs the optimal consumption objective, such that the152

consumer forages in a way that minimises predation risk, while still meeting the Cmin threshold. This153

can be accomplished by taking a suboptimal diet that requires the least time spent doing risky foraging154

actions (searching/waiting vs. handling), yielding a consumption rate closest to, or exactly at, the155

threshold Cmin. Thus, in the PR model, consumers are simultaneously trying to meet three objectives:156

foraging optimally, mitigating predation risk, and meeting an energetically-minimum consumption rate.157

This approach is in the spirit of foraging models that use multiple-objective dynamic programming by158

Rothley et al. (1997).159

There are two possible ways that consumers can mitigate risk, depending on which of searching160

(waiting, if the consumer adopts sit-and-wait foraging) and handling is the riskier action. If handling is161

less risky than searching, the consumer can accept more resource types (i.e., becomes more generalised),162

effectively lowering the time allocated to searching/waiting within a foraging bout relative to what163

OFT would predict (resulting in a “diet-broadening” strategy). Conversely, if searching is less risky164

than handling, it can pursue only the more profitable resources which require less time to handle for165

gaining the same amount of energy (i.e., it becomes more specialised), effectively lowering the total166

time allocated to handling within a foraging bout (resulting in a “diet-narrowing” strategy) (SI section167

1.3). In the following sections, we focus on the diet-broadening strategy because assuming handling168

being the less risky action is empirically supported (see “Discussion”), and the diet-narrowing strategy169

also effectively converges to the OF model in our simulation. Simultaneously allowing both strategies170

converges to the broadening case. For full results of all strategies, see SI section 7. Finally, note171

that we define Prisk (eqn (2)) to be monotonic under the assumption that other mechanisms affecting172

predation risk of a species, such as interference between its consumers, are less important than the173
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effect of increasing the abundance of those consumers per se.174

Building food webs using the foraging models175

We use metabolic scaling theory to parameterise the foraging models (SI section 1.4–1.5). In short, X,176

a, A, and h of eqn (1) and the Cmin of the PR model are specified using body mass-based scaling rules.177

These update the ADBM model parameterisations (Petchey et al. 2008) with new, empirically-validated178

relationships (Table S1). We recognise that there is uncertainty in both the mathematical structure and179

exact parameterisation of the quantities. Therefore, we test the robustness of our results to variation180

in these formulations as described in the “Synthetic food webs” section.181

Given the values of parameters, we generated predicted food webs by applying each of the above182

two foraging models to every consumer species in a given community. The set of species could either183

be from an empirical community or a synthetic one, as explained further below. All simulations and184

analyses were performed using R (ver. 3.4.4) (R Core Team 2013).185

To assemble OF webs, we simply apply the OFT diet criteria simultaneously to each consumer186

species in the communities (eqn (1); Fig. 1A–B). In contrast, PR webs were assembled using the the187

following iterative algorithm (pseudocode in SI section 2):188

1. Generate an initial web following the OF diet choice rules using eqn (1). Notably, this is not the189

OF web against which the PR web will be compared.190

2. Calculate the predation-risk index (Prisk) of each species using eqn (2).191

3. Re-assign resource links for each species according to the diet-broadening strategy (Fig. 1C–E).192

4. Repeat steps 2–3 until both Prisk and the web’s topology do not change anymore.193

In step 3 we choose the diet-broadening strategy because using a diet-narrowing strategy effectively194

reproduces the food-web structure predicted by the OF model (SI section 7). Thus, in each iteration of195

steps 2–3, predation risk of certain consumers increases, which broadens the diet of those consumers196

in order to find the best risk-compromised diet, which, in turn, imposes additional predation risk to197

those newly-consumed species. This results in a sequential broadening of diets across trophic levels in198

each iteration until a steady state where no more diet broadening (and therefore no more change in199

predation risk) occurs.200

Most food-web topological features, and nestedness and modularity in particular, are connectance-201

dependent (Thébault & Fontaine 2010). Therefore, to generate PR and OF webs with comparable202

connectance to the empirical web, we manipulated the magnitude of handling time (h0; SI section203

1.4) while generating the model webs, keeping species’ abundances fixed (SI section 3). We choose to204

manipulate handling time instead of abundance to control food-web connectance because the aim of205

our foraging models is to generate a predicted food web based on given information, and abundance206

across a wide range of species is arguably better-quantified empirically (i.e., measured or estimated)207

than handling time.208

We note that the aim of this study is not to make the best model to reproduce food webs, but to209

quantify the effect of predation risk and maintenance metabolic rate constraining optimal foraging210

in food webs. We therefore focus on the difference between the foraging models per se, and do not211

compare these with existing web-generating models such as the cascade (Cohen & Newman 1985)212

and niche (Williams & Martinez 2000) models and their variants. This is also the reason why our213
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OF food-web assembly method differs fundamentally from the ADBM in that we do not search for214

parameters that optimise the fit of the OF or PR models, as this would prevent us from effectively215

comparing performance (predictive ability) of the OF and PR models for each set of parameterisations.216

Comparing ability of the foraging models to capture empirical food-web structure217

To compare the ability of the OF and PR models to capture real-world food-web structural properties,218

we used twelve terrestrial and aquatic empirical food webs with nodes well resolved to the species219

level (SI section 5). Because of the size-ratio biased (i.e., large-eats-small) nature of the allometric220

constraints we use (also see Petchey et al. 2008), we confined our study to carnivorous, herbivorous,221

and detritivorous interactions, excluding pathogenic, parasitic, and symbiotic interactions from each222

empirical food web.223

Based on four attributes of each empirical food web—species richness, identities of basal species,224

species’ body masses, and connectance—we generated fifty OF- and PR-predicted food-web counterparts225

each. The parameters X, a, A, h, and Cmin used for web-generation were specified as above-mentioned226

but with the constant and exponent(s) re-sampled from a normal distribution with means equal to227

the specified values and standard deviation as one tenth of the respective mean. This allowed us to228

account for parameter uncertainty. The preferred body-size ratio, Rp, was set to be the observed229

median resource-consumer body-mass ratio of each empirical web.230

The connectance for the OF and PR model webs was matched to the empirical value by manipulating231

h0 value as mentioned above. The consumption rate threshold, Cmin, of the PR model automatically232

set an upper bound for h0, preventing it from being biologically unfeasible. When h0 becomes too233

large, even the optimal consumption rate for certain species falls below Cmin, which is unfeasible and a234

PR food web cannot be generated. This also imposes a lower-bound on the connectance that PR food235

webs can achieve. During the simulation of PR food webs, we began by assuming a linear relationship236

between predation risk of the focal consumer and the total biomass of its predators (i.e., eP in eqn (2),237

equals one). Whenever the combination of empirical community attributes and the parameter values238

failed to produce a PR counterpart with acceptably close-to-empirical connectance (i.e., within 10%),239

we lowered the extent of the diet-broadening effect by increasing eP by 0.25 and re-assembled the PR240

food web (SI section 1.5). This process was repeated until an acceptable PR food web was produced.241

The summary of connectance and eP values of the fifty replicates of each empirical community can be242

found in Table S4 and shows that the mean value of eP was typically not much larger than one.243

Nestedness and modularity of empirical and model food webs were measured using the NODF and244

modularity indices, respectively (Table S3). We quantified how well the two foraging models captured245

these features of empirical food webs by calculating their absolute deviations from the empirical value.246

The comparison of performance was made by collapsing the fifty replicates of the twelve communities247

to 600 paired observations (paired by identity of replicates, as for each replicate the OF and PR web248

are generated with the same set of re-sampled parameters), then checking whether the deviations249

are smaller in PR than in OF. These paired observations were then compared using a linear mixed250

model (LMM, using the lmer function of the R package lme4 (Bates et al. 2014)), where the type of251

model (OF vs. PR) was set as the fixed effect, and community and iteration as nested random effects.252

To test if the performance results were consistent across different communities, we also conducted a253

community-specific comparison of the above-mentioned deviations using a paired-Wilcoxon test. Along254

with nestedness and modularity, we also analysed how well the two models captured several additional255

metrics that are commonly used in the literature to quantify food-web structure (results in SI section256
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7).257

Synthetic food webs258

We also generated synthetic food webs to gain further insights into the differences in food-web structures259

generated by the OF and PR models, the mechanisms generating these differences, and to test their260

structural sensitivity. For this, we assembled and compared synthetic food webs based on the OF261

model, PR model, and a null model where the links are randomly assigned. Structural differences262

between OF and null food webs allow us to identify structural signatures of optimal foraging per se,263

while differences between OF and PR webs allow us to understand the additional structural effects of264

predation risk.265

To test the sensitivity of our results to the structures of the metabolic models used for the foraging266

parameters and in food-web attributes, we repeated the above simulations and comparisons across267

fourteen schemes (Table S2). Each of these schemes is a unique combination of food-web attributes268

(species richness, proportion of basal species, mean and variation of species body masses) and parameters269

of foraging models (X, a, A, h, and eP; eqns (1) & (2)). Note that scheme 1 served as a baseline, with270

all others varying one attribute or parameter at a time. For further details about schemes, see SI271

section 1.4.272

Thus, we independently simulated fifty synthetic communities for each scheme based on scheme-273

dependent attributes and parameters. For each simulation, a given number of species were generated,274

and a designated number of these were randomly picked to be basal species. Species body masses were275

randomly drawn from a log-normal distribution (Preston 1948; Engen & Lande 1996; Pawar 2015)276

with scheme-dependent mean and standard deviation, which were considered to cover a range that is277

representative of empirical values (Table S4). Biomass densities of species were then derived based278

on a scheme-dependent scaling exponent. Across the three derived food webs (OF, PR, and null) for279

each synthetic community, the total number of links and the identities of basal species were kept the280

same. Also, cases where extra basal species (i.e., additional species with no resource other than the281

pre-picked basal species) or isolated basal species (i.e., basal species with no species consuming them)282

were by chance produced were discarded and replaced with new simulations. As the parameters were283

kept constant under each scheme, the variation among replicates here is due to the difference in species284

composition among synthetic communities. Structure quantification was done in the same way as285

described in the previous section. For each scheme, we compared the model-generated nestedness and286

modularity by LMM with the type of model (i.e., OF vs. PR vs. null) as the fixed and iteration as the287

random effect.288

Results289

In general, the PR model predicts the two key empirical food-web features better than the OF model.290

For nestedness, the PR model deviates significantly less from empirical networks than does the OF291

model (Fig. 2), though empirical food webs tend to be more nested than the counterparts predicted by292

either foraging model (Fig. 3A). The PR model produces closer-to-empirical nestedness in nine out of293

twelve empirical communities (Fig. 3A). In terms of modularity, the deviations of the PR model are294

again significantly smaller than those of the OF model (Fig. 2). How model-predicted webs differed295

from the empirical webs was community-dependent (Fig. 3B). Here again, the PR model performs296

better in nine out of twelve empirical communities (Fig. 3B).297
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Our analysis of synthetic food webs demonstrates that the structural features generated by the298

foraging models are largely insensitive to variation in food-web attributes or specification of the299

mathematical structure of the foraging parameters (Fig. 4). The OF model tends to produce more-300

nested synthetic food webs than the null model in practically all schemes, and the PR model consistently301

generates more-nested food webs than the OF model (Fig. 4A). In contrast, the modularity of model-302

generated synthetic webs, in comparison to null webs assembled at random, did depend on the scheme.303

Nevertheless, the differences between the OF and PR model predictions per se remain robust across304

schemes, with OF food webs nearly always being more modular (Fig. 4B).305

Besides the focal structural measures of nestedness and modularity, we also measured several other306

food-web structural metrics. The PR model also better captured empirical values than the OF model307

in the level of clustering, and variation in resource-consumer body-size ratios. Synthetic webs also308

showed a systematic and robust difference between the two models for all metrics. For further details,309

see SI section 7.310

Discussion311

Understanding the mechanisms and constraints that lead to the typically non-random structures of food312

webs remains a central challenge in ecology (May 1973; McCann 2000; Allesina & Tang 2012; Rossberg313

2013). We have shown that predation risk constrains optimal foraging in ways that have significant314

consequences for food-web structure. Specifically, an assembly model that incorporates predation risk315

(PR) generates more nested but less modular food webs than by optimal foraging (OF) alone, providing316

a better fit to the empirical data for both of these measures (Fig. 2–3). In addition, PR also causes317

other food-web features to deviate systematically from those produced by the consumer-centric OF318

model (SI section 7).319

Under both OF and PR assembly, the trophic level of consumers increases with their body mass,320

and in-degree (diet breadth) has a dome-like relationship with body mass (Fig. S4 & S5) because the321

preferred body-size ratio (Rp) is fixed. However, predation risk results in a broader diet at intermediate322

trophic levels than OF alone (Fig. 5B–C), which is also more empirically realistic (Fig. 5A). Furthermore,323

nestedness quantifies how much the diet of some consumers are subsets of the others, so it increases324

with the average diet overlap among species. The risk-driven increase in diet breadth of intermediate325

trophic-level (also intermediate-sized) consumers, effectively increases diet overlap, and therefore also326

nestedness. Thus, the predation-risk constraint helps to explain why empirical food webs are more327

nested than randomly-connected ones. Modularity, on the other hand, is essentially a measure of328

compartmentalisation—the degree to which species’ can be rearranged as highly connected groups with329

few inter-group connections. A food web has high modularity if the diet matrix can be arranged in330

distinct blocks. Thus, the diet-broadening effect of predation risk at intermediate trophic levels may331

increase the diet overlap within groups, making them more strongly connected, effectively increasing332

modularity. However, it may also blur the distinction among groups, effectively decreasing modularity.333

Therefore, the change in modularity produced by PR is less predictable than nestedness, and largely334

depends on the body-size structure of the community (Fig. 4B).335

Overall, incorporating predation risk improves the predictive ability of OFT-based assembly models.336

This improvement is not tremendous but significant. Although we compared empirical and model-337

generated food-web structures using a particular model structure, our study of synthetic food webs338

shows that our results are robust to variation in model structures and parameterisations. Thus, in339
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nature, predation risk likely affects consumers’ diet choice in a similar manner to the mechanisms we340

modelled. Specifically, consumers essentially have to meet multiple objectives or constraints while341

choosing their diet composition: maximizing consumption rate and (classical consumer-centric optimal342

foraging), meanwhile mitigating predation risk and maintaining a minimal consumption rate necessary343

for somatic maintenance. Nevertheless, the PR-predicted food-web structures still show considerable344

discrepancies from empirical webs. In particular, empirical food webs are consistently much more345

nested than model-predicted webs. There may be a number of reasons for these discrepancies, and our346

general framework can be extended in multiple ways to arrive at more precise models for predicting347

trophic links in real food webs.348

First, the conversion coefficient (ε; eqn (1)), the dimensionality of search rate (a; SI section 1.4),349

and preferred body-size ratio (Rp; SI section 1.4) are each assumed to be constant across species.350

However, all of these likely vary in the real world. Rp, in particular, determines the shape of attack351

success probability (A; SI section 1.4) and handling time (h; SI section 1.4) across the spectrum of352

resource-consumer body-size ratios. This, in turn, influences the degree of diet overlap among species353

and therefore the web’s nestedness. Comparing scheme 12 to scheme 1 (Table S2) of the synthetic food354

webs as an example, we showed that the way null webs differ from the OF and PR webs in nestedness355

is mainly affected by the shape of the chosen handling time function (eqn (S21) vs. eqn (S23); Fig. 4A).356

Therefore, improved data on species-wise Rp’s will likely improve the the ability of both OF and357

PR models to predict the nestedness of empirical webs. Similarly, literature has shown that ε differs358

between consumer types (e.g., carnivores vs herbivores) (Lang et al. 2017), and the exponent as well as359

intercept of the body-size scaling of search rate varies between 2D and 3D interactions (Pawar et al.360

2012). Incorporating better-resolved information on these parameters, if available, would be expected361

to generally improve the predictive ability as well.362

Second, when assembling food webs, we allowed all species in the community to be a potential363

resource of each consumer. However, in reality, species may have foraging or anti-predator traits,364

or spatio-temporal differences in phenology (Holomuzki 1986; Tollrian 1995; Relyea 2001; Turner &365

Montgomery 2003; Mikolajewski et al. 2010; Eklöf et al. 2013) that essentially forbid certain links.366

These body-size irrelevant constraints could possibly be better captured by food-web models based on367

phylogenetic relatedness (Cattin et al. 2004; Naisbit et al. 2012), which encodes such information. In368

this study, we adopt a size-driven mechanistic modelling approach to focus on our aim, which is to369

explore how our understanding of food-web structure can be improved by including metabolic and370

predation-risk constraints into OFT, but necessarily ignore these other constraints.371

Third, the form of the predation-risk index (Prisk) function (eqn (2)) could also be refined. We372

have assumed that the risk to a focal species increases monotonically with the number of its realised373

consumer species and their abundances, with the rationale that other mechanisms affecting predation374

risk are less important than consumer abundance itself. More work on the mechanistic basis of the375

predation risk function may lead to more accurate PR assembly models. For example, at high consumer376

densities, interference among consumers is expected to increase (Skalski & Gilliam 2001), possibly377

leading to a non-monotonic predation-risk index.378

Lastly, animals may respond to predation risk by decreasing total foraging time (Lima & Dill 1990;379

Beckerman et al. 1997) and pay the cost of predator evasion through an increased metabolic rate (e.g.,380

Hawlena & Schmitz 2010). These can practically be incorporated into the PR model by switching381

Cmin from a fixed value to a risk-dependent variable, such that if the increasing predation risk results382

in the total foraging time of a consumer being cut by half (or its metabolic rate being doubled), its383
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Cmin should also become twice as large according to the energy balance concept. Moreover, it is also384

possible that a risk-driven response of animals leads to a re-ranking of their profitabilities (e.g., forming385

a defensive group, thereby lowering the consumer’s attack success) which would, in turn, influence the386

OFT-based diet predictions. Such nuanced behaviours highlight the potential of extending the PR387

model.388

Although the empirical webs we used are all relatively well-sampled (SI section 5), food webs389

are known to be under-sampled generally (i.e., existent links are not detected), which leads to poor390

estimates of food-web metrics (Goldwasser & Roughgarden 1997; Martinez et al. 1999; Banašek-Richter391

et al. 2004; Tylianakis et al. 2010; Wood et al. 2015). However, the two features we focus on—nestedness392

and modularity—have been shown to be robust to such artefacts (Nielsen & Bascompte 2007; Tylianakis393

et al. 2010; Rivera-Hutinel et al. 2012; Vizentin-Bugoni et al. 2016). More importantly, there is no394

reason to expect that sampling artefacts are likely to bias construction of PR counterparts more395

than OF ones, and our results should hold qualitatively even as higher quality food-web data become396

available. A related food-web sampling issue is the common practise of using the average adult state as397

being representative of a species’ role in the ecosystem. In reality, individuals of a species vary in body398

size, and often forage differently across life stages. Omitting such intraspecific variation or ontogenetic399

shifts in diet could fundamentally bias our understanding of empirical food-web structure (Clegg et al.400

2018). In this study, we have also ignored such diet variation in both our modelling and empirical401

validation due to limits on the resolution of empirical data. Nonetheless, our models could also be402

applied to webs resolved to the ontogenetic level if data are available—the same assembly algorithm403

can be used.404

Predation risk is also likely to have consequences for food-web dynamics and stability (Kondoh405

2007), which we have not explored here. That is, we fixed species biomass abundances to generate406

food-web structures. Our model can be extended to tackle species dynamics within a food web by407

setting biomass abundance as a variable, and letting species adjust their diet in an abundance-dependent408

manner (adaptive foraging, Kondoh 2003). Note that predation risk in such cases can also be an409

abundance-dependent dynamical feature of species. Future work can build on our metabolic framework410

for incorporating predation risk effects, and investigate both the dynamics of species abundance and411

predation risk, and their joint effects on food webs.412

Our results also provide novel insights for foraging ecology. Firstly, the diet-broadening (instead of413

diet-narrowing) strategy implicit in our PR model is consistent with empirical evidence that consumers414

tend to broaden their diet by taking less-profitable resources (Lima & Valone 1986; Metcalfe et al. 1987;415

Rothley et al. 1997). That the PR model, through this diet-broadening strategy, results in food-web416

structures closer to reality than the OF model (same as diet-narrowing; SI section 7), suggests that417

searching/waiting may be indeed riskier than handling across food webs—likely because animals can418

hide or be camouflaged while handling food (Charnov & Orians 1973). Secondly, most empirical tests419

of OFT indeed show that the classical model frequently under-predicts diet breadths (Krebs et al. 1977;420

Elner & Hughes 1978; Mittelbach 1981; Sih & Christensen 2001). This discrepancy has been proposed421

to be due to consumers’ imperfect foraging information. Our study suggests that predation risk could422

also give rise to such broader-than-optimal diets. We encourage future work to validate this risk-driven423

diet-broadening effect via empirical experiments. Thus, our results suggest that not just OFT-based424

food-web assembly rules, but also OFT itself needs to be revisited by incorporating predation risk.425

This may re-vitalise OFT, which has gradually faded from the research focus of ecologists (SI section426

9).427
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In conclusion, our study answers the call to add further dimensions beyond body size (Allesina428

2011; Eklöf et al. 2013; Jonsson et al. 2018), including non-trophic effects (Terry et al. 2017), into429

food-web models. It shows that predation risk could be a significant factor affecting food-web assembly430

and the emergent structure. Many models have been proposed to predict empirical food-web structure431

over the last three decades (Cohen & Newman 1985; Williams & Martinez 2000; Beckerman et al.432

2006; Petchey et al. 2008), but few have formally incorporated predation risk (Kondoh 2007). The433

field has also not yet reached an effective synthesis of metabolic and foraging theories. Our study is434

the first major advance in that direction since the ADBM study (Petchey et al. 2008). Food webs435

represent the roles of species as both consumers and resources, and considering the joint constraints on436

foraging behaviour of these dual roles (Naisbit et al. 2012) is a necessary step towards truly capturing437

the complexity of real ecosystems.438
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Figure 1: Illustration of the Optimal Foraging (OF) and Predation Risk-Compromise (PR)
models for predicting the diet breadth of a focal consumer. Under the OF model (A–B),
the predicted diet for a consumer is the one that yields maximum net consumption. Under the PR
model (A, C–E) predation risk, Prisk, is incorporated as a constraint on optimal foraging, resulting
in a suboptimal diet with a risk-compromise consumption rate (Crisk, the point closest to, while
still being above, the horizontal dashed line in D) lying somewhere between the OF maximum, Copt,
and a minimum metabolically-feasible consumption rate threshold, Cmin. Both models are applied
to all consumer species in a community to assemble model food webs. Note that we focus on the
diet-broadening strategy in the PR model, which “propagates” iteratively during food-web assembly,
as described in the main text.
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Figure 2: Performance of the Optimal Foraging (OF) and Predation Risk-Compromise
(PR) models in capturing nestedness and modularity of empirical food webs. The absolute
deviations from the empirical value of both foraging models are shown as mean ± 95% CI (LMM
fixed-effect uncertainty only). The PR model has deviations significantly smaller than those of the OF
model in both nestedness and modularity measurements (p < 0.001 in both cases). Note that empirical
nestedness reads 21.29 ± 14.30 and modularity 0.18 ± 0.15 (mean ± SD). The absolute deviations of
nestedness are not directly comparable with those of modularity. For results using standardised values,
see Fig. S3.
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(A) Nestedness
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(B) Modularity
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Figure 3: Comparison of nestedness and modularity of empirical food webs and their
model (OF and PR) counterparts. Community name abbreviations are in Table S4. The red
and blue colours refer to OF and PR food webs, respectively. The black horizontal line presents the
empirical value, whereas the box plots present the model-generated values. The background of the
plots are also coloured in red or blue shade to indicate which of the OF and PR value is significantly
closer (p < 0.05, no shading if not significant) to the empirical one, according to a paired-Wilcoxon
test on the deviations from the empirical values. Out of twelve empirical communities, the PR model
produces closer-to-empirical nestedness (A) and modularity (B) values in nine communities for each
metric, indicating its superior performance. As the relative, rather than absolute, values matter here,
we have omitted the y-axes scales for simplicity (as in Fig. 4 and Fig. S4-S7.)
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(A) Nestedness
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(B) Modularity
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Figure 4: Summary of nestedness and modularity of OF, PR, and null food webs. Scheme
IDs are indicated on the top of each plot (key in Table S2). Red and blue colours refer to OF and
PR food webs, respectively. The black horizontal line with shade presents the mean ± 95% CI of null
food webs observations, whereas the box plots present the model-generated observations. The asterisks
indicate whenever the OF/PR values are significantly larger than the other (*: p < 0.05; **: p < 0.01;
***: p < 0.001. LMM results may be based on transformed data to meet model assumptions, see SI
section 6). There is a tendency for PR webs to be more nested than the OF webs (A), whereas the
reverse is true for modularity (B).
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(A) Empirical food web (TL84)

(B) Optimal foraging food web

(C) Optimal foraging with predation risk food web

Figure 5: Illustration of how predation risk affects nestedness and modularity of food
webs by diet broadening at intermediate trophic levels. The size-ordered diet matrix and
corresponding network of empirical web TL84 (A) is shown, along with its OF (B) and PR (C)
counterparts generated from a single model simulation. Each dot in the diet matrix indicate a trophic
interaction between a consumer (column) and a resource (row) species. Each network representation
was produced by a visualisation algorithm (Zheng et al. 2018, SI section 8); species’ nodes are colored
by diet breadth (darker nodes have broader diet).
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