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Burn regimes in the hydrodynamic scaling of
perturbed inertial confinement fusion hotspots

J K Tong, K McGlinchey, B D Appelbe, C A Walsh, A J
Crilly, J P Chittenden
Centre for Inertial Fusion Studies, The Blackett Laboratory, Imperial College,
London SW7 2AZ, United Kingdom

E-mail: j.tong15@imperial.ac.uk

Abstract. We present simulations of ignition and burn based on the Highfoot
and High-Density Carbon indirect drive designs of the National Ignition Facility
for three regimes of alpha-heating — self-heating, robust ignition and propagating
burn — exploring hotspot power balance, perturbations and hydrodynamic
scaling. A Monte-Carlo Particle-in-Cell charged particle transport package for the
radiation-magnetohydrodynamics code Chimera was developed for this purpose,
using a linked-list type data structure.

The hotspot power balance between alpha-heating, electron thermal
conduction and radiation was investigated in 1D for the three burn regimes.
Stronger alpha-heating levels alter the hydrodynamics: sharper temperature and
density gradients at hotspot edge; and increased hotspot pressures which further
compress the shell, increase hotspot size and induce faster re-expansion. The
impact of perturbations on this power balance is explored in 3D using a single
Rayleigh-Taylor spike. Heat flow into the perturbation from thermal conduction
and alpha-heating increases by factors of ∼2 − 3, due to sharper temperature
gradients and increased proximity of the cold, dense material to the main fusion
regions respectively. The radiative contribution remains largely unaffected in
magnitude.

Hydrodynamic scaling with capsule size and laser energy of different pertur-
bation scenarios (a short-wavelength multi-mode and a long-wavelength radia-
tion asymmetry) is explored in 3D, demonstrating the differing hydrodynamic
evolution of the three alpha-heating regimes. The multi-mode yield increases
faster with scale factor due to more synchronous PdV compression producing
higher temperatures and densities, and therefore stronger bootstrapping of alpha-
heating. The perturbed implosions exhibit differences in hydrodynamic evolution
due to alpha-heating in addition to the 1D effects, including: reduced perturbation
growth due to ablation from both fire-polishing and stronger thermal conduction;
and faster re-expansion into regions of weak confinement, which can result in loss
of confinement.

Keywords: alpha-heating; ignition; burn; scaling; power balance; perturbed; inertial
confinement fusion
Submitted to: Nucl. Fusion
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Burn regimes in the hydrodynamic scaling of perturbed inertial confinement fusion hotspots 2

1. Introduction

Inertial confinement fusion (ICF) through indirect
drive on the National Ignition Facility (NIF) involves
laser illumination of a hohlraum to generate x-rays,
which drive a spherical capsule implosion of deuterium-
tritium (DT) fuel [1, 2]. Inside the hotspot formed from
the low-density gas in the centre of the capsule, alpha-
particles are produced from DT fusion reactions. The
shell formed from the outer DT ice layer confines the
hotspot while the alpha-particles deposit their energy
through Coulomb collisions, heating the hotspot. This
heating induces more fusion reactions, producing the
positive feedback process known as ignition which
allows the hotspot to drive a propagating burn wave
of fusion reactions through the rest of the DT shell,
thereby resulting in high energy gain.

During the implosion, deviations from the spher-
ical symmetry can be seeded by asymmetry in x-ray
drive, inherent capsule surface roughness [3], the tube
used to insert the DT gas into the centre of the cap-
sule [4] and the support tent holding the capsule in
the hohlraum [5, 6]. Perturbations can grow via in-
stabilities such as Rayleigh-Taylor, allowing material
from the outer layers of the capsule to penetrate and
mix into the hotspot. This can increase radiative losses
from the hotspot due to high-Z material, and cool the
hotspot due to mixing of hot and cold material. Pertur-
bations also reduce the efficiency of conversion of the
shell’s kinetic energy into thermal energy in the hotspot
[7], increase the hotspot surface area and energy losses
via thermal conduction [8], truncate the burn pulse and
can ultimately result in the loss of confinement [9].

Recent experimental progress on NIF has been
encouraging, with the High-Density Carbon [10, 11]
and Bigfoot [12] campaigns delivering marked improve-
ments from the Highfoot campaign in implosion sym-
metry and control [13, 14]. Previously, the radia-
tion asymmetries and the tent-scar were the dominant
degradation mechanisms [15, 16]. Their impacts have
been reduced through a combination of improved laser
drive symmetry control and different ablator materials
[17].

Hydrodynamic scaling of capsule size and laser
energy has been explored as a method of investigating
the potential driver requirements for indirect drive
to achieve 1MJ of energy yield [18]. Hydrodynamic
scaling of a capsule design involves increasing the
target dimensions and implosion time-scale by a factor

of S, with other parameters in the setup remaining the
same (e.g. the laser pulse is stretched by a factor S in
time, but remains identical in intensity). This requires
an increase in driver power and energy of S2 and S3

respectively. The hohlraum size also increases with S
in order to maintain an identical case-to-capsule ratio
(CCR). These hydrodynamically-equivalent implosions
should have the same implosion velocities, adiabats
and hydrodynamics [19], although non-hydrodynamic
behaviour such as thermal conduction, radiation
transport and alpha-heating do not scale in a similar
way with implosion size [20].

In this paper, we provide a detailed study of
alpha-heating under different potential perturbation
scenarios, and how these scenarios change in different
yield regimes. Hydrodynamic scaling is used as a
method of accessing the different yield regimes while
keeping the implosions similar. We first describe the
progression through the three alpha-heating regimes
of self-heating, robust ignition and propagating burn
using scaled 1D simulations of the NIF Highfoot shot
N130927 [13, 21] in section 2. Next in section 3, a
3D simulation of N130927 at S = 1.0 of an idealised
single-spike perturbation is used as an example to
describe the impact of perturbations on the hotspot
power balance and on the ignition process. Section
4 then considers how more realistic perturbations
might evolve as we progress towards increasingly
alpha-dominated regimes by scaling up the HDC shot
N161023 [10] to larger capsule sizes, followed by
conclusions in Section 5.

All simulations in this paper are performed using
the radiation-magnetohydrodynamics code Chimera
[22–25], upgraded with the recently developed charged-
particle transport module. Chimera is a 3D Eulerian
code which uses multi-group, P 1

3
automatic flux-

limiting radiation transport [26, 27]; it uses a
tabular equation of state calculated with the Frankfurt
equation of state (FEoS) model [28–30], and Epperlein-
Haines [31] modified Braginskii [32] electron and
ion thermal conductivities and equilibration rates.
Opacities and emissivities are interpolated using tables
calculated using Spk [33]. The charged-particle
transport module uses a Monte-Carlo Particle-in-Cell
model based on Sherlock’s [34] particle-fluid Coulomb
collision model, with the Zimmerman [35] formulation
of the Maynard-Deutsch [36] stopping model. A
detailed description of the module can be found in
Appendix A.
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Figure 1. Time evolution of a 1D implosion in the self-heating regime based on shot N130927, at scale factor 0.9. Times are relative
to peak compression at t0. Densities and temperatures (above) are shown as fuel (dashed black) and ablator (dashed cyan) densities,
ion temperature (solid red) and electron temperature (dashed red), while contributions to the hotspot power balance (below) are
broken into alpha-heating, Wα (black), electron thermal conduction, We (red), radiation, Wγ (blue) and mechanical work, WPdV

(cyan). The zero value is shown in the dashed black line, and the hotspot radius, Rhs is given by the vertical dotted line. The
alpha-heating is unable to increase hotspot temperatures after peak compression.

2. Ignition and Burn in 1D

We use scaled 1D simulations based on NIF Highfoot
campaign shot N130927 to consider the impact of
alpha-heating on the dynamics and evolution of the
hotspot [37] and illustrate the regimes of ignition and
burn [38] which capsules can go through: self-heating,
robust ignition and propagating burn. N130927 was a
high performing Highfoot shot [13, 21], consisting of a
1.13mm outer radius capsule with a CH ablator doped
in 3 stages with Si (2%, 4%, 2%) in a 5.75mm Au
hohlraum, shot at 1.8MJ using a 3-shock pulse.

In the self-heating regime, low levels of alpha-
heating deposit energy mainly in the hotspot, and
the hotspot temperatures drop after peak compression
as the alpha-heating is unable to compensate for the
radiative, thermal conduction and expansion cooling.
We use the term ‘robust ignition’ to describe the
regime where stronger levels of alpha-heating boost the
hotspot temperature significantly, with the resultant
yield amplification due primarily to the increased
fusion reactivity, but where the confinement is not
enough to allow a burn wave to develop. Propagating
burn [39] results from the adequate confinement of a

robustly igniting hotspot, with the heat flow ablating
significant proportions of the shell into the hotspot
[37, 40]. The significant jump in fusion levels follows
from the increase in hotspot density and therefore an
increased fusion rate (proportional to n2i ).

The simulations are run using Chimera in a
spherical geometry at 500nm resolution. The radiation
transport algorithm uses 54 non-uniform radiation
groups, chosen to provide sufficient resolution around
features such as the carbon K-edge [24]. These 1D
simulations use a frequency-dependent x-ray drive
spectrum, including the m-band component of the
radiation flux [24].

Figure 1 shows the time-evolution of a self-
heating capsule, a scale S = 0.9 version of N130927.
Time is shown relative to peak compression (defined
as the time t0 when the spatially integrated PdV
work on the hotspot goes to 0), since this is the
time after which alpha-heating is the only energy
source within the hotspot. The top panels display
densities and temperatures, and the bottom panels the
separate contributions to the hotspot power balance
from alpha-heating (Wα), electron thermal conduction
(We), radiation (Wγ) and mechanical work (WPdV ).
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Figure 2. Time evolution of a 1D implosion undergoing robust ignition, based on N130927 at scale factor 1.0 as shot. Quantities
are as in figure 1. Time-steps are proportional to scale factor to allow direct comparison between figures 1, 2 and 3.
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Figure 3. Time evolution of a 1D implosion in the propagating burn regime based on shot N130927, at scale factor 1.1. Quantities
are as in figure 1. Time-steps are proportional to scale factor to allow direct comparison between figures 1, 2 and 3.
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Spatial scales are adjusted for scale factor, to allow easy
comparison between regimes (see figures 2 and 3 later).
The dotted line indicates the edge of the hotspot, as
defined by the 2keV contour.

From figure 1, we see that the alpha-heating
contribution is lower in magnitude than for the
combined losses, leading to the hotspot temperature
falling after peak compression. The alpha-particle
mean free path is less than the radius of the hotspot,
such that ∼ 90% of the alpha-particle energy is
deposited within the hotspot. The transparency
(defined here as the inverse of opacity τ [40, 41],
i.e. the ratio of the average alpha-particle range, lα
to the hotspot radius Rhs) gradually drops by 10%
between t0 − 45ps and t0 + 45ps, before increasing
again by 5% at the end of the period shown.
The corresponding proportion of alpha-particle energy
deposited within the hotspot gradually increases by
∼ 5% and then drops off over the same time
period. As the alpha-range increases (and therefore
the transparency), alpha-particles retain more of their
energy as they travel through the hotspot and therefore
the proportion of alpha-energy deposited within the
hotspot drops [40, 41]. In the self-heating regime, the
heating timescale is long relative to the confinement
time, and there is little mass ablation.

Figure 2 shows the time-evolution for a capsule
in the robust ignition regime based on an unscaled
N130927, in the same format as figure 1. Timesteps
between panels are equal when scale factor is adjusted
for, to allow for direct comparison between figures 1,
2 and 3. We can see the stronger alpha-heating levels
result in a small temperature increase just after peak
compression, and then maintain the temperature even
against the capsule expansion. However, the hotspot
is not sufficiently confined in time by the shell’s ρR
for its heat flow to burn a significant proportion of
the shell, and therefore the bootstrap heating remains
mostly confined to the hotspot, with a similar heating
timescale to the confinement time. There is little
fuel ablation into the hotspot, with the hotspot mass
increasing to only 35% of the total fuel mass, and burn

efficiency Φ . 1%, defined as [2] Φ = Nfus/N
(0)
DT

for total number of fusion reactions, Nfus, and total

number of DT pairs initially present, N
(0)
DT .

The alpha-heating profile shifts towards a Bragg
peak due to the hotspot temperature increasing (from
heating) and density decreasing (from expansion),
and therefore becoming slightly more transparent (by
about 10% between t0 and t0+100ps), thereby allowing
more alpha-particles to thermalise in the dense fuel.
The coupling of alpha-particle energy into the hotspot
drops from 80% by ∼ 5% across the same time period.
The density-gradient scale length reduces by ∼ 20%,
sharpening the density gradient at the hotspot-shell

interface due to a combination of the increased fuel
ablation and hotspot pressure.

The stronger alpha-heating also increases the
thermal conduction and radiation losses, both of
which remain non-negligible throughout the burn
pulse. Thermal conduction losses are reabsorbed at
the hotspot-shell boundary and can be considered as
recycled if this material is ablated [42]. We note
that some of the radiation is also reabsorbed, albeit
further out into the dense shell, and could therefore
be considered as recycled if this region were heated
and ablated (although this would require significant
burn-up of the shell). It is worth noting that the
hotspot is not optically thin, such that some of the
bremsstrahlung is reabsorbed within itself (reducing
the overall radiative power loss), and that a significant
amount of the radiation is reabsorbed within the dense
shell rather than escaping the capsule completely; as
an illustration, the mean free path of a 1keV photon
emitted from the centre of the hotspot is ∼ 25µm,
with just under 20% of the central emission at energies
≤ 1keV.

Yield amplification in the propagating burn
regime occurs as a result of ablating large proportions
of the shell into the hotspot, boosting the fusion levels
through the hotspot density (which would otherwise
be falling due to hotspot re-expansion) and therefore
the fusion rate (proportional to n2i ). As a result,
propagating burn results in a significantly higher
proportion of DT mass in the hotspot, and significant
levels of burn-up, with Φ ∼ 5% (YDT = 1.7× 1018).

Figure 3 shows the time-evolution of the density,
temperature and power balance of a simulation
of N130927 at scale factor S = 1.1 undergoing
propagating burn. The temperature continues to
increase even as the capsule expands, with the heating
timescale faster than the confinement time. Only in
this regime is the alpha-heating significantly greater
than the loss mechanisms. The alpha-heating profile
evolves from the sigmoid-like shape of the heating
phase to the distinct Bragg-peak of propagating burn
both due to the aforementioned increased alpha-range,
and stronger fusion production in close proximity to
the shell. The abrupt alpha-stopping in the dense
fuel layer leads to significant heating and ablation
of material, and is possible due to the adequate
confinement by the shell against the substantial
pressure build-up of the deflagrating hotspot. The
significant ablation and pressure increase drive sharper
gradients and faster hotspot re-expansion. The re-
expansion and ablation both result in a larger hotspot
radius than would be expected from linear scaling. The
stronger back-compression from the hotspot pressure
results in a thinner and denser shell.

Figure 4 shows the neutron burn histories and the
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Figure 4. Neutron burn history (solid) and the fraction of DT
mass in the hotspot (Mhs/MDT ) (dashed) against scaled time
for the three regimes of alpha-heating shown in black (SH, self-
heating), yellow (RI, robustly igniting) and red (PB, propagating
burn).

fraction of DT mass contained within the 2keV hotspot
(Mhs/MDT ) against time (adjusted for scale) for all
three regimes. The variation in hotspot mass with
regime as a result of the differing levels of alpha-heating
and heat flow can be seen clearly, with the self-heating
hotspot containing up to only 20% of the total DT
mass, while the robustly igniting hotspot ablates more,
up to around 30%. The propagating burn hotspot
expands to encompass almost the entirety of the DT
fuel.

3. Perturbations and heat flow

While the hotspot ignites easily in an ideal, 1D sce-
nario, the presence of inhomogeneities and asymme-
tries in 3D make ignition significantly harder. In
this section, we examine the impact of perturbations
through their interactions with the heat flow from the
hotspot, and vice versa, using the simplest case of a
single dense perturbation spike applied to an other-
wise spherically symmetric implosion of N130927 at
S = 1.0. Methodologically, we simulate the drive phase
(which constitutes the majority of the implosion) in
1D, and then use this data to initialise 3D simulations
of the deceleration and burn phases at a convergence
ratio of ∼3. Here, we apply perturbations as Rayleigh-
Taylor spikes in the velocity field to the capsule sur-
face during the 1D-3D initialisation, following Layzer’s
[43] approximate analytic treatment of the instability
[8, 22]. These 3D simulations do not include a radia-
tion drive, and use a reduced 10-group structure in the
radiation transport in order to expedite calculations
while retaining accurate transport within the hotspot.

Figure 5 shows a 2D slice of the shell density,

200

400

600

2 4 6 8

Figure 5. Ion temperature contours of the hotspot and a slice
through the shell density at peak compression, for a single-spike
perturbed implosion based on the Highfoot shot N130927 at scale
factor S = 1.0.
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Figure 6. Rates of change of energy density due to alpha-
heating (black), thermal conduction (red), radiation (blue) and
mechanical work (cyan) along radial lines of sight directly into
(solid) and away from (dashed) the perturbation spike at peak
compression.

and ion temperature contours of the hotspot at peak
compression. Even though the perturbation does not
penetrate that deeply into the hotspot in density,
the ion temperature distortion extends much deeper
towards the centre of the capsule.

Figure 6 shows the impact of the spike on the
hotspot power balance, comparing contributions from
alpha-heating, thermal conduction and radiation along
radial lines of sight directly into and away from the
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Figure 7. A comparison of the burn pulse (solid) and burn-
averaged ion temperature of the hotspot (dashed) between the
unperturbed (black) and perturbed (red) implosions.

spike respectively. The radiative contribution into
the spike is similar to its counterpart away from the
spike, apart from the reduced radial extent due to the
spike penetrating deeper into the hotspot. The alpha-
heating into the spike peaks at roughly 3× that of the
unperturbed line of sight. This increase in deposition
is due to a significant flux of alpha-particles into the
tip of the cold dense spike, whilst alpha-particles not
encountering the perturbation deposit the majority of
their energy as they transit across the hotspot, leaving
little for the shell (as in the 1D scenario above for the
robust ignition phase). The sharpened temperature
gradient (illustrated by compressed contours in figure
5) around the spike also leads to increases of < 4× in
the thermal heat absorption compared to the rest of the
shell. The PdV expansion work is much higher around
the spike due to the increased heat flows causing more
ablation. Thermal conduction is the most significant
contribution to heat flow into the spike, while alpha-
heating is dominant for the unperturbed regions.

Figure 7 shows the neutron burn history and the
burn-weighted ion temperatures 〈Ti〉 for the perturbed
single-spike implosion and an unperturbed, symmetric
companion simulation. The perturbation reduces the
yield by roughly 40%, and results in a bang time 27ps
earlier than for the symmetric case. The transport
of dense material towards the hotspot in this regime
acts a cold sink for hotspot energy to reduce the
ignition spark and quench burn, rather than as extra
fuel to feed the burn. Within the hotspot, 〈Ti〉 begins
to diverge 50ps before peak compression, while the
differences in the neutron pulses are visible only later
on. The differences in the early-time hotspot power
balance manifest themselves through lower hotspot
temperatures, particularly as the shell stagnates. This

is perhaps the most important time, as the mechanical
work done during stagnation is converted into the
hotspot thermal energy and therefore the spark from
which the alpha-heating can bootstrap. Since the
synchronised stagnation of the shell for the symmetric
case provides a higher rate of PdV work and drives
the hotspot temperature higher than for the perturbed
case, the corresponding alpha-heating bootstrap is
significantly stronger, and plays a large part in the
differences in 〈Ti〉 and the fusion rate.

Note that yield degradation from enhanced power
losses from the hotspot and yield degradation from a
weakened alpha-heating feedback loop due to early-
time variations in hotspot conditions are difficult to
distiniguish.

4. Scaling perturbed simulations

While implosion symmetry in recent years has
improved remarkably, allowing yields to reach 2×1016

[11], some level of perturbation persists. With
this view, we look to explore how the impact
of different perturbation scenarios might scale to
larger capsule sizes, and correspondingly higher laser
energies. As mentioned previously in Section 2,
although the hydrodynamics of the capsule scales
up identically, non-hydrodynamic phenomena such as
thermal conduction, radiation transport and alpha-
heating do not scale in a similar way, and are important
factors regarding the growth and overall impact of the
perturbations. With perturbations in ICF implosions
coming in various forms, do these different forms
evolve and scale with capsule size differently from one
another?

4.1. Methodology

Simulations in this section are based on the NIF
High Density Carbon (HDC) campaign shot N161023
[10]. This was a 0.8 subscale shot of a 0.91mm outer
radius capsule with a W-doped HDC ablator, shot
using 1.1MJ of laser energy in a 5.75mm depleted
uranium (DU) hohlraum. As in Section 3, we
simulate the ablation phase in spherical geometry, and
then reinitialise onto a 3D Cartesian grid at peak
radiation temperature. The radial profiles of density,
temperature and velocity are scaled in radius by the
scale factor S at this point of reinitialisation, such
that all the simulations are based on the same initial
dataset.

We describe two perturbation scenarios; multi-
mode and radiation asymmetry. The radiation
asymmetry (RA) scenario is a low-mode shape
asymmetry with Legendre modes P2 and P4 [24],
initialised from a 2D calculation with radiation drive
asymmetries as derived from 2D hohlraum simulations
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Figure 8. Yields as a function of scale factor shown on a log-
log scale for the high-resolution 1D (black diamond), the 3D
symmetric P0 (cyan circle), the multi-mode (red square) and
the radiation asymmetry (blue triangle) scenarios. 1MJ and
100kJ yield levels are marked in dashes, and the 1D, no-alpha
yield scaling (S4.5) is shown as the dotted line.

[44]. The multi-mode (MM) scenario is initialised
from a 1D calculation by applying Rayleigh-Taylor
spikes in the velocity-field, as described in Section
3. These spikes are applied approximately uniformly
over the capsule by placing them at the vertices of
a geodesic sphere [8, 22]. The number of vertices on
the sphere dictates the distance between vertices; this
gives modes with N = 42, 162, 642 and 2562 points at
wavelengths R/

√
N , for a total of 3408 points. The

MM perturbation amplitudes are tuned such that the
S = 0.8 yield matches that for the radiation asymmetry
case. The wavelengths of the MM perturbations scale
with S, so as to remain the same size relative to the
hotspot.

Due to the large number of simulations required
for a scaling study, and the computational constraints
imposed by resolution, we use simulations run at
3µm resolution. We note that the lower burn-
off yield of lower resolution 3D simulations also
results in a reduced yield enhancement from alpha-
heating, exacerbating the yield-loss due to resolution.
We account for this by applying a small (4.8%)
multiplier to the velocity at the 1D-3D reinitialisation,
tuned such that the lower resolution symmetric 3D
simulation yields match those of the high-resolution
1D simulations, verified at both 3µm and 2µm. Figure
8 compares the yields for the 3D 3µm case (cyan
circle) to the 1D case (black diamond), showing good
agreement between the two. The dotted line indicates
the 1D, no-alpha yield scaling of S4.5 [19].
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Figure 9. Hotspot burn-averaged ion temperature 〈Ti〉
(dashed) and PdV power (solid) for P0 (cyan), RA (blue) and
MM (red) scenarios at scale factor S = 0.8. The time relative to
peak compression, t− t0 is adjusted for the scale factor, S.
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Figure 10. Dimensionless measure of the surface area:volume
ratio of the hotspot, SA1.5/V (solid) for RA (blue) and MM
(red), with the symmetric P0 case (dashed cyan) for reference.
The hotspot burn-averaged density, 〈ρ〉 for both cases is also
shown (dotted).

4.2. Performance Differences

Figure 8 also shows the yields for MM and RA. Both
scenarios display signs of ignition in the curvature
of the yield graphs, even on the log-log scale. All
scenarios shown scale faster than the S4.5 no-alpha,
1D hydrodynamic scaling. Although the yields of MM
and RA agree at S = 0.8, MM scales better and faster,
with a stronger ignition curvature.

Figure 9 shows the PdV power delivery to
the hotspot for P0, RA and MM, as well as the
corresponding burn-averaged ion temperatures, 〈Ti〉,
with times relative to the time of peak compression.
The MM has better PdV delivery than RA, with
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Figure 11. Hotspot power balance for (a) S = 0.8 and (b)
S = 1.4, showing the net (Wnet, dashed) and alpha-heating
contribution (Wα, solid) for RA (blue) and MM (red). Wnet =
Wα + We + Wγ + WPdV , where Wi is positive for heating and
negative for loss.

the compressive work delivered in a more synchronous
manner (based on the FWHM). Physically, this is due
to different parts of the shell stagnating at different
times. Due to the velocity differences, some regions
of the shell in MM stagnate slightly earlier than other
regions. This effect is more prominent in RA, with the
mass redistribution from the perturbation [24] causing
larger momentum differences around the shell than for
MM. Higher PdV power coincides with better heating
of the hotspot. The peak of the P0 delivery is later than
that of MM, but also higher and more synchronous,
increasing the hotspot temperatures later in time but
in a manner which maintains the temperature for
longer. When the P0 delivery increases above that
of MM, d〈Ti〉/dt also increases, while both quantities
for RA remain below that of MM for the majority of
the PdV delivery. This trend of more synchronous
delivery of PdV work follows to higher scales, resulting
in higher peak-compression temperatures.

MM has stronger thermal conduction losses,
driven in part by the higher temperatures and in part
by a higher surface area (SA):volume (V) ratio. Figure

10 shows the dimensionless ratio of (SA)1.5/V of the
hotspot at S = 0.8 for RA (blue) and MM (red), with
that for the symmetric P0 case shown for reference
(cyan dashed). The MM scenario has a consistently
higher ratio, which contributes to the MM’s increased
thermal conduction losses relative to RA (∼ 10%
higher). The denser hotspot (dashed in figure 10),
combined with hotter temperatures explain the higher
radiative losses (∼ 5%). These higher losses result in a
very similar net power balance between MM and RA at
S = 0.8, despite the stronger alpha-heating resulting
from the better PdV compression for MM; these can be
seen in figure 11a, which compares the alpha-heating
contribution to the power balance, Wα with the overall
power balance, Wnet for S = 0.8.

Figure 11b shows the same for S = 1.4; at
larger scales, alpha-heating becomes more significant
in the hotspot power balance (and therefore the losses
proportionally less so). This is due to the larger areal
density of the hotspot and longer confinement time
causing better absorption of alpha-heating energy, in
addition to more mass in the hotspot producing more
fusion. As this occurs, the better PdV compression of
MM, which produces higher hotspot temperatures and
densities, therefore produces stronger ignition than for
RA.

4.3. Hydrodynamic effects of alpha-heating

Figures 12 and 13 show the time evolution (down the
grid) from peak compression (at t = t0) of the MM and
RA hotspots respectively as a function of scale factor
(across the grid), displaying 2D slices of density (left
half) and ion temperature (right half). The physical
scale is normalised by scale factor in order to better
compare the hydrodynamics. The three regimes from
Section 2 are demonstrated here using 3D results.
The side-by-side comparison of the time-evolution of
these different regimes show clearly how the non-linear
behaviour of alpha-heating causes differences in the
hydrodynamic evolution, despite both scenarios being
scaled up in a hydrodynamically self-similar manner.

Figure 14 shows, for scenarios (MM,RA) respec-
tively, the hotspot’s: (a,b) burn-averaged ion temper-
atures, 〈Ti〉; (c,d) mass relative to total DT fuel mass,
Mhs/MDT ; (e,f) pressure; and (g,h) dimensionless sur-
face area to volume ratio, (SA)1.5/V .

It can be seen that MM S = 1.4 reaches the
propagating burn regime, with figure 14a showing (in
red) the continuing increase in hotspot temperature
past peak compression, and figure 14c showing a
significant proportion of the DT mass being ablated
into the hotspot. Meanwhile, RA S = 1.4 shows a
much weaker propagating burn, with a weaker (but still
significant) temperature boost (red in figure 14b)and
less DT mass ablation (figure 14d). S = 1.2 for both
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Figure 12. A grid showing the time-evolution (down the grid) of density (left half) and ion temperature (right half) slices for
increasing scale factor, S across the grid for the multi-mode scenario. The physical scale is normalised, x/S (µm), in order to better
compare the features across scale factors. Times are shown relative to the time of peak compression, t0. Annotations ‘1’ and ‘2’
indicate features exhibiting perturbation ablative stabilisation and bubble expansion.
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Figure 13. A time-evolution grid plot of density and ion temperature against scale factor as in figure 12.
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Figure 14. (a,b) Burn-averaged ion temperatures, 〈Ti〉; (c,d) mass relative to total DT fuel mass, Mhs/MDT ; (e,f) hotspot pressure;
and (g,h) dimensionless surface area to volume ratio, (SA)1.5/V of the hotspot for MM (left) and RA (right) respectively, across
all four scales: S = 0.8 (blue), S = 1.0 (yellow), S = 1.2 (red) and S = 1.4 (green). Times are normalised by the time of peak
compression, t0 and adjusted for scale factor S.
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scenarios (in green) indicate a weak case of robust
ignition, with temperature remaining relatively stable
after capsule expansion and a relatively small change
in Mhs/MDT . This indicates that the alpha-heating is
strong enough to maintain the temperature against the
PdV expansion (but not enough to increase it), and
relatively little mass ablation. S = 0.8 and S = 1.0
for both scenarios (in blue and yellow respectively)
fall within the self-heating regime, with temperatures
dropping after peak compression and minimal change
in the hotspot DT mass fraction.

Until around 100ps (scaled) before peak compres-
sion, figures 14a and 14b show the hotspot tempera-
tures roughly agreeing with the hydro-scaled ∼ S0.2

[19]. However, from about t0 − 50ps, the hotspot ion
temperatures begin to diverge from this scaling for
the higher scales S = 1.2, 1.4. This corresponds to
the onset of significant levels of alpha-heating, with
a stronger divergence for the stronger alpha-heating
regimes shown in S = 1.4. S = 1.0 still agrees weakly,
owing to relatively weak alpha-heating contributions.

While hydrodynamic scaling suggests constant
pressure across scales [19], the raised hotspot temper-
atures also increase the hotspot pressures, as can be
seen from figures 14a, 14b, 14e and 14f. This in turn
produces stronger back-compression of the confining
shell, resulting in a thinner, higher density shell, and a
hotspot larger than as scaled. These effects are most
visible in the right-most columns (S = 1.4) of figures
12 and 13. Stronger heat flow into and ablation of the
shell via thermal conduction and direct deposition of
alpha-particle energy also contributes to the thinner
shell, as well as to the higher temperature and density
gradients at the hotspot-shell boundary visible here.

Perturbations are therefore better stabilised and
growth reduced by this ‘fire-polishing’ [45, 46] - an
example of this can be seen at the location annotated
‘1’ on figures 12 and 13. At the higher scales, we can
see the perturbation here penetrates less deeply and
recedes faster. The effect of this is visible at earlier
times in the plots of (SA)1.5/V in figures 14g and 14h.
Here, (SA)1.5/V is notably lower for S = 1.4 (in red)
in both cases, up until ∼t0 + 50ps. The fire-polishing
effect reduces the perturbation growth and results in a
more spherically-shaped hotspot than for the smaller
scales (recall from figure 10 that the symmetric P0

scenario has (SA)1.5/V ∼ 20).
Noting that the increased pressures will also

result in faster hotspot expansion everywhere at higher
scales, and that re-expansion into regions of weaker
confinement (i.e. lower ρR) will naturally occur faster
than into regions of stronger confinement, we can see
that the significantly increased pressures at S = 1.4
amplify this difference in expansion rate. The resultant
‘aneurysms’ [9] make the hotspot shape significantly

less ‘1D’-like, and lead to the rapid rise in (SA)1.5/V
after ∼t0 + 50ps. This coincides with the time of peak
pressure, and the associated drop in pressure after this
point. This enhanced hotspot expansion can be seen
in figures 12 and 13. Here, the locations annotated as
‘2’ can be seen to expand faster than location ‘1’ for
higher scales. Note that this expansion is shown to be
faster in real time, not just scaled time, despite the fact
that implosion timescales are also expected to increase
by S.

The net effect of the faster re-expansion and
increased heat flow on the hotspot energy balance can
be seen from Figure 11. The power balance for MM
at S = 1.4 not only has a higher peak but also a
lower trough, indicating not only stronger heating but
also stronger losses. The raised hotspot temperatures
increase the thermal conduction and radiation losses,
and the higher pressure increases the expansion losses.

5. Conclusions

We have developed a charged-particle transport model
for Chimera which has been used to model the alpha-
heating in inertial confinement fusion experiments.
We have used it to explore the impact of ignition
and burn via hydrodynamic scaling and investigated
the hotspot power balance in three regimes of alpha-
heating behaviour; self-heating, robust ignition and
propagating burn. In the self-heating regime, alpha-
particles heat only the hotspot, with a long heating
timescale relative to confinement, and no deflagration
of shell material. Alpha-particles boost the hotspot
temperature significantly in the robust ignition regime,
raising fusion yield due to a higher reactivity. However,
only in the propagating burn regime is significant
ablation of shell material achieved, requiring the
hotspot to ignite robustly and be contained. The
fusion rate increases due to the increase (or rather,
maintenance against expansion) of the hotspot density.
The non-linearity of the alpha-heating changes the
scaling behaviour in this regime; the increased pressure
and stronger ablation result in faster re-expansion and
sharper gradients at the boundary. The increased
hotspot pressure back-compresses the shell to become
thinner and higher density at peak compression, and
also results in larger hotspots than expected from
hydrodynamic scaling.

An idealised single-spike perturbation was used
to demonstrate the impact of a perturbation on
the ignition process, with hotspot heat flow losses
due to thermal conduction and alpha-heating into
the perturbation increased locally by ∼2 − 3× over
the expected heat flow into the shell. This is
due to sharpened temperature gradients around the
perturbation, and the increased proximity of fusion
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production regions to cold dense material resulting
in a larger flux of alpha-particles into the perturbed
shell. Part of the reduced performance compared to an
unperturbed implosion is due to weaker bootstrapping
from asymmetric shell stagnation.

We have explored the hydrodynamic scaling of two
perturbed scenarios; a short-wavelength multi-mode
and a long-wavelength radiation asymmetry. The
multi-mode scenario yield scales faster with scale factor
than the low-mode scenario; this is a result of more
synchronous PdV compression work producing higher
initial temperatures and densities, which at lower
scales is compensated for by stronger hotspot losses
and faster disassembly. However, when hydro-scaled
the higher areal density and longer confinement times
allow for much more significant alpha-heating, which
then bootstraps better for the higher temperatures and
densities.

As in the 1D case, the hydrodynamic scaling
no longer holds into the propagating burn regime.
In addition to demonstrating the effects shown for
the 1D scenario, the 3D scenarios also exhibit
reduced perturbation growth due to fire-polishing.
Furthermore, the increased pressure causes faster re-
expansion into regions of weak confinement, resulting
in loss of confinement through these regions at the
highest scale factors.

We note that the inclusion of other, realistic
sources of perturbation, such as the fill-tube might
affect the ignition scaling. In addition, other capsule
and hohlraum designs currently being explored on
NIF (such as Bigfoot [12], Beryllium [47], HybridB)
may be more robust to perturbations than the
N161023-based design explored here. Our investigation
indicates that this specific design can indeed reach
energy yields of 1MJ, even in the presence of
large-amplitude perturbations. However, the scale
factors required are ∼ 1.3 and ∼ 1.4 for the multi-
mode and radiation asymmetry perturbation scenarios
respectively, corresponding (∼ S3) roughly to laser
energies of ∼5-6MJ.
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Appendix A. Alpha Model for Chimera

Accurate modelling of the alpha-heating within an
ICF capsule requires non-local treatment, since the
mean free path of 3.54MeV α-particles is significantly
larger than that of the background plasma. The
alpha-particles undergo Coulomb collisions as they
travel through the surrounding background plasma,
and in doing so transfer energy to the electrons
(and, to a lesser extent, the ions) [37]. Diffusive
models [48, 49] can handle the velocity-dependence
of Coulomb collisions using energy-group structures
and flux-limited diffusion methods to transport the
particle energy. Diffusive models are not non-local,
and are therefore less accurate in regions of high
transparency; tending to overpredict the heating rate
in the hotspot [50], and struggling to recreate sharp
Bragg peaks observed in regions of high stopping
power. Particle-based models are more physical,
but also more computationally-intensive; in 3D, large
particle numbers are required for statistical and
physical accuracy, as well as large quantities of random
numbers and particle memory.

Modelling interactions between two charged par-
ticle species often uses a binary approach [51, 52],
in which particles within a cell are paired randomly
and scattered off one another, conserving energy and
momentum in the process. This is best suited for
modelling multiple species as particles, since it mod-
els particle-particle interactions. However, a differ-
ent approach is required for the particle-fluid interac-
tions encountered in coupling the alpha model to the
Maxwellian electron and ion fluids of Chimera. This
approach, in which the collisional Fokker-Planck equa-
tion is reduced to Langevin form [53, 54], allows the
use of fluid-based properties to calculate the slowing
forces on particles.

Appendix A.1. Numerical Implementation

We follow the framework set out by Sherlock [34]
for implementing Coulomb collisions between particles
incident on a Maxwellian background fluid moving
at a finite velocity. The particle experiences both a
deterministic frictional force and a stochastic velocity-
space diffusion due to scattering. For a particle α of
charge Zαe, mass mα and velocity vα scattering off
background fluid β of charge Zβe, mass mβ , number
density nβ , temperature Tβ and thermal velocity vβ =√

2kBTβ/mβ , the slowing (A.1a) and diffusive (A.1b
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and A.1c) coefficients are given [34, 55]:

∂vα‖
∂t

= −A(1 +mα/mβ)
G(x)

v2β
(A.1a)

∂v2α‖
∂t

= AG(x)/vα (A.1b)

∂v2α⊥
∂t

= A
erf(x)−G(x)

vα
(A.1c)

where x = vα/vβ , erf(x) is the error function, ln Λαβ
is the Coulomb logarithm between a test particle
α scattering off field particles β, and A and the
Chandrasekhar function G(x) are given by:

A =
Z2
αZ

2
βe

4nβ ln Λ

2πm2
αε

2
0

(A.2)

G(x) =
erf(x)− x∂ erf(x)

∂x

2x2
(A.3)

The framework allows for exact conservation of energy
and momentum. Conservation of momentum from
individual particles crossing the grid cell can be used to
calculate the change in fluid momentum and the change
in fluid kinetic energy (∆Kfluid), and conservation of
energy used to calculate the change in total fluid energy
(∆Efluid). This then gives the change in thermal
energy in the fluid, ∆Ufluid = ∆Efluid − ∆Kfluid.
The calculations are expedited by using the following
approximation for G(x) [34]:

G(vα/vβ) ≈
vαv

2
β

2v3α + 3
√
π

2 v3β
(A.4)

Particle motion is integrated using a leapfrog scheme,
accurate to second order in time [56], and subcycled
according to the particle cell-crossing time and the
slowing (τs) and scattering (τ‖, τ⊥) relaxation times:

τs =
vα

∂vα/∂t
, τ‖ =

v2α
∂v2α‖/∂t

, τ⊥ =
v2α

∂v2α⊥/∂t
(A.5)

Particles are spawned at random locations within each
cell with a broadened energy distribution [57], and
an isotropic velocity distribution. Fuel energy [58]
and mass are removed from the cell based on the
number of fusion reactions in the cell. While alpha-
alpha collisions are not included in this scheme, these
collisions are not expected to be significant as the
alpha-particle number density is low. We also do not
include a helium ash fraction for the thermalised alpha-
particles, since burn-up is generally very low (typically
. 1%, at most . 5%).

Appendix A.2. Stopping models

Although an in-depth discussion of charged-particle
stopping power is beyond the scope of this article,

we elaborate briefly on the stopping models currently
implemented, beginning with the classical Spitzer
treatment, in which the coefficients above (equations
A.1a-A.1c) are derived. In this approach, large-
angle scattering and collective effects are ignored, and
the Coulomb logarithm is cut-off using an impact
parameter corresponding to a 90◦ deflection [62],
bmin ≈ e2/4πε0m

〈
v2
〉
≈ e2/(4πε0 · 3kbT ) and the

Debye length, bmax = λe =
√
kbTeε0/e2n. Here,

particles of species α travelling through a Maxwellian
background of species β experiences a energy loss rate
of:

dE

dx
=
Z2
αZ

2
βe

4

4πε20

nβ ln Λαβ
mαv2α

[
mα

mβ
ψ (y)− ψ′ (y)

]
(A.6)

where ψ (y) = 2/
√
π ×

∫ y
0

√
ξe−ξdξ, ψ′ = dψ/dy =

2ye−y
2

/
√
π, y = v2α/v

2
β , v2β = mβ/2kTβ , and ln Λαβ is

the Coulomb logarithm between the two species. This
(dE/dx) is equal to mdvα‖/dt from equation A.1a.

The Maynard-Deutsch model [36], which uses
the random-phase approximation (RPA) to treat
the dielectric function, provides a more advanced
stopping model valid for arbitrary electron degeneracy.
This model considers contributions from both free
and bound electrons through Coulomb collisions and
collective motion, and allows slowing calculations for
any velocity ratio vα/ve, but neglects ion contributions.
We will proceed to use Zimmerman’s parameterisation
of the model [35] (hereafter labelled as MDZ), which is
computationally tractable:

∂E

∂x
=
Z2
αe

4

4πε20

1

mev2α
nFLF (A.7)

LF =
1

2
ln
(
1 + Λ2

F

)(
erf (y)− 2√

π
ye−y

2

)
(A.8)

ΛF =
4πmev

2
e

hωpe
· 0.321 + 0.259y2 + 0.0707y4 + 0.05y6

1 + 0.130y2 + 0.05y4

(A.9)

ve =

{√
πh(2πme)

−1
[
4ne

(
1 + e−µ/Te

)1/3]
degenerate√

(2kTe) /me non-degenerate

(A.10)

We can compare the stopping power for both the
Spitzer and MDZ models as implemented in Chimera
with the Brown-Preston-Singleton (BPS) model [63]
in figure A1. The BPS model has been found to
agree well with experimental investigations of ion
stopping powers in plasmas at both high [60] and
low velocity [61], but is computationally complex
to calculate. Following Singleton [59], we consider
a 3.5MeV α-particle travelling through a uniform
background plasma of equimolar DT at (a) T =
3keV and ne = 1031m−3 (equivalent to ρDT =
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Figure A1. A comparison of Spitzer (black) and MDZ (green) stopping powers from the Chimera burn module to the BPS
(red) model in a uniform background equimolar DT plasma at (left) ne = 1031m−3 (equivalent to ρDT = 4.1×104kgm−3) and
Te = 3keV , and (right) ne = 1033m−3 and Te = 30keV , following Singleton [59]. The stopping power is separated into contributions
from electrons (solid) and ions (dash-dot). The BPS model is found to agree well with experimental investigations [60, 61].

4.1×104kgm−3 and (b) T = 30keV and ne = 1033m−3.
We have found our models (particularly MDZ) to
be in good agreement in stopping power and range
with BPS, particularly for conditions similar to those
of an ICF hotspot figure A1a. As a default, we
use the MDZ model owing to its excellent agreement
with the BPS model, and ease of calculation. The
diffusive coefficients are significantly smaller than the
frictional slowing coefficient, and are calculated as
Eqns. A.1b and A.1c in the Spitzer formulation, due
to the lack of similarly computationally streamlined
parameterisations of other formulations.

Appendix A.3. Population Control

As the production rate of alpha-particles changes
rapidly in time, the computational weight (i.e. how
many real particles are represented) of macro-particles
being spawned is calculated dynamically. As the fusion
rate increases, the macro-particles being spawned will
have increasingly higher weights, and correspondingly
will be increasingly more important. In addition,
alpha-particles with thermal velocities contribute very
little to heating, and thus thermalised particle motion
does not need to be calculated. In order to maintain
computational and statistical accuracy, we need to
create ∼104−105 macro-particles each time-step, with
a total population limit (dictated by processor memory
and simulation runtime) of ∼106 − 107. With such a
population limit where the simulation is likely to hit
the cap, it is necessary to manage the macro-particle
population in order to make sure we can continue to

generate new particles where they are needed.
As such, we both terminate (i.e. remove from

the simulation) any thermalised macro-particles, and
also employ a basic population management scheme
in our model. Since the primary physical effect of
note is each macro-particle’s contribution towards the
heating rate, which is affected by the macro-particle’s
energy and weight, we therefore expect the macro-
particles with the highest total energy Etotal to have
the most impact on the simulation; here, we define
Etotal = wmacro × Emacro, where a macro-particle
represents wmacro particles of energy Emacro. Hence
we look to reduce the population by targetting those
macro-particles with the lowest Etotal.

We first dynamically calculate an energy threshold
Ethresh below which some fraction of particles, 1−fsurv
will be removed from the simulation. We do this
by using the maximum value of Etotal, Etotal,max
in the macro-particle population of size Ntotal, such
that Ethresh = kEtotal,max for some constant k. k
is increased from a default value of 0.1 such that
fsurv∈(0, 1), for:

fsurv = (Ntarget −Nsave)/NPopControl (A.11)

where Ntarget is the target total population, Nsave
is the number of macro-particles with Etotal >
Ethresh, NPopControl the number of macro-particles
with Etotal ≤ Ethresh, and Nsave + NPopControl =
Ntotal. Once k and Ethresh are found, the population
NPopControl is then reduced by a fraction 1 − fsurv
through random annihilation of particles, with the
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wmacro and Etotal of surviving fsurv macro-particles
increased by a factor of 1/fsurv.

In effect, real particles and energy within the
lowest total energy population are redistributed by
removing macro-particles and increasing the weight
and energy of surviving macro-particles within this
lowest total energy population in order to conserve the
total energy and number of real particles. Tests of
the population control show no impact on the heating
rates.

Appendix A.4. Memory Structure

As mentioned above, we need to create and terminate
∼104 − 105 macro-particles at every time-step with a
total population of ∼106 − 107. Thus, the primary
demand on the data structure used to store our particle
data is the ability to easily add and remove many
elements (i.e. macro-particles, in this case) in any
order, multiple times, and a secondary demand is being
able to store a large number of particles. In addition,
since the simulation domain is split across processors,
we also need to be able to pass the information on
the macro-particles between processors as they travel
through the hotspot.

Owing to these requirements, we use a linked-list
type data structure to store particle data rather than a
dynamic array in order to optimise the memory-usage
and computational speed of our model. Linked lists
are a collection of nodes containing ‘pointer’ and ‘data’
fields, with the pointer field containing the memory
address of the next node. In contrast, dynamic arrays
are a collection of indexed elements, usually stored in
a contiguous section of memory.

Linked lists allow for fast insertion and deletion of
arbitrarily many elements (i.e. macro-particles), while
array insertion and deletion requires either keeping
track of every available index, or shifting all of the
elements with every deletion and tracking the first
available index. Memory management is significantly
easier, as the size of a linked list is limited only by
the total memory available. By comparison, dynamic
arrays are limited by the length of contiguous memory
available. In addition, since the total number of
macro-particles is not known a priori, and indeed will
change every time-step. If the existing array becomes
filled up, reallocating the data to a larger array is
highly computationally expensive, particularly with
increasingly large arrays. In addition, passing macro-
particles between processors is easily achieved by
moving elements to be passed to a new list, passing the
entire list and then merging them. Access to specific
elements is difficult through linked lists, but easy for
arrays due to the indexing. However, this feature is not
needed, since we perform operations (such as pushing)
on the entire list in a single-pass through. In our

model, linked lists allow for over ∼100× more macro-
particles per processor than dynamic arrays, while also
operating faster.
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