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Abstract

Mitochondrial DNA (mtDNA) mutations cause severe congenital diseases but may also be associated with
healthy aging. MtDNA is stochastically replicated and degraded, and exists within organelles which undergo
dynamic fusion and fission. The role of the resulting mitochondrial networks in the time evolution of the
cellular proportion of mutated mtDNA molecules (heteroplasmy), and cell-to-cell variability in heteroplasmy
(heteroplasmy variance), remains incompletely understood. Heteroplasmy variance is particularly important
since it modulates the number of pathological cells in a tissue. Here, we provide the first wide-reaching
theoretical framework which bridges mitochondrial network and genetic states. We show that, under a range
of conditions, the (genetic) rate of increase in heteroplasmy variance and de novo mutation are proportionally
modulated by the (physical) fraction of unfused mitochondria, independently of the absolute fission-fusion rate.
In the context of selective fusion, we show that intermediate fusion/fission ratios are optimal for the clearance
of mtDNA mutants. Our findings imply that modulating network state, mitophagy rate and copy number to
slow down heteroplasmy dynamics when mean heteroplasmy is low could have therapeutic advantages for
mitochondrial disease and healthy aging.

Introduction

Mitochondrial DNA (mtDNA) encodes elements of the respiratory system vital for cellular function. Mutation
of mtDNA is one of several leading hypotheses for the cause of normal aging (Kauppila et al., 2017; López-
Ot́ın et al., 2013), as well as underlying a number of heritable mtDNA-related diseases (Schon et al.,
2012). Cells typically contain hundreds, or thousands, of copies of mtDNA per cell: each molecule encodes
crucial components of the electron transport chain, which generates energy for the cell in the form of ATP.
Consequently, the mitochondrial phenotype of a single cell is determined, in part, by its fluctuating population
of mtDNA molecules (Aryaman et al., 2019; Johnston, 2018; Stewart and Chinnery, 2015; Wallace and Chalkia,
2013). The broad biomedical implications of mitochondrial DNA mutation, combined with the countable
nature of mtDNAs and the stochastic nature of their dynamics, offer the opportunity for mathematical
understanding to provide important insights into human health and disease (Aryaman et al., 2019).

An important observation in mitochondrial physiology is the threshold effect, whereby cells may often
tolerate relatively high levels of mtDNA mutation, until the fraction of mutated mtDNAs (termed heteroplasmy)
exceeds a certain critical value where a pathological phenotype occurs (Aryaman et al., 2017; Picard et al.,
2014; Rossignol et al., 2003; Stewart and Chinnery, 2015). Fluctuations within individual cells mean that the
fraction of mutant mtDNAs per cell is not constant within a tissue (Figure 1A), but follows a probability
distribution which changes with time (Figure 1B). Here, motivated by a general picture of aging, we will
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largely focus on the setting of non-dividing cells, which possess two mtDNA variants (although we will
also consider de novo mutation using simple statistical genetics models). The variance of the distribution
of heteroplasmies gives the fraction of cells above a given pathological threshold (Figure 1B). Therefore
heteroplasmy variance is related to the number of dysfunctional cells above a phenotypic threshold within
a tissue, and both heteroplasmy mean and variance are directly related to tissue physiology. Increases in
heteroplasmy variance also increase the number of cells below a given threshold heteroplasmy, which can be
advantageous in e.g. selecting low-heteroplasmy embryos in pre-implantation genetic diagnosis for treating
mitochondrial disease (Burgstaller et al., 2014b; Johnston et al., 2015).

Mitochondria exist within a network which dynamically fuses and fragments. Although the function of
mitochondrial networks remains an open question (Hoitzing et al., 2015), it is often thought that a combination
of network dynamics and mitochondrial autophagy (termed mitophagy) act in concert to perform quality
control on the mitochondrial population (Aryaman et al., 2019; Johnston, 2018; Twig et al., 2008). Observations
of pervasive intra-mitochondrial mtDNA mutation (Morris et al., 2017) and universal heteroplasmy in humans
(Payne et al., 2012) suggest that the power of this quality control may be limited. It has also been suggested
that certain mtDNA mutations, such as deletions (Kowald and Kirkwood, 2018, 2013, 2014) and some
point mutations (Li et al., 2015; Lieber et al., 2019; Samuels et al., 2013; Ye et al., 2014), are under the
influence of selective effects. However, genetic models without selection have proven valuable in explaining
the heteroplasmy dynamics both of functional mutations (Elson et al., 2001; Taylor et al., 2003; Wonnapinij
et al., 2008) and polymorphisms without dramatic functional consequences (Birky et al., 1983; Ye et al.,
2014), and in common cases where mean heteroplasmy shifts are small compared to changes in variances
(for instance, in germline development (Johnston et al., 2015) and post-mitotic tissues (Burgstaller et al.,
2014a)). Mean changes seem more likely in high-turnover tissues and when mtDNA variants are genetically
distant (Burgstaller et al., 2014a; Pan et al., 2019), suggesting that neutral genetic theory may be useful
in understanding the dynamics of the set of functionally mild mutations which accumulate during ageing.
Neutral genetic theory also provides a valuable null model for understanding mitochondrial genetic dynamics
(Chinnery and Samuels, 1999; Johnston and Jones, 2016; Poovathingal et al., 2009), potentially allowing us to
better understand and quantify when selection is present. There is thus a set of open questions about how
the physical dynamics of mitochondria affect the genetic populations of mtDNA within and between cells
under neutral dynamics.

A number of studies have attempted to understand the impact of the mitochondrial network on mitochon-
drial dysfunction through computer simulation (reviewed in Kowald and Klipp (2014)). These studies have
suggested: that clearance of damaged mtDNA can be assisted by high and funcitonally-selective mitochondrial
fusion, or by intermediate fusion and selective mitophagy (Mouli et al., 2009); that physical transport of
mitochondria can indirectly modulate mitochondrial health through mitochondrial dynamics (Patel et al.,
2013); that fission-fusion dynamic rates modulate a trade-off between mutant proliferation and removal (Tam
et al., 2013, 2015); and that if fission is damaging, decelerating fission-fusion cycles may improve mitochondrial
quality (Figge et al., 2012).

Despite providing valuable insights, these previous attempts to link mitochondrial genetics and network
dynamics, while important for breaking ground, have centered around complex computer simulations, making
it difficult to deduce general laws and principles. Here, we address this lack of a general theoretical framework
linking mitochondrial dynamics and genetics. We take a simpler approach in terms of our model structure
(Figure 1C), allowing us to derive explicit, interpretable, mathematical formulae which provide intuitive
understanding, and give a direct account for the phenomena which are observed in our model (Figure 1D).
Our results hold for a range of variant model structures. Simplified approaches using stochastic modelling
have shown success in understanding mitochondrial physiology from a purely genetic perspective (Capps et al.,
2003; Chinnery and Samuels, 1999; Johnston and Jones, 2016). Furthermore, there currently exists limited
evidence for pronounced, universal, selective differences of mitochondrial variants in vivo (Hoitzing, 2017;
Stewart and Larsson, 2014). Our basic approach therefore also differs from previous modelling attempts,
since our model is neutral with respect to genetics (no replicative advantage or selective mitophagy) and the
mitochondrial network (no selective fusion). Evidence for negative selection of particular mtDNA mutations
has been observed in vivo (Morris et al., 2017; Ye et al., 2014); we therefore extend our analysis to explore
selectivity in the context of mitochondrial quality control using our simplified framework.

Here, we reveal the first general mathematical principle linking (physical) network state and (genetic)
heteroplasmy statistics (Figure 1D). Our models potentially allow rich interactions between mitochondrial
genetic and network dynamics, yet we find that a simple link emerges. For a broad range of situations, the
expansion of mtDNA mutants is strongly modulated by network state, such that the rate of increase of
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Figure 1. A simple model bridging mitochondrial networks and genetics yields a wide-reaching,
analytically obtained, description of heteroplasmy variance dynamics. (A) A population of cells from a
tissue exhibit inter-cellular heterogeneity in mitochondrial content: both mutant load (heteroplasmy) and copy
number. (B) Inter-cellular heterogeneity implies that heteroplasmy is described by a probability distribution. Cells
above a threshold heteroplasmy (h∗, black dashed line) are thought to exhibit a pathological phenotype. The
low-variance distribution (black line) has fewer cells above a pathological threshold heteroplasmy than the
high-variance distribution (red line). Heteroplasmy is depicted as an approximately normal distribution, as this is the
regime in which our approximations below hold: i.e. when the probability of fixation is small. (C) The chemical
reaction network we use to model the dynamics of mitochondrial DNA (see Main Text for a detailed description).
MtDNAs are assigned a genetic state: mutant (M) or wild-type (W ), and a network state: singleton (i.e. unfused, S)
or fused (F ). (D) The central result of our work is, assuming that a cell at time t = 0 is at its (deterministic)
steady-state, heteroplasmy variance (V(h)) approximately increases with time (t), mitophagy rate (µ) and the fraction
of mitochondria that are unfused (fs), and decreases with mtDNA copy number (n). Importantly, V(h) does not
depend on the absolute magnitude of the fission-fusion rates. Also see Table S1 for a summary of our key findings.
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heteroplasmy variance, and the rate of accumulation of de novo mutation, is proportional to the fraction
of unfused mitochondria. We discover that this result stems from the general notion that fusion shields
mtDNAs from turnover, since autophagy of large fragments of the mitochondrial network are unlikely, and
consequently rescales time. Importantly, we used our model for network dynamics to show that heteroplasmy
variance is independent of the absolute magnitude of the fusion and fission rates due to a separation of
timescales between genetic and network processes (in contrast to Tam et al. (2015)). Surprisingly, we find
the dependence of heteroplasmy statistics upon network state arises when the mitochondrial population size
is controlled through replication, and vanishes when it is controlled through mitophagy, shedding new light
on the physiological importance of the mode of mtDNA control. We show that when fusion is selective,
intermediate fusion/fission ratios are optimal for the clearance of mutated mtDNAs (in contrast to Mouli et al.
(2009)). When mitophagy is selective, complete fragmentation of the network results in the most effective
elimination of mitochondrial mutants (in contrast to Mouli et al. (2009)). We also confirm that mitophagy
and mitochondrial DNA copy number affect the rate of accumulation of de novo mutations (Johnston and
Jones, 2016), see Table S1 for a summary of our key findings. We suggest that pharmacological interventions
which promote fusion, slow mitophagy and increase copy number earlier in development may slow the rate of
accumulation of pathologically mutated cells, with implications for mitochondrial disease and aging.

Materials and Methods

Stochastic modelling of the coupling between genetic and network dynamics of
mtDNA populations

Our modelling approach takes a chemical master equation perspective by combining a general model of neutral
genetic drift (for instance, see Chinnery and Samuels (1999); Johnston and Jones (2016)) with a model of
mitochondrial network dynamics. We seek to understand the influence of the mitochondrial network upon
mitochondrial genetics. The network state itself is influenced by several factors including metabolic poise and
the respiratory state of mitochondria (Hoitzing et al., 2015; Mishra and Chan, 2016; Szabadkai et al., 2006),
which we do not consider explicitly here. We consider the existence of two mitochondrial alleles, wild-type
(W ) and mutant (M), existing within a post-mitotic cell without cell division, with mtDNAs undergoing
turnover (or “relaxed replication” Stewart and Chinnery (2015)). MtDNAs exist within mitochondria, which
undergo fusion and fission. We therefore assign mtDNAs a network state: fused (F ) or unfused (we term
“singleton”, S). This representation of the mitochondrial network allows us to include the effects of the
mitochondrial network in a simple way, without the need to resort to a spatial model or consider the precise
network structure, allowing us to make analytic progress and derive interpretable formulae in a more general
range of situations.

Our model can be decomposed into three notional blocks (Figure 1C). Firstly, the principal network
processes denote fusion and fission of mitochondria containing mtDNAs of the same allele

XS +XS
γ−→ XF +XF (1)

XF +XS
γ−→ XF +XF (2)

XF
β−→ XS (3)

where X denotes either a wild-type (W ) or a mutant (M) mtDNA (therefore a set of chemical reactions
analogous to Eq. (1)-(3) exist for both DNA species). γ and β are the stochastic rate constants for fusion and
fission respectively.

Secondly, mtDNAs are replicated and degraded through a set of reactions termed genetic processes. A
central assumption is that all degradation of mtDNAs occur through mitophagy, and that only small pieces of
the mitochondrial network are susceptible to mitophagy; for parsimony we take the limit of only the singletons
being susceptible to mitophagy

XS
λ−→ XF +XF (4)

XF
λ−→ XF +XF (5)

XS
µ−→ ∅ (6)

where λ and µ are the replication and mitophagy rates respectively, which are shared by both W and M
resulting in a so-called ‘neutral’ genetic model. Eq. (6) denotes removal of the species from the system. The
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effect of allowing non-zero degradation of fused species is discussed in Supporting Information (see Eq. (S68)
and Figure S3E). Replication of a singleton changes the network state of the mtDNA into a fused species,
since replication occurs within the same membrane-bound organelle. An alternative model of singletons
which replicate into singletons, thereby associating mitochondrial replication with fission (Lewis et al., 2016),
leaves our central result (Figure 1D) unchanged (see Supporting Information, Eq. (S67)). The system may be
considered neutral since both W and M possess the same replication and degradation rates per molecule of
mtDNA at any instance in time.

Finally, mtDNAs of different genotypes may interact through fusion via a set of reactions we term network
cross-processes:

WF +MS
γ−→ WF +MF (7)

MF +WS
γ−→ MF +WF (8)

WS +MS
γ−→ WF +MF . (9)

Any fusion or fission event which does not involve the generation or removal of a singleton leaves our system
unchanged; we term such events as non-identity-changing processes, which can be ignored in our system (see
Supporting Information, Rate renormalization for a discussion of rate renormalization). We have neglected de
novo mutation in the model description above (although we will consider de novo mutation using a modified
infinite sites Moran model below).

We found that treating λ = const led to instability in total copy number (see Supporting Information,
Constant rates yield unstable copy numbers for a model describing mtDNA genetic and network dynamics),
which is not credible. We therefore favoured a state-dependent replication rate such that copy number is
controlled to a particular value, as has been done by previous authors (Capps et al., 2003; Chinnery and
Samuels, 1999; Johnston and Jones, 2016). Allowing lower-case variables to denote the copy number of their
respective molecular species, we will focus on a linear replication rate of the form (Hoitzing, 2017; Hoitzing
et al., 2017):

λ = λ(wT ,mT ) = µ+ b(κ− (wT + δmT )) (10)

where wT = ws + wf is the total wild-type copy number, and similarly for mT . The lower-case variables ws,
wf , ms, and mf denote the copy numbers of the corresponding chemical species (WS , WF , MS , and MF ). b
is a parameter which determines the strength with which total copy number is controlled to a target copy
number, and κ is a parameter which is indicative of (but not equivalent to) the steady state copy number. δ
indicates the relative contribution of mutant mtDNAs to the control strength and is linked to the “maintenance
of wild-type” hypothesis (Durham et al., 2007; Stewart and Chinnery, 2015). When 0 ≤ δ < 1, and both
mutant and wild-type species are present, mutants have a lower contribution to the birth rate than wild-types.
When wild-types are absent, the population size will be larger than when there are no mutants: hence mutants
have a higher carrying capacity in this regime. We have modelled the mitophagy rate as constant per mtDNA.
We do, however, explore relaxing this constraint below by allowing mitophagy to be a function of state,
and also affect mutants differentially under quality control. λ may be re-written as λ = k1 + k2wT + k3mT

for constants ki, and so only consists of 3 independent parameters. However we will retain λ in the form
of Eq. (10) since the parameters µ, b, κ, and δ have the distinct physiological meanings described above
(Hoitzing, 2017; Hoitzing et al., 2017). Furthermore, λ may in general also depend on other cellular features
such as mitochondrial reactive oxygen species. Here, we seek to explain mitochondrial behaviour under a
simple set of governing principles, but our approach can naturally be combined with a description of these
additional factors to build a more comprehensive model. Analogues of this model (without a network) have
been applied to mitochondrial systems (Capps et al., 2003; Chinnery and Samuels, 1999). Overall, our simple
model consists of 4 species (WS ,WF ,MS ,MF ), 6 independent parameters and 15 reactions, and captures the
central property that mitochondria fragment before degradation (Twig et al., 2008).

Throughout this work, we define heteroplasmy as the mutant allele fraction per cell of a mitochondrially-
encoded variant (Aryaman et al., 2019; Samuels et al., 2010; Wonnapinij et al., 2008):

h(x) = (ms +mf )/(ws + wf +ms +mf ) (11)

where x = (ws, wf ,ms,mf ) is the state of the system (not to be confused with mitochondrial “respiratory
states”). Hence, a heteroplasmy of h = 1 denotes a cell with 100% mutant mtDNA (i.e. a homoplasmic cell in
the mutant allele). Arguably, “mutant allele fraction” would be a more precise description of Eq.(11) but we
retain the use of heteroplasmy for consistency. To convert to a definition of heteroplasmy which is maximal
when the mutant allele fraction is 50%, one may simply use the conversion 0.5− |h(x)− 0.5|.
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Statistical Analysis

In Figures S3B, S4A-I, we compare Eq. (13) and Eq. (S72) to stochastic simulations, for various parametriza-
tions and replication/degradation rates. To quantify the accuracy of these equations in predicting V(h, t), we
define the following error metric ε

ε =

∣∣∣∣∣1− V̇(h, t)Th

Et(V̇(h, t)Sim)

∣∣∣∣∣ (12)

where V̇(h, t) is the time derivative of heteroplasmy variance with subscripts denoting theory (Th) and
simulation (Sim). An expectation over time (Et) is taken for the stochastic simulations, whereas V̇(h, t) is a
scalar quantity for Eq. (13) and Eq. (S72).

Data Availability

Code for simulations and analysis can be accessed at https://GitHub.com/ImperialCollegeLondon/

MitoNetworksGenetics

Results

Mitochondrial network state rescales the linear increase of heteroplasmy variance
over time, independently of fission-fusion rate magnitudes

We first performed a deterministic analysis of the system presented in Eqs. (1)–(10), by converting the reactions
into an analogous set of four coupled ordinary differential equations (see Eqs. (S29)–(S32)), and choosing
a biologically-motivated approximate parametrization (which we will term the ‘nominal’ parametrization,
see Supporting Information, Choice of nominal parametrization, and Table S2). Figures 2A-B show that
copy numbers of each individual species change in time such that the state approaches a line of steady states
(Eqs. (S34)–(S36)), as seen in other neutral genetic models (Capps et al., 2003; Hoitzing, 2017). Upon reaching
this line, total copy number remains constant (Figure S2A) and the state of the system ceases to change with
time. This is a consequence of performing a deterministic analysis, which neglects stochastic effects, and
our choice of replication rate in Eq. (10) which decreases with total copy number when wT + δmT > κ and
vice versa, guiding the total population to a fixed total copy number. Varying the fission (β) and fusion (γ)
rates revealed a negative linear relationship between the steady-state fraction of singletons and copy number
(Figure S2B).

We may also simulate the system in Eqs. (1)–(9) stochastically, using the stochastic simulation algorithm
(Gillespie, 1976), which showed that mean copy number is slightly perturbed from the deterministic prediction
due to the influence of variance upon the mean (Grima et al., 2011; Hoitzing, 2017) (Figure 2C). The
stationarity of total copy number is a consequence of using δ = 1 for our nominal parametrization (i.e. the
line of steady states is also a line of constant copy number). Choosing δ 6= 1 results in a difference in carrying
capacities between the two species, and non-stationarity of mean total copy number, as trajectories spread
along the line of steady states to different total copy numbers. Copy number variance initially increases since
trajectories are all initialised at the same state, but plateaus because trajectories are constrained in their
copy number to remain near the attracting line of steady states (Figure S3A). Mean heteroplasmy remains
constant through time under this model (Figure 2D, see (Birky et al., 1983)). This is unsurprising since each
species possesses the same replication and degradation rate, so neither species is preferred.

From stochastic simulations we observed that, for sufficiently short times, heteroplasmy variance increases
approximately linearly through time for a range of parametrizations (Figure 2E-H), which is in agreement
with recent single-cell oocyte measurements in mice (Burgstaller et al., 2018). Previous work has also shown a
linear increase in heteroplasmy variance through time for purely genetic models of mtDNA dynamics (see
Johnston and Jones (2016)). We sought to understand the influence of mitochondrial network dynamics upon
the rate of increase of heteroplasmy variance.

To this end, we analytically explored the influence of mitochondrial dynamics on mtDNA variability.
Assuming that the state of the system above is initialised at its deterministic steady state (x(t = 0) = xss), we
took the limit of limit of large mtDNA copy numbers, fast fission-fusion dynamics, and applied a second-order
truncation of the Kramers-Moyal expansion (Gardiner, 1985) to the chemical master equation describing
the dynamics of the system (see Supporting Information). This yielded a stochastic differential equation for
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Figure 2. General mathematical principles linking heteroplasmy variance to network dynamics.
Wild-type and mutant copy numbers (A) and fused and unfused copy numbers (B) both move towards a line of steady
states under a deterministic model, as indicated by arrows. In stochastic simulation, mean copy number (C) is initially
slightly perturbed from the deterministic treatment of the system, and then remains constant, while mean
heteroplasmy (D) remains invariant with time (see Eq. (S61)). In (E)-(H), we show that Eq. (13) holds across many
cellular circumstances: lines give analytic results, points are from stochastic simulation. Heteroplasmy variance
behaviour is successfully predicted for varying mitophagy rate (E), steady state copy number (F), mutation sensing
(G), and fusion rate (H). In (H), fusion and fission rates are redefined as γ → γ0MR and β → β0M where M and R
denote the relative magnitude and ratio of the network rates, and γ0, β0 denote the nominal parametrizations of the
fusion and fission rates respectively (see Table S2). Figure S3D shows a sweep of M over the same logarithmic range
when R = 1. See Figure S4A-I and Table S3 for parameter sweeps numerically demonstrating the generality of the
result for different mtDNA control modes.
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heteroplasmy, via Itô’s formula (Jacobs, 2010). Upon forcing the state variables onto the steady-state line
(Constable et al., 2016), we derived Eq. (S63), which may be approximated for sufficiently short times as

V(h) ≈ fs(x)
2µt

n(x)
h(x)(1− h(x))

∣∣∣∣
x=xss

. (13)

Here, V(h) is the variance of heteroplasmy, µ is the mitophagy rate, n(x) is the total copy number and
fs(x) is the fraction of unfused (singleton) mtDNAs, and is thus a measure of the fragmentation of the
mitochondrial network. xss is the (deterministic) steady state of the system. Eq. (13) demonstrates that
mtDNA heteroplasmy variance increases approximately linearly with time (t) at a rate scaled by the fraction
of unfused mitochondria, mitophagy rate, and inverse population size. We find that Eq. (13) closely matches
heteroplasmy variance dynamics from stochastic simulation, for sufficiently short times after initialisation, for
a variety of parametrizations of the system (Figure 2E-H, Figure S5).

To our knowledge, Eq. (13) reflects the first analytical principle linking mitochondrial dynamics and the
cellular population genetics of mtDNA variance. Its simple form allows several intuitive interpretations. As
time progresses, replication and degradation of both species occurs, allowing the ratio of species to fluctuate;
hence we expect V(h) to increase with time according to random genetic drift (Figure 2E-H). The rate of
occurrence of replication/degradation events is set by the mitophagy rate µ, since degradation events are
balanced by replication rates to maintain population size; hence, random genetic drift occurs more quickly if
there is a larger turnover in the population (Figure 2E). We expect V(h) to increase more slowly in large
population sizes, since the birth of e.g. 1 mutant in a large population induces a small change in heteroplasmy
(Figure 2F). The factor of h(1− h) encodes the state-dependence of heteroplasmy variance, exemplified by
the observation that if a cell is initialised at h = 0 or h = 1, heteroplasmy must remain at its initial value
(since the model above does not consider de novo mutation, see below) and so heteroplasmy variance is
zero. Furthermore, the rate of increase of heteroplasmy variance is maximal when a cell’s initial value of
heteroplasmy is 1/2. In Figure 2G, we show that Eq. (13) is able to recapitulate the rate of heteroplasmy
variance increase across different values of δ, which are hypothesized to correspond to different replicative
sensing strengths of different mitochondrial mutations (Hoitzing, 2017). We also show in Figures S3B&C that
Eq. (13) is robust to the choice of feedback control strength b in Eq. (10). n(x), f(x), and h(x) in Eq.(13)
are not independent degrees of freedom in this model: they are functions of the state vector x, where x is
determined by the parametrization and initial conditions of the model. Hence, the parameter sweeps in Figure
2E-H and Figures S3B&C also implicitly vary over these functions of state by varying the steady state xss.

In Eq. (6), we have made the important assumption that only unfused mitochondria can be degraded
via mitophagy, as seen by Twig et al. (2008), hence the total propensity of mtDNA turnover is limited by
the number of mtDNAs which are actually susceptible to mitophagy. Strikingly, we find that the dynamics
of heteroplasmy variance are independent of the absolute rate of fusion and fission, only depending on the
fraction of unfused mtDNAs at any particular point in time (see Figure 2H and Figure S3D). This observation,
which contrasts with the model of (Tam et al., 2013, 2015) (see Discussion), arises from the observation that
mitochondrial network dynamics are much faster than replication and degradation of mtDNA, by around a
factor of β/µ ≈ 103 (see Table S2), resulting in the existence of a separation of timescales between network and
genetic processes. In the derivation of Eq. (13), we have assumed that fission-fusion rates are infinite, which
simplifies V(h) into a form which is independent of the magnitude of the fission-fusion rate. A parameter
sweep of the magnitude and ratio of the fission-fusion rates reveals that, if the fusion and fission rates are
sufficiently small, Eq. (13) breaks down and V(h) gains dependence upon the magnitude of these rates (see
Figure S4A). This regime is, however, for network rates which are approximately 100 times smaller than the
biologically-motivated nominal parametrization shown in Figure 2A-D where the fission-fusion rate becomes
comparable to the mitophagy rate. Since fission-fusion takes place on a faster timescale than mtDNA turnover,
we may neglect this region of parameter space as being implausible.

Eq. (13) can be viewed as describing the “quasi-stationary state” where the probability of extinction of
either allele is negligible (Johnston and Jones, 2016). On longer timescales, or if mtDNA half-life is short
(Poovathingal et al., 2012), the probability of fixation becomes appreciable. In this case, Eq. (13) over-estimates
V(h) as heteroplasmy variance gradually becomes sub-linear with time, see Figure S5C&D. This is evident
through inspection of Eq. (S63), which shows that cellular trajectories which reach h = 0 or h = 1 cease to
diffuse in heteroplasmy space, and so heteroplasmy variance cannot increase indefinitely. Consequently, the
depiction of heteroplasmy variance in Fig. 1B,D as being approximately normally distributed corresponds to
the regime in which our approximation holds, and is a valid subset of the behaviours displayed by heteroplasmy
dynamics under more sophisticated models (e.g. the Kimura distribution Kimura (1955); Wonnapinij et al.
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(2008)). Further analytical developments may be possible to take into account extinction (e.g. see Assaf and
Meerson (2010); Wonnapinij et al. (2008)). However, the linear regime for heteroplasmy variance has been
observed to be a substantial component of mtDNA dynamics in e.g. mouse oocytes (Burgstaller et al., 2018).

The influence of mitochondrial dynamics upon heteroplasmy variance under different models
of genetic mtDNA control

To demonstrate the generality of this result, we explored several alternative forms of cellular mtDNA control
(Johnston and Jones, 2016). We found that when copy number is controlled through the replication rate
function (i.e. λ = λ(x), µ = const), when the fusion and fission rates were high and the fixation probability
(P (h = 0) or P (h = 1)) was negligible, Eq. (13) accurately described V(h) across all of the replication
rates investigated, see Figure S4A-F. The same mathematical argument to show Eq. (13) for the replication
rate in Eq. (10) may be applied to these alternative replication rates where a closed-form solution for the
deterministic steady state may be written down (see Supporting Information, Deriving an ODE description of
the mitochondrial network system). Interestingly, when copy number is controlled through the degradation
rate (i.e. λ =const, µ = µ(x)), heteroplasmy variance loses its dependence upon network state entirely and
the fs term is lost from Eq. (13) (see Eq. (S72) and Figure S4G-I). A similar mathematical argument was
applied to reveal how this dependence is lost (see Supporting Information, Proof of heteroplasmy relation for
linear feedback control).

In order to provide an intuitive account for why control in the replication rate, versus control in the
degradation rate, determines whether or not heteroplasmy variance has network dependence, we investigated
a time-rescaled form of the Moran process (see Supporting Information, A modified Moran process may
account for the alternative forms of heteroplasmy variance dynamics under different models of genetic mtDNA
control). The Moran process is structurally much simpler than the model presented above, to the point of
being unrealistic, in that the mitochondrial population size is constrained to be constant between consecutive
time steps. Despite this, the modified Moran process proved to be insightful. We find that, when copy number
is controlled through the replication rate, the absence of death in the fused subpopulation means the timescale
of the system (being the time to the next death event) is proportional to fs. In contrast, when copy number is
controlled through the degradation rate, the presence of a constant birth rate in the entire population means
the timescale of the system (being the time to the next birth event) is independent of fs (see Eq. (S84) and
surrounding discussion).

Control strategies against mutant expansions

In this study, we have argued that the rate of increase of heteroplasmy variance, and therefore the rate of
accumulation of pathologically mutated cells within a tissue, increases with mitophagy rate (µ), decreases
with total mtDNA copy number per cell (n) and increases with the fraction of unfused mitochondria (termed
“singletons”, fs), see Eq. (13). Below, we explore how biological modulation of these variables influences the
accumulation of mutations. We use this new insight to propose three classes of strategy to control mutation
accumulation and hence address associated issues in aging and disease, and discuss these strategies through
the lens of existing biological literature.

Targeting network state against mutant expansions

In order to explore the role of the mitochondrial network in the accumulation of de novo mutations, we
invoked an infinite sites Moran model (Kimura, 1969) (see Figure 3A). Single cells were modelled over time
as having a fixed mitochondrial copy number (n), and at each time step one mtDNA is randomly chosen
for duplication and one (which can be the same) for removal. The individual replicated incurs Q de novo
mutations, where Q is binomially distributed according to

Q ∼ Binomial(LmtDNA, η) (14)

where Binomial(N, p) is a binomial random variable with N trials and probability p of success. LmtDNA = 16569
is the length of mtDNA in base pairs and η = 5.6 × 10−7 is the mutation rate per base pair per doubling
(Zheng et al., 2006); hence each base pair is idealized to have an equal probability of mutation upon replication.
In Supporting Information, Eq. (S83), we argue that when population size is controlled in the replication rate,
the inter-event rate (Γ) of the Moran process is effectively rescaled by the fraction of unfused mitochondria,
i.e. Γ = µnfs, which we apply here.
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Figure 3. Rate of de novo mutation accumulation is sensitive to the network state/mitophagy rate
and copy number for a time-rescaled infinite sites Moran model. (A) An infinite sites Moran model where
Q mutations occur per Moran step (see Eq. (14)). (B-D) Influence of our proposed intervention strategies. (B) Mean
number of distinct mutations increases with the fraction of unfused mitochondria. This corresponds to a simple
rescaling of time, so all but one of the parametrizations are shown in grey. (C) The mean number of mutations per
mtDNA also increases with the fraction of unfused mitochondria. Inset shows that the mean number of mutations per
mtDNA is independent of the number of mtDNAs per cell; values of n are the same as in (D). (D) Mean number of
mutations per cell increases according to the population size of mtDNAs. Standard error in the mean is too small to
visualise, so error bars are neglected, given 103 realizations.
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Figure 3B shows that in the infinite sites model, the consequence of Eq. (S83) is that the rate of accumulation
of mutations per cell reduces as the mitochondrial network becomes more fused, as does the mean number
of mutations per mtDNA (Figure 3C). These observations are intuitive: since fusion serves to shield the
population from mitophagy, mtDNA turnover slows down, and therefore there are fewer opportunities for
replication errors to occur per unit time. Different values of fs in Figures 3B&C therefore correspond to a
rescaling of time i.e. stretching of the time-axis. The absolute number of mutations predicted in Figure 3B
may over-estimate the true number of mutations per cell (and of course depends on our choice of mutation
rate), since a subset of mutations will experience either positive or negative selection. However, quantification
of the number of distinct mitochondrial mutants in single cells remains under-explored, as most mutations
will have a variant allele fraction close to 0% or 100% (Birky et al., 1983), which are challenging to measure,
especially through bulk sequencing.

A study by Chen et al. (2010) observed the effect of deletion of two proteins which are involved in
mitochondrial fusion (Mfn1 and Mfn2) in mouse skeletal muscle. Although knock-out studies present
difficulties in extending their insights into the physiological case, the authors observed that fragmentation
of the mitochondrial network induced severe depletion of mtDNA copy number (which we also observed in
Figure S2B). Furthermore, the authors observed that the number of mutations per base pair increased upon
fragmentation, which we also observed in the infinite sites model where fragmentation effectively results in a
faster turnover of mtDNA (Figure 3C).

Our models predict that promoting mitochondrial fusion has a two-fold effect: firstly, it slows the increase
of heteroplasmy variance (see Eq. (13) and Figure 2H); secondly, it reduces the rate of accumulation of distinct
mutations (see Figure 3B&C). These two effects are both a consequence of mitochondrial fusion rescaling the
time to the next turnover event, and therefore the rate of random genetic drift. As a consequence, this simple
model suggests that promoting fusion earlier in development (assuming mean heteroplasmy is low) could slow
down the accumulation and spread of mitochondrial mutations, and perhaps slow aging.

If we assume that fusion is selective in favour of wild-type mtDNAs, which appears to be the case at least
for some mutations under therapeutic conditions (Kandul et al., 2016; Suen et al., 2010), we predict that
a balance between fusion and fission is the most effective means of removing mutant mtDNAs (see below),
perhaps explaining why mitochondrial networks are often observed to exist as balanced between mitochondrial
fusion and fission (Sukhorukov et al., 2012; Zamponi et al., 2018). In contrast, if selective mitophagy pathways
are induced then promoting fragmentation is predicted to accelerate the clearance of mutants (see below).

Targeting mitophagy rate against mutant expansions

Alterations in the mitophagy rate µ have a comparable effect to changes in fs in terms of reducing the rate
of heteroplasmy variance (see Eq. (13)) and the rate of de novo mutation (Figure 3B&C) since they both
serve to rescale time. Our theory therefore suggests that inhibition of basal mitophagy may be able to slow
down the rate of random genetic drift, and perhaps healthy aging, by locking-in low levels of heteroplasmy.
Indeed, it has been shown that mouse oocytes (Boudoures et al., 2017) as well as mouse hematopoietic stem
cells (de Almeida et al., 2017) have comparatively low levels of mitophagy, which is consistent with the idea
that these pluripotent cells attempt to minimise genetic drift by slowing down mtDNA turnover. A previous
modelling study has also shown that mutation frequency increases with mitochondrial turnover (Poovathingal
et al., 2009).

Alternatively, it has also been shown that the presence of heteroplasmy, in genotypes which are healthy
when present at 100%, can induce fitness disadvantages (Acton et al., 2007; Bagwan et al., 2018; Sharpley
et al., 2012). In cases where heteroplasmy itself is disadvantageous, especially in later life where such mutations
may have already accumulated, accelerating heteroplasmy variance increase to achieve fixation of a species
could be advantageous. However, this will not avoid cell-to-cell variability, and the physiological consequences
for tissues of such mosaicism is unclear.

Targeting copy number against mutant expansions

To investigate the role of mtDNA copy number (mtCN) on the accumulation of de novo mutations, we set
fs = 1 such that Γ = µn (i.e. a standard Moran process). We found that varying mtCN did not affect the
mean number of mutations per molecule of mtDNA (Figure 3C, inset). However, as the population size
becomes larger, the total number of distinct mutations increases accordingly (Figure 3D). In contrast to our
predictions, a recent study by Wachsmuth et al. (2016) found a negative correlation between mtCN and the
number of distinct mutations in skeletal muscle. However, Wachsmuth et al. (2016) also found a correlation
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between the number of distinct mutations and age, in agreement with our model. Furthermore, the authors
used partial regression to find that age was more explanatory than mtCN in explaining the number of distinct
mutations, suggesting age as a confounding variable to the influence of copy number. Our work shows that,
in addition to age and mtCN, turnover rate and network state also influence the proliferation of mtDNA
mutations. Therefore, one would ideally account for these four variables for jointly, in order to fully constrain
our model.

A study of single neurons in the substantia nigra of healthy human individuals found that mtCN increased
with age (Dölle et al., 2016). Furthermore, mice engineered to accumulate mtDNA deletions through faulty
mtDNA replication (Trifunovic et al., 2004) display compensatory increases in mtCN (Perier et al., 2013),
which potentially explains the ability of these animals to resist neurodegeneration. It is possible that the
observed increase in mtCN in these two studies is an adaptive response to slow down random genetic drift
(see Eq. (13)). In contrast, mtCN reduces with age in skeletal muscle (Wachsmuth et al., 2016), as well as in
a number of other tissues such as pancreatic islets (Cree et al., 2008) and peripheral blood cells (Mengel-From
et al., 2014). Given the beneficial effects of increased mtCN in neurons, long-term increases in mtCN could
delay other age-related pathological phenotypes.

Optimal mitochondrial network configurations for mitochondrial quality control

Whilst the above models of mtDNA dynamics are neutral (i.e. m and w share the same replication and
degradation rates), it is often proposed that damaged mitochondria may experience a higher rate of degradation
(Kim et al., 2007; Narendra et al., 2008). There are two principal ways in which selection may occur on
mutant species. Firstly, mutant mitochondria may be excluded preferentially from the mitochondrial network
in a background of unbiased mitophagy. If this is the case, mutants would be unprotected from mitophagy for
longer periods of time than wild-types, and therefore be at greater hazard of degradation. We can alter the
fusion rate (γ) in the mutant analogues of Eq. (1),(2) and Eqs. (7)–(9) by writing

γ → γ/(1 + εf ) (15)

for all fusion reactions involving 1 or more mutant mitochondria where εf > 0. The second potential selective
mechanism we consider is selective mitophagy. In this case, the degradation rate of mutant mitochondria is
larger than wild-types, i.e. we modify the mutant degradation reaction to

Ms
µ(1+εm)−−−−−→ ∅ (16)

for εm > 0.
In these two settings, we explore how varying the fusion rate for a given selectivity (εf and εm) affects the

extent of reduction in mean heteroplasmy. Figure 4A shows that, in the context of selective fusion (εf > 0)
and non-selective mitophagy (εm = 0) the optimal strategy for clearance of mutants is to have an intermediate
fusion/fission ratio. This was observed for all fusion selectivities investigated (see Figure S7) Intuitively, if the
mitochondrial network is completely fused then, due to mitophagy only acting upon smaller mitochondrial
units, mitophagy cannot occur – so mtDNA turnover ceases and heteroplasmy remains at its initial value. In
contrast, if the mitochondrial network completely fissions, there is no mitochondrial network to allow the
existence of a quality control mechanism: both mutants and wild-types possess the same probability per unit
time of degradation, so mean heteroplasmy does not change. Since both extremes result in no clearance of
mutants, the optimal strategy must be to have an intermediate fusion/fission ratio.

In contrast, in Figure 4B, in the context of non-selective fusion (εf = 0) and selective mitophagy (εm > 0),
the optimal strategy for clearance of mutants is to completely fission the mitochondrial network. Intuitively, if
mitophagy is selective, then the more mtDNAs which exist in fragmented organelles, the greater the number
of mtDNAs which are susceptible to selective mitophagy, the greater the total rate of selective mitophagy, the
faster the clearance of mutants.

Discussion

In this work, we have sought to unify our understanding of three aspects of mitochondrial physiology – the
mitochondrial network state, mitophagy, and copy number – with genetic dynamics. The principal virtue of
our modelling approach is its simplified nature, which makes general, analytic, quantitative insights available
for the first time. In using parsimonious models, we are able to make the first analytic link between the
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Figure 4. Selective fusion implies intermediate fusion rates are optimal for mutant clearance whereas
selective mitophagy implies complete fission is optimal. Numerical exploration of the shift in mean
heteroplasmy for varying fusion/fission ratio, across different selectivity strengths. Stochastic simulations for mean
heteroplasmy, evaluated at 1000 days, with an initial condition of h = 0.3 and n = 1000; the state was initialised on the
steady state line for the case of εf = εm = 0, for 104 iterations. (A) For selective fusion (see Eq. (15)), for each value
of fusion selectivity (εf ), the fusion rate (γ) was varied relative to the nominal parametrization (see Table S2). When
εf > 0, the largest reduction in mean heteroplasmy occurs at intermediate values of the fusion rate; a deterministic
treatment reveals this to be true for all fusion selectivities investigated (see Figure S7). (B) For selective mitophagy
(see Eq. (16)), when mitophagy selectivity εm > 0, a lower mean heteroplasmy is achieved, the lower the fusion rate
(until mean heteroplasmy = 0 is achieved). Hence, complete fission is the optimal strategy for selective mitophagy.

mitochondrial network state and heteroplasmy dynamics. This is in contrast to other computational studies
in the field, whose structural complexity make analytic progress difficult, and accounting for their predicted
phenomena correspondingly more challenging.

Our bottom-up modeling approach allows for potentially complex interactions between the physical
(network) and genetic mitochondrial states of the cell, yet a simple connection emerged from our analysis. We
found, for a wide class of models of post-mitotic cells, that the rate of linear increase of heteroplasmy variance
is modulated in proportion to the fraction of unfused mitochondria (see Eq. (13)). The general notion that
mitochondrial fusion shields mtDNAs from turnover, and consequently serves to rescale time, emerges from
our analysis. This rescaling of time only holds when mitochondrial copy numbers are controlled through
a state-dependent replication rate, and vanishes if copy numbers are controlled through a state-dependent
mitophagy rate. We have presented the case of copy number control in the replication rate as being a more
intuitive model than control in the degradation rate. The former has the interpretation of biogenesis being
varied to maintain a constant population size, with all mtDNAs possessing a characteristic lifetime. The
latter has the interpretation of all mtDNA molecules being replicated with a constant probability per unit
time, regardless of how large or small the population size is, and changes in mitophagy acting to regulate
population size. Such a control strategy seems wasteful in the case of stochastic fluctuations resulting in a
population size which is too large, and potentially slow if fluctuations result in a population size which is
too small. Furthermore, control in the replication rate means that the mitochondrial network state may act
as an additional axis for the cell to control heteroplasmy variance (Figure 2) and the rate of accumulation
of de novo mutations (Figure 3B&C). Single-mtDNA tracking through confocal microscopy in conjunction
with mild mtDNA depletion could shed light on whether the probability of degradation per unit time per
mtDNA varies when mtDNA copy number is perturbed, and therefore provide evidence for or against these
two possible control strategies.

Our observations provide a substantial change in our understanding of mitochondrial genetics, as it
suggests that the mitochondrial network state, in addition to mitochondrial turnover and copy number, must
be accounted for in order to predict the rate of spread of mitochondrial mutations in a cellular population.
Crucially, through building a model that incorporates mitochondrial dynamics, we find that the dynamics of
heteroplasmy variance is independent of the absolute rate of fission-fusion events, since network dynamics
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occur approximately 103 times faster than mitochondrial turnover, inducing a separation of timescales. The
independence of the absolute rate of network dynamics makes way for the possibility of gaining information
about heteroplasmy dynamics via the mitochondrial network, without the need to quantify absolute fission-
fusion rates (for instance through confocal micrographs to quantify the fraction of unfused mitochondria).
By linking with classical statistical genetics, we find that the mitochondrial network also modulates the rate
of accumulation of de novo mutations, also due to the fraction of unfused mitochondria serving to rescale
time. We find that, in the context of mitochondrial quality control through selective fusion, an intermediate
fusion/fission ratio is optimal due to the finite selectivity of fusion. This latter observation perhaps provides
an indication for the reason why we observe mitochondrial networks in an intermediate fusion state under
physiological conditions (Sukhorukov et al., 2012; Zamponi et al., 2018).

We have, broadly speaking, considered neutral models of mtDNA genetic dynamics. It is, however, typically
suggested that increasing the rate of mitophagy promotes mtDNA quality control, and therefore shrinks
the distribution of heteroplasmies towards 0% mutant (see Eq. (15) and Eq. (16)). If mitophagy is able to
change mean heteroplasmy, then a neutral genetic model appears to be inappropriate, as mutants experience
a higher rate of degradation. Stimulation of the PINK1/Parkin pathway has been shown to select against
deleterious mtDNA mutations in vitro (Suen et al., 2010) and in vivo (Kandul et al., 2016), as has repression
of the mTOR pathway via treatment with rapamycin (Dai et al., 2013; Kandul et al., 2016). However, the
necessity of performing a genetic/pharmacological intervention to clear mutations via this pathway suggests
that the ability of tissues to selectively remove mitochondrial mutants under physiological conditions is weak.
Consequently, neutral models such as our own are useful in understanding how the distribution of heteroplasmy
evolves through time under physiological conditions. Indeed, it has been recently shown that mitophagy is
basal (McWilliams et al., 2016) and can proceed independently of PINK1 in vivo (McWilliams et al., 2018),
perhaps suggesting that mitophagy has non-selective aspects – although this is yet to be verified conclusively.

We have paid particular attention to the case of post-mitotic tissues, since these tissues are important
for understanding the role of mitochondrial mutations in healthy aging (Kauppila et al., 2017; Khrapko and
Vijg, 2009). A typical rate of increase of heteroplasmy variance predicted by Eq.(13) given our nominal
parametrization (Table S2) is V ′(h)/t = V(h)/(E(h)(1 − E(h))t) = 2µfs/n ≈ 2.3 × 10−5 day−1 (fs = 0.5,
n = 1000). This value accounts for the accumulation of heteroplasmy variance which is attributable to turnover
of the mitochondrial population in a post-mitotic cell. However, in the most general case, cell division is also
able to induce substantial heteroplasmy variance. For example, V ′(h)/t has been measured in model organism
germlines to be approximately 9 × 10−4 day−1 in Drosophila (Johnston and Jones, 2016; Solignac et al.,
1987), 9× 10−4 day−1 in NZB/BALB mice (Johnston and Jones, 2016; Wai et al., 2008; Wonnapinij et al.,
2008), and 2× 10−4 day−1 in single LE and HB mouse oocytes (Burgstaller et al., 2018). We see that these
rates of increase in heteroplasmy variance are approximately an order of magnitude larger than predictions
from our model of purely quiescent turnover, given our nominal parametrisation. Whilst larger mitophagy
rates may also potentially induce larger values for V ′(h)/t (see Poovathingal et al. (2012), and Figure S5C,
corrsponding to V ′(h)/t ≈ 3.5× 10−4 day−1) it is clear that partitioning noise (or “vegetative segregation”,
Stewart and Chinnery (2015)) is also an important source of variance in heteroplasmy dynamics (Johnston
et al., 2015). Quantification of heteroplasmy variance in quiescent tissues remains an under-explored area,
despite its importance in understanding healthy ageing (Aryaman et al., 2019; Kauppila et al., 2017).

Our findings reveal some apparent differences with previous studies which link mitochondrial genetics
with network dynamics (see Table S4). Firstly, Tam et al. (2013, 2015) found that slower fission-fusion
dynamics resulted in larger increases in heteroplasmy variance with time, in contrast to Eq. (13) which only
depends on fragmentation state and not absolute network rates. The simulation approach of Tam et al.
(2013, 2015) allowed for mitophagy to act on whole mitochondria, where mitochondria consist of multiple
mtDNAs. Faster fission-fusion dynamics tended to form heteroplasmic mitochondria whereas slower dynamics
formed homoplasmic mitochondria. It is intuitive that mitophagy of a homoplasmic mitochondrion induces a
larger shift in heteroplasmy than mitophagy of a single mtDNA, hence slower network dynamics form more
homoplasmic mitochondria. However, this apparent difference with our findings can naturally be resolved if we
consider the regions in parameter space where the fission-fusion rate is much larger than the mitophagy rate,
as is empirically observed to be the case (Burgstaller et al., 2014a; Cagalinec et al., 2013). If the fission-fusion
rates are sufficiently large to ensure heteroplasmic mitochondria, then further increasing the fission-fusion rate
is unlikely to have an impact on heteroplasmy dynamics. Hence, this finding is potentially compatible with
our study, although future experimental studies investigating intra-mitochondrial heteroplasmy would help
constrain these models. Tam et al. (2015) also found that fast fission-fusion rates could induce an increase
in mean heteroplasmy, in contrast to Figure 2D which shows that mean heteroplasmy is constant with time
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after a small initial transient due to stochastic effects. We may speculate that the key difference between our
treatment and that of Tam et al. (2013, 2015) is the inclusion of cellular subcompartments which induces
spatial effects which we do not consider here. The uncertainty in accounting for the phenomena observed in
such complex models highlights the virtues of a simplified approach which may yield interpretable laws and
principles through analytic treatment.

The study of Mouli et al. (2009) suggested that, in the context of selective fusion, higher fusion rates
are optimal. This initially seems to contrast with our finding which states that intermediate fusion rates
are optimal for the clearance of mutants (Figure 4A). However, the high fusion rates in that study do not
correspond directly to the highly fused state in our study. Fission automatically follows fusion in (Mouli
et al., 2009), ensuring at least partial fragmentation, and the high fusion rates for which they identify optimal
clearing are an order of magnitude lower than the highest fusion rate they consider. In the case of complete
fusion, mitophagy cannot occur in the model of Mouli et al. (2009), so there is no mechanism to remove
dysfunctional mitochondria. It is perhaps more accurate to interpret the observations of Mouli et al. (2009)
as implying that selective fusion shifts the optimal fusion rate higher, when compared to the case of selective
mitophagy alone. Therefore the study of Mouli et al. (2009) is compatible with Figure 4A. Furthermore,
Mouli et al. (2009) also found that when fusion is non-selective and mitophagy is selective, intermediate fusion
rates are optimal whereas Figure 4B shows that complete fragmentation is optimal for clearance of mutants.
Optimality of intermediate fusion in the context of selective mitophagy in the model of Mouli et al. (2009)
likely stems from two aspects of their model: i) mitochondria consist of several units which may or may
not be functional; ii) the sigmoidal relationship between number of functional units per mitochondrion and
mitochondrial ‘activity’ (the metric by which optimality is measured). Points (i) and (ii) imply that small
numbers of dysfunctional mitochondrial units have very little impact on mitochondrial activity, so fusion may
boost total mitochondrial activity in the context of small amounts of mutation. So whilst Figure 4B remains
plausible in light of the study of Mouli et al. (2009) if reduction of mean heteroplasmy is the objective of the
cell, it is also plausible that non-linearities in mitochondrial output under cellular fusion (Hoitzing et al., 2015)
result in intermediate fusion being optimal in terms of energy output in the context of non-selective fusion and
selective mitophagy. Future experimental studies quantifying the importance of selective mitophagy under
physiological conditions would be beneficial for understanding heteroplasmy variance dynamics. The ubiquity
of heteroplasmy (Morris et al., 2017; Payne et al., 2012; Ye et al., 2014) suggests that a neutral drift approach
to mitochondrial genetics may be justified, which contrasts with the studies of Tam et al. (2013, 2015) and
Mouli et al. (2009) which focus purely on the selective effects of mitochondrial networks.

In order to fully test our model, further single-cell longitudinal studies are required. For instance, the study
by Burgstaller et al. (2018) found a linear increase in heteroplasmy variance through time in single oocytes.
Our work here has shown that measurement of the network state, as well as turnover and copy number, are
required to account for the rate of increase in heteroplasmy variance. Joint longitudinal measurements of fs, µ
and n, with heteroplasmy quantification, would allow verification of Eq. (13) and aid in determining the extent
to which neutral genetic models are explanatory. This could be achieved, for instance, using the mito-QC
mouse (McWilliams et al., 2016) which allows visualisation of mitophagy and mitochondrial architecture
in vivo. Measurement of fs, µ and n, followed by e.g. destructive single-cell whole-genome sequencing of
mtDNA would allow validation of how µ, n and fs influence V(h) and the rate of de novo mutation (see
Figure 3). One difficulty is sequencing errors induced through e.g. PCR, which hampers our ability accurately
measure mtDNA mutation within highly heterogeneous samples (Woods et al., 2018). Morris et al. (2017)
have suggested that single cells are highly heterogeneous in mtDNA mutation, with each mitochondrion
possessing 3.9 single-nucleotide variants on average. Error correction strategies during sequencing may pave
the way towards high-accuracy mtDNA sequencing (Salk et al., 2018; Woods et al., 2018), and allow us to
better constrain models of heteroplasmy dynamics.
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Li, M., R. Schröder, S. Ni, B. Madea, and M. Stoneking, 2015 Extensive tissue-related and allele-related
mtDNA heteroplasmy suggests positive selection for somatic mutations. Proc. Natl. Acad. Sci. USA 112:
2491–2496.

Lieber, T., S. P. Jeedigunta, J. M. Palozzi, R. Lehmann, and T. R. Hurd, 2019 Mitochondrial fragmentation
drives selective removal of deleterious mtDNA in the germline. Nature p. 1.

López-Ot́ın, C., M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, 2013 The hallmarks of aging. Cell
153: 1194–1217.

McWilliams, T. G., A. R. Prescott, G. F. Allen, J. Tamjar, M. J. Munson, et al., 2016 mito-QC illuminates
mitophagy and mitochondrial architecture in vivo. J. Cell Biol. pp. jcb–201603039.

McWilliams, T. G., A. R. Prescott, L. Montava-Garriga, G. Ball, F. Singh, et al., 2018 Basal mitophagy
occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab. 27: 439–449.

Medeiros, T. C., R. L. Thomas, R. Ghillebert, and M. Graef, 2018 Autophagy balances mtDNA synthesis and
degradation by DNA polymerase POLG during starvation. J. Cell Biol. pp. jcb–201801168.

Mengel-From, J., M. Thinggaard, C. Dalg̊ard, K. O. Kyvik, K. Christensen, et al., 2014 Mitochondrial DNA
copy number in peripheral blood cells declines with age and is associated with general health among elderly.
Hum. Genet. 133: 1149–1159.

Mishra, P. and D. C. Chan, 2016 Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212: 379–387.

Morris, J., Y.-J. Na, H. Zhu, J.-H. Lee, H. Giang, et al., 2017 Pervasive within-mitochondrion single-nucleotide
variant heteroplasmy as revealed by single-mitochondrion sequencing. Cell Rep. 21: 2706–2713.

Mouli, P. K., G. Twig, and O. S. Shirihai, 2009 Frequency and selectivity of mitochondrial fusion are key to
its quality maintenance function. Biophys. J. 96: 3509–3518.

Narendra, D., A. Tanaka, D.-F. Suen, and R. J. Youle, 2008 Parkin is recruited selectively to impaired
mitochondria and promotes their autophagy. J. Cell Biol. 183: 795–803.

Pan, J., L. Wang, C. Lu, Y. Zhu, Z. Min, et al., 2019 Matching mitochondrial DNA haplotypes for circumventing
tissue-specific segregation bias. iScience 13: 371–379.

Parsons, T. L. and T. Rogers, 2017 Dimension reduction for stochastic dynamical systems forced onto a
manifold by large drift: a constructive approach with examples from theoretical biology. J. Phys. A 50:
415601.

Patel, P. K., O. Shirihai, and K. C. Huang, 2013 Optimal dynamics for quality control in spatially distributed
mitochondrial networks. PLoS Comp. Biol. 9: e1003108.

Payne, B. A., I. J. Wilson, P. Yu-Wai-Man, J. Coxhead, D. Deehan, et al., 2012 Universal heteroplasmy of
human mitochondrial DNA. Hum. Mol. Genet. 22: 384–390.

18
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Supporting Information

Constant rates yield unstable copy numbers for a model describing
mtDNA genetic and network dynamics

We explored a simpler network system than the one presented in the Main Text, but found that it produced
instability in mtDNA copy numbers, which we regard as biologically undesirable. Consider the following set
of Poisson processes for singleton (s) and fused (f) species

s+ s
γ−→ f + f (S1)

s+ f
γ−→ f + f (S2)

f
β−→ s (S3)

s
αρ−→ s+ s (S4)

f
αρ−→ f + f (S5)

s
ηρ−→ ∅ (S6)

f
ρ−→ ∅ (S7)

where Eq. (S1)-(S3) are analogous to Eq. (1)-(3) where mutant species are neglected. Eq. (S4) and (S5)
are simple birth processes with a shared constant rate αρ. Eq. (S6) and (S7) are simple death processes
with rates ηρ and ρ respectively. The parameter ρ is shared amongst all of the birth and death reactions in
Eqs. (S4)–(S7). ρ represents the intuitive assumption that, in order for a stable population size to exist, birth
should balance death. However, for the network to have any effect at all, singletons should be at an increased
risk of mitophagy relative to fused species. We represent the increased risk of singleton mitophagy with the
parameter η. Since additional death is introduced into the system when η > 1, we include the parameter
α > 1 as an increased global biogenesis rate to balance the increased mitophagy of singletons.

We may write the above system as a set of ordinary differential equations

ds

dt
= −γs2 − γfs+ βf + αρs− ηρs (S8)

df

dt
= γs2 + γfs− βf + αρf − ρf (S9)

where we have enforced the stochastic reaction rate to be equivalent to the deterministic reaction rate, and
hence the s2 term is proportional to γ rather than 2γ (justification of this is presented below, see Eq. (S20)).
In Figure S1 we see that the system displays a trivial steady state at s = f = 0 and a non-trivial steady state.
Computing the eigenvalues of the Jacobian matrix at the non-trivial steady state indicates that it is a saddle
node, and therefore unstable. Initial copy numbers which are too small tend towards extinction with time,
and initial copy numbers which are too large tend towards a copy number explosion. This simple example
suggests that a system of this form with constant reaction rates is unstable, and therefore biologically unlikely
to exist under reasonable circumstances. We hence consider analogous biochemical reaction networks with a
replication rate which is a function of state, to prevent extinction and divergence of the total population size.

Conversion of a chemical reaction network into ordinary differential
equations

The following section outlines the steps in converting a set of chemical reactions into a set of ordinary differential
equations (ODEs). In particular, we pay special attention to the fact that the rate of a chemical reaction with
a stochastic treatment is not always equivalent to the rate in a deterministic treatment (Wilkinson, 2011),
as we will explain below. This subtlety is sometimes overlooked in the literature. This section draws on a
number of standard texts (Gillespie, 1976, 2007; Van Kampen, 1992; Wilkinson, 2011) as well as Grima (2010).
We hope this harmonized treatment will be of help as a future reference.

Consider a general chemical system consisting of N distinct chemical species (Xi) interacting via R
chemical reactions, where the jth reaction is of the form

s1jX1 + · · ·+ sNjXN
k̂j−→ r1jX1 + · · ·+ rNjXN (S10)
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where sij and rij are stoichiometric coefficients. We define k̂j as the microscopic rate for this reaction. The

dimensionality of this parameter will vary depending upon the stoichiometric coefficients sij . k̂j may be
loosely interpreted as setting the characteristic timescale (i.e. the cross section (Wilkinson, 2011)) of reaction
j.

The chemical master equation (CME) describes the dynamics of the joint distribution of the state of the
system and time, moving forwards through time. Defining the state of the system as x = (x1, . . . , xN )T ,
where xi is the copy number of the ith species, allows us to write the CME as (Grima, 2010)

∂P (x, t|x0, t0)

∂t
= Ω

R∑
j=1

(
N∏
i=1

E
−Sij

i − 1

)
f̂j(x,Ω)P (x, t|x0, t0) (S11)

where Ω is the volume of the compartment in which the reactions occur (also known as the system size),

Sij = rij − sij is the stoichiometry matrix, and E
−Sij

i is referred to as the step operator and is defined

through the relation E
−Sij

i (g(x)) = g(x1, . . . , xi − Sij , . . . , xN ), for any function of state g(x). f̂j(x,Ω) is the
microscopic rate function of reaction j, which in general depends on both the state and the system size. A
factor of Ω is explicitly included in this definition of the chemical master equation so that our treatment is
compatible with Van Kampen’s system size expansion (Van Kampen, 1992). As a consequence of this, the
probability that, given the current state x, the jth reaction occurs in the time interval [t, t+ dt) somewhere in
Ω (Gillespie, 2007) is

âj(x,Ω)dt := Ωf̂j(x,Ω)dt. (S12)

âj(x,Ω) is termed the propensity function (or “hazard”) and is of particular relevance in the stochastic
simulation algorithm (Gillespie, 1976), since âj(x,Ω)/

∑
j âj(x,Ω) determines the probability that the jth

reaction occurs next.
For the microscopic rate function, we may write

f̂j(x,Ω) = k̂j

N∏
i=1

Ω−sij
(
xi
sij

)
. (S13)

This equation counts the number of available combinations of reacting molecules (Gillespie, 1976; Wilkinson,
2011), whilst taking into account scaling with system size (Grima, 2010).

We also introduce the deterministic rate equation (generally considered to be the macroscopic analogue of
the CME) which is defined as (Grima, 2010; Van Kampen, 1992)

dφi
dt

=

R∑
j=1

Sij f̃j(φ) (S14)

where φ = (φ1, . . . , φN )T is the vector of macroscopic concentrations (of dimensions molecules per unit
volume) and f̃j(φ) is the macroscopic rate function satisfying

f̃j(φ) = k̃j

N∏
i=1

φ
sij
i (S15)

where k̃j is the macroscopic rate for the jth reaction. We distinguish between k̂j and k̃j , respectively the rate
constants for the discrete and continuous pictures, although this distinction is sometimes not emphasized
in the literature (Grima, 2010; Grima et al., 2011; Van Kampen, 1992). The physical meaning of k̃j is
not immediately obvious: we argue that this parameter only gains physical meaning through the following
procedure.

As stated by Wilkinson (2011), if we intend for the microscopic description in Eq. (S11) to correspond to
the macroscopic description in Eq. (S14), the rate of consumption/production of particles for every reaction
must be the same in the deterministic limit of the stochastic system (the conditions for which we define
below). Therefore, we apply the following constraint in the limit of large copy numbers

lim
xi→∞

f̂j(x,Ω) = f̃j(φ) ∀ i, j. (S16)
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In applying this constraint on all species i and all reactions j, we may derive a general relationship between
k̂j and k̃j

lim
xi→∞

k̂j

N∏
i=1

Ω−sij
xi!

sij ! (xi − sij)!
= k̃j

N∏
i=1

φ
sij
i . (S17)

We can make two approximations to generate a more convenient relationship between the microscopic and
macroscopic rates. Firstly, we assume that

xi ≈ Ωφi. (S18)

This is a small noise approximation, since it is often assumed that xi = Ωφi + Ω1/2ξi, where ξi is a noise term
(Van Kampen, 1992). If ξi is small then xi ≈ Ωφi is a valid approximation. Secondly, we assume that

xi(xi − 1) . . . (xi − sij + 1) ≈ xsiji . (S19)

This is a large copy number approximation: in the case of e.g. a bimolecular reaction (2Xi → ∗) with sij = 2,
the approximation is of the form xi(xi − 1) ≈ x2i or xi ≈ xi − 1. By applying Eq. (S19) to the factor of xi! in
Eq. (S17), the factor of (xi − sij)! cancels from the left-hand side. Simplifying using Eq. (S18), φ

sij
i cancels

from both sides and we arrive at the important relationship

k̃j ≈ k̂j
N∏
i=1

1

sij !
. (S20)

With Eq. (S14), Eq. (S15) and Eq. (S20) one may therefore write down a set of ODEs for an arbitrary chemical

reaction network, with constant reaction rates, in terms of the microscopic rates k̂j . This equation highlights

that for reactions with sij ≥ 2, k̃j 6= k̂j , as is the case for bimolecular reactions of the form 2Xi → ∗ (see
Eq. (1) and Eq. (S1)).

Importantly, if the microscopic rate function is a function of state then k̂ = k̂(x) and k̃ = k̃(φ) ≈ k̃(x/Ω).

In this case, Eq. (S20) still applies since the above argument assumed nothing about the particular forms of k̂
and k̃. However, additional factors of Ω−1 are induced by applying Eq. (S18), which may carry through to
the individual parameters of k̃(φ). A demonstration of this is given in the following section.

Deriving an ODE description of the mitochondrial network system

In this section we show how to derive an ODE description of the network system described in Eq. (1)-Eq. (9)
in the Main Text. In accordance with the notation in the previous section, we will redefine all of the rates in
Eq. (1)-Eq. (10) with a hat notation (â, for a general rate parameter a), to reflect that these are stochastic
rates. Deterministic rates will be denoted with a tilde (ã). Our aim will be to write a set of ODEs in terms of
the stochastic rates, â, for which we are able to estimate values.

We will begin by considering the fusion network equations Eq. (1) and Eq. (2). For clarity, we rewrite
Eq. (1) to allow the reaction to proceed with some arbitrary rate ρ̂:

XS +XS
ρ̂−→ XF +XF , (S21)

where X denotes either a wild-type (W ) or mutant (M). We will subsequently fix ρ̂ to the rate of all other
fusion reactions γ̂. We do this because Eq. (1) is a bimolecular reaction involving one species: a fundamentally
different reaction to bimolecular reactions involving two species, as we will now see.

Since ρ̂, γ̂ = const, we may use Eq. (S20), resulting in the deterministic rates

ρ̃ =
ρ̂

2
(S22)

γ̃ = γ̂ (S23)

for Eq. (S21) and Eq. (2) respectively. If we then enforce the microscopic rates to be equal for both of these
fusion reactions, i.e. ρ̂ = γ̂, then ρ̃ = γ̂/2. All other fusion reactions have γ̃ = γ̂ by application of Eq. (S20).

Application of Eq. (S20) to the fission reaction in Eq. (3) shows that β̂ = β̃.
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For Eq. (4), we have chosen a λ̂ which is not a constant, but a function of the copy numbers of the chemical

species (λ̂ = λ̂(x) where x = (ws, wf ,ms,mf ), see Eq. (10)). As pointed out in the previous section, care

must be taken in writing down the deterministic analogue of λ̂. Applying Eq. (S20), we have

µ̂+ b̂(κ̂− (ws + wf + δ̂ms + δ̂mf )) = µ̃+ b̃(κ̃− (φws
+ φwf

+ δ̃φms
+ δ̃φmf

)). (S24)

Applying Eq. (S18) and equating individual terms, we arrive at

µ̂ = µ̃ (S25)

b̂ws = b̃
ws
Ω

=⇒ b̂ = b̃/Ω (S26)

b̂k̂ = b̃k̃ =⇒ k̂ = k̃Ω (S27)

b̂δ̂ms = b̃δ̃φms
=⇒ δ̂ = δ̃. (S28)

In this study, we let Ω = 1 so the above 4 parameters are identical to their deterministic counterparts. Hence,
by application of Eq. (S14), we arrive at the following set of ODEs

dφws

dt
= −2 · γ̂

2
φ2ws
− γ̂φws

φwf
+ β̂φwf

− (µ̂+ b̂(κ̂− (φws
+ φwf

+δ̂φms + δ̂φmf
)))φws − µ̂φws−

γ̂φmf
φws − γ̂φwsφms

(S29)

dφms

dt
= −2 · γ̂

2
φ2ms
− γ̂φms

φmf
+ β̂φmf

− (µ̂+ b̂(κ̂− (φws
+ φwf

+δ̂φms
+ δ̂φmf

)))φms
− µ̂φms

−
γ̂φwf

φms
− γ̂φws

φms

(S30)

dφwf

dt
= 2 · γ̂

2
φ2ws

+ γ̂φws

φwf
− β̂φwf

+ (µ̂+ b̂(κ̂− (φws
+ φwf

+δ̂φms + δ̂φmf
)))(2φws + φwf

)+

γ̂φmf
φws + γ̂φwsφms

(S31)

dφmf

dt
= 2 · γ̂

2
φ2ms

+ γ̂φms

φmf
− β̂φmf

+ (µ̂+ b̂(κ̂− (φws
+ φwf

+δ̂φms
+ δ̂φmf

)))(2φms
+ φmf

)+

γ̂φwf
φms

+ γ̂φws
φms

.

(S32)

The steady state solution of this system of ODEs may be calculated, but its form is complex. For notational
simplicity, we will drop the hat notation. Defining

x1 = (b2(β2 + 2β(γκ+ 3µ) + γ2κ2 + µ2 + 2γµ

(κ+ 2(δ − 1)φms)) + 2bγµ(−β + µ+ γ(κ− 2δ

φms
+ 2φms

)) + γ2µ2)1/2
(S33)

the non-trivial, physically-realizable, component of the steady state may be parametrized in terms of φms
and

written as

φws = −(βb2κ+ b2γκ2 + b2κµ+ 2b2δµ

φms
+ β2b+ βbγκ+ 5βbµ+ 3bγκµ− βγ

µ+ 2bµ2 − 2bγδµφms
− 2bγµφms

− x1(bκ+

β + 2µ) + 2γµ2 + 2γ2µφms)/(2µ(b− γ)2)

(S34)
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φwf
= (b3(β2κ+ β(γκ(κ+ (δ − 1)φms

) + µ(3

κ+ δφms
)) + φms

(γ2(δ − 1)κ2 − δµ2 + γµ

((2δ − 3)κ+ 2(δ − 1)δφms))) + b2(β3 + β2(6µ+ γ

(κ+ (δ − 1)φms
)) + β(5µ2 + γ2δκφms

+ γ2

κ(−φms
) + 6γδµφms

− 8γµφms
− κx1)+

φms
(2γ2µ(δκ+ δ2(−φms

) + φms
) + γ((6δ

−5)µ2 − (δ − 1)κx1)− δµx1))− b(β(γ2µ(−(κ+ (4− 3

δ)φms
)) + γ(2µ2 + (δ − 1)φms

x1) + 3µx1) + γµ

φms(γ(δ − 2)µ+ γ2(κ− 2(δ − 1)φms) + (δ − 3)x1)+

β2(2γµ+ x1)) + γµ(β − γφms
)(γµ+ x1))/(2b

µ(b− γ)2(β + γ(δ − 1)φms
))

(S35)

φmf
= (φms

(−bβ + bγκ+ bµ− 2bγδφms
+ 2b

γφms
+ γµ+ x1))/(2b(β + γ(δ − 1)φms

)).
(S36)

Since the steady state is parametrized by φms , the steady state is therefore a line.

Proof of heteroplasmy relation for linear feedback control

In this section we show that Eq. (13) holds for the system described by Eq. (1)-Eq. (9) given the replication
rate in Eq. (10) using the Kramers-Moyal expansion under conditions of large copy number and fast network
churn (to be defined below); the approach used here is similar to Constable et al. (2016). Consonant with
the self-contained objectives of STAR methods, we draw together elements from the literature to provide a
coherent derivation; we therefore hope that the following exposition may provide clarity for a wider audience.

Kramers-Moyal expansion of the chemical master equation for large copy numbers Customarily,
the Kramers-Moyal expansion is formed using a continuous-space notation (Gardiner, 1985), so we will initially
proceed in this way. Following the treatment by Gardiner (1985), we begin by re-writing the chemical master
equation Eq. (S11) (CME) as

∂P (x, t)

∂t
=

∫ ∞
−∞

dx′ [T (x|x′)P (x′, t)− T (x′|x)P (x, t)] (S37)

where we have set Ω = 1. T (x|x′) is the transition rate from state x′ → x, and the dependence upon the
initial condition has been suppressed for notational convenience. We now proceed by expanding the CME.
The multivariate Kramers-Moyal expansion may be written as

∂P (x, t)

∂t
≈
∫ ∞
−∞

(
−∇ (T (x′|x)P (x))

T · (x′ − x) +
1

2
(x′ − x)T ·H · (x′ − x)

)
dx′ (S38)

where H(x) is the Hessian matrix of T (x′|x)P (x)

H :=


∂2

∂x2
1

. . . ∂2

∂x1∂xN

...
...

∂2

∂xN∂x1
. . . ∂2

∂x2
N

T (x′|x)P (x) (S39)

(see (Gardiner, 1985) for a proof of this in the univariate case).
A transition to each possible neighbouring state x′ corresponds to some reaction j which moves the state

from x → x′. Since we know the influence of each reaction on state x through the constant stoichiometry
matrix Sij , and that the propensity of a reaction does not depend upon x′ itself (see Eq. (S13)), we may
transition from a notation involving x and x′ into a notation involving x and j. We may therefore define
Tj(x) := T (x′|x) ≡ f̂j(x) (see Eq. (S13)), and let H(x)→ Hj(x).
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We now make a large copy number assumption in order to simplify Tj(x). To take a large copy number
limit, we assume that xi!≈ x

sij
i (xi − sij)! resulting in

Tj(x) ≈ k̂j
N∏
i=1

x
sij
i

sij !
. (S40)

This approximation is exact when sij = 0, 1, but inexact when sij ≥ 2. For example, if we consider the second-
order bimolecular reaction in Eq. (1), Eq. (S40) is equivalent to assuming w2

s ≈ ws(ws − 1); consequently, a
factor of 1/(sij ! ) = 1/2 arises in Tj(x) as a combinatorial factor from stochastic considerations.

Fokker-Planck equation for chemical reaction networks We now wish to re-write Eq. (S38) as a
Fokker-Planck equation. Since the integral in Eq. (S38) is over x′, and every x′ corresponds to a reaction j,

we may interpret the integral in Eq. (S38) as a sum over all reactions, i.e.
∫

dx′ →
∑R
j=1. Hence, for the jth

reaction, [(x′ − x)]i = Sij . With these observations, we may write the first integral of Eq. (S38) as∫ ∞
−∞
−∇(T (x′|x)P (x))T · (x′ − x) dx′ =

∫ ∞
−∞
−∇(Tj(x)P (x, t))T · (x′ − x) dx′

= −
R∑
j=1

N∑
i=1

∂

∂xi
(Tj(x)P (x, t))Sij

= −
N∑
i=1

∂

∂xi
AiP (x, t) (S41)

where
A := S ·T. (S42)

A is a vector of length N , [S]ij := rij − sij is the N ×R stoichiometry matrix Eq. (S10), and T is the vector
of transition rates, of length R (for which we have taken a large copy number approximation in Eq. (S40)).
To re-write the second integral of Eq. (S38), we write an element of the Hessian Hj in Eq. (S39) as

Hjlm =
∂2

∂xl∂xm
Tj(x)P (x, t) (S43)

where j = 1, . . . , R and l,m = 1, . . . , N . Thus, we may write∫ ∞
−∞

1

2
(x′ − x)T ·Hj · (x′ − x) dx′ =

1

2

R∑
j=1

N∑
l=1

N∑
m=1

SljHjlmSmj

=
1

2

R∑
j=1

N∑
l=1

N∑
m=1

Slj
∂2

∂xl∂xm
TjP (x, t)Smj

=
1

2

N∑
l=1

N∑
m=1

∂2

∂xl∂xm

 R∑
j=1

SljTjSmj

P (x, t)

=
1

2

N∑
i,m=1

∂2

∂xi∂xm
BimP (x, t) (S44)

where
B := S ·Diag(T) · ST . (S45)

B is an N × N matrix, and Diag(Y) is a diagonal matrix whose main diagonal is the vector Y. We may
therefore re-write Eq. (S38) as a Fokker-Planck equation for the state vector x of the form

∂P (x, t)

∂t
≈ −

N∑
i=1

∂

∂xi
[Ai(x)P (x, t)] +

1

2

N∑
i,m=1

∂2

∂xi∂xm
[Bim(x)P (x)]. (S46)
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Fokker-Planck equation for an arbitrary function of state We now wish to make a change of variables
in Eq. (S46) to write down a Fokker-Planck equation for an arbitrary scalar function of state x (which we will
later set to be heteroplasmy). To do this, we wish to make use of Itô’s formula, which allows a change of
variables for an SDE. In general, the Fokker-Planck equation in Eq. (S46) is equivalent (Jacobs, 2010) to the
following Itô stochastic differential equation (SDE)

dx = Adt+ GdW (S47)

where GGT ≡ B (where G is an N ×R matrix) and dW is a vector of independent Wiener increments of
length R, and a Wiener increment dW satisfies∫ t

0

dW := W (t), P (W, t) ≡ 1√
2πt

e−W
2/(2t). (S48)

Itô’s formula states that, for an arbitrary function h(x, t) where x satisfies Eq. (S47), we may write the
following SDE

dh(x, t) =

{
∂h

∂t
+ (∇h)

T
A +

1

2
Tr
[
GTHh(x)G

]}
dt+ (∇h)TG dW, (S49)

where Hh(x) is the Hessian matrix of h(x, t) (see Eq. (S39), where T (x′|x)P (x) should be replaced with
h(x, t)). Given the form of B in Eq. (S45) we let

G = S ·Diag(
√
T), (S50)

which satisfies GGT ≡ B.
For convenience, we may also perform the transformation purely at the level of Fokker-Planck equations.

Let h(x, t) satisfy the general Fokker-Planck equation

∂P (h, t)

∂t
= − ∂

∂h
[Ã(h, t)P (h, t)] +

1

2

∂2

∂h2
[B̃(h, t)P (h, t)] (S51)

for scalar functions Ã(h, t) and B̃(h, t). Using the cyclic property of the trace in Eq. (S49), we may identify

Ã =
∂h

∂t
+ (∇h)

T
A +

1

2
Tr [BHh(x)] (S52)

where Tr is the trace operator. Also, from Eq. (S49),

B̃ = [(∇h)TG][(∇h)TG]T = (∇h)TB(∇h). (S53)

Hence, using Eq. (S51), Eq. (S52) and Eq. (S53), we may write down a Fokker-Planck equation for an arbitrary
function of state in terms of A and B.

An SDE for heteroplasmy forced onto the steady state line in the high-churn limit It has been
demonstrated that SDE descriptions of stochastic systems which possess a globally-attracting line of steady
states may be formed in the long-time limit by forcing the state variables onto the steady state line (Constable
et al., 2016; Parsons and Rogers, 2017). Such descriptions may be formed in terms of a parameter which traces
out the position on the steady state line, hence reducing a high-dimensional problem into a single dimension
(Constable et al., 2016; Parsons and Rogers, 2017). In our case, heteroplasmy is a suitable parameter to trace
out the position on the steady state line. We seek to use similar reasoning to verify Eq. (13). In what follows,
we will assume that x(t = 0) = xss, where xss is the state which is the solution of A = 0 (which is equivalent
to finding the steady state solution of the deterministic rate equation in Eq. (S14) due to our assumption of
large copy numbers and Ω = 1), so that we may neglect any deterministic transient dynamics.

Inspection of the steady state of the ODE description of our system reveals that the set of steady state
solutions forms a line (see Eqs. (S34)–(S36)). Inspection of the steady state solution reveals that the steady
state depends on the fusion (γ) and fission (β) rates. Mitochondrial network dynamics occur on a much
faster timescale than the replication and degradation of mtDNA: the former occurring on the timescale of
minutes (Twig et al., 2008) whereas the latter is hours or days (Johnston and Jones, 2016). We seek to use
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this separation of timescales to arrive at a simple form for V(h). We redefine the fusion and fission rates such
that

γ → Mγ

β → Mβ (S54)

where M is a constant which determines the magnitude of the fusion and fission rates, which we call the
“network churn”.

We now wish to use heteroplasmy

h(x, t) = h(x) := (ms +mf )/(ws + wf +ms +mf ), (S55)

as our choice for the function of state in the Fokker-Planck equation in Eq. (S51). We will first compute the
diffusion term B̃ for heteroplasmy using Eq. (S53). If we constrain the state x to be forced onto the steady
state line xss (as per (Constable et al., 2016; Parsons and Rogers, 2017)) in the high-churn limit, then upon
defining

θ :=
√
b2(β + γκ)2 − 2bγµ (β − γκ+ 2γ(δ − 1)ms) + γ2µ2 (S56)

we have

lim
M→∞

(
B̃
∣∣∣
x=xss

)
= (16b2γ2µ

ms(β + γ(δ − 1)ms)
2(b2(β3 + 2β2γ

(δ − 1)ms + βγ2(κ2 + (1− 2δ)κms + (δ − 1)(2δ − 1)

m2
s) + γ3κms((δ − 1)ms − κ)) + b(−β2

(2γµ+ θ) + βγ(κ(2γµ+ θ) +ms(γ(5− 4

δ)µ− 2(δ − 1)θ)) + γ2ms((δ − 1)ms(3γµ

+θ)− κ(2γµ+ θ))) + γµ(γµ+ θ)

(β − γms)))/(β
3(b(γ(κ− 2δms

+2ms)− β) + γµ+ θ)4).

(S57)

Eq. (S57) is difficult to understand. In order to perform further simplification, we make an ansatz for the
form of B̃ (B̃An) and seek to determine whether our ansatz is equivalent to the derived form of B̃ under the
constraints defined on the left-hand side of Eq. (S57). Our ansatz takes the form

B̃An := lim
M→∞

(
2µh(1− h)

n(x)
· fs(x)

∣∣∣∣
x=xss

)
(S58)

where fs(x) := (ws +ms)/(ws + wf +ms +mf ) and n(x) := ws + wf +ms +mf . Notice that this ansatz
is more general than Eq. (S57), since it has no explicit dependence upon the parameters of the control law
assumed in Eq. (10), and only explicitly depends upon functions of state x.

Upon substituting the steady state xss into the ansatz in Eq. (S58) and taking the high-churn limit, we
find that

B̃An = −(ms(β + γ(δ − 1)ms)

(b(β + γκ)− γµ+ θ)

(b(β + γκ) + γµ− θ)(b(ms(2βδ − β
+γκ)− 2βκ) +ms(θ − γµ)))/(2bβ3(κ− δ

ms +ms)
2(b(γ(κ− 2δms + 2ms)− β) + γµ+ θ)).

(S59)

After some algebra (see GitHub repository for Mathematica notebook), it can be shown that Eq. (S57) and
Eq. (S59) are equivalent, i.e.

B̃An ≡ lim
M→∞

(
B̃
∣∣∣
x=xss

)
. (S60)
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As such, we may use B̃ and B̃An interchangeably in the limit of high network churn. Furthermore, it can be
shown after some algebra that the drift of heteroplasmy when forced onto the steady state line is 0, i.e.

Ã
∣∣∣
x=xss

≡ 0. (S61)

A similar result is shown in (Constable et al., 2016) ((Equation S59) therein). Substituting h(x, t) = h, Ã and
B̃ into the Fokker-Planck equation for an arbitrary function of state Eq. (S51), we have

∂P (h, t)

∂t
=

1

2

∂2

∂h2

[(
2µh(1− h)

n(x)
· fs(x)

)∣∣∣∣
x=xss(h)

P (h, t)

]
(S62)

which is equivalent to the following SDE for heteroplasmy

dh =

√
2µh(1− h)fs(x)

n(x)

∣∣∣∣∣
x=xss(h)

dW (S63)

in the limit of large network churn, large copy numbers, and a second-order truncation of the Kramers-Moyal
expansion. Although the state has been forced onto the steady state, stochastic fluctuations mean that
trajectories may move along the line of steady states, so the diffusion coefficient is not constant in general.
We may calculate the new value of xss(h) for every displacement due to Wiener noise in h, and substitute
into fs(x) and n(x) to determine the diffusion coefficient at the next time step.

However, for sufficiently short times, and large copy numbers (i.e. low diffusivity of h), we may assume
that the diffusion coefficient in Eq. (S63) may be approximated as constant. Since the general solution of the
SDE

dy =
√
B dW (S64)

for B = const is
y ∼ N (y|y0, Bt) (S65)

where N (y|y0, σ2) is a Gaussian distribution on y with mean y0 and variance σ2, and y0 = y(t = 0). Since we
have assumed that the state is initialised at x(t = 0) = xss, there are no deterministic transient dynamics, so
we may write

V(h) ≈ 2µt

n(x)
h(x)(1− h(x))fs(x)

∣∣∣∣
x=xss

, (S66)

where V returns variance of a random variable. In this equation, we take x = xss = const, since we have
assumed a low-diffusion limit. We observe that this equation is of precisely the same form as (Equation 12) of
Johnston and Jones (2016), except with an additional proportionality factor of fs induced by the inclusion of
a mitochondrial network.

Heteroplasmy variance relations for alternative model structures
and modes of genetic mtDNA control

Here we explore the implications of alternative model structures upon Eq. (S63). Firstly, we may consider
replacing Eq. (4) with

XS
λ−→ XS +XS . (S67)

This corresponds to the case where replication coincides with fission, see (Lewis et al., 2016). Repeating the
calculation in the previous section also results in Eq. (S63), so the result is robust to the particular choice of
mtDNA replication reaction (see GitHub repository for Mathematica notebook).

Secondly, we may explore the impact of allowing non-zero mtDNA degradation of fused species. This
could correspond to autophagy-independent degradation of mtDNA, for example via the exonuclease activity
of POLG (Medeiros et al., 2018). To encode this, we may add the following additional reaction

XF
ξµ−→ ∅ (S68)
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where 0 ≤ ξ ≤ 1. We were not able to make analogous analytical progress in this instance. However, numerical
investigation (Figure S3E) revealed that the following ansatz was able to predict heteroplasmy variance
dynamics

V(h) ≈ 2µt

n(x)
h(x)(1− h(x))(fs(x) + ξ(1− fs(x)))

∣∣∣∣
x=xss

. (S69)

In other words, allowing degradation of fused species results in a linear correction to our heteroplasmy variance
formula in Eq. (13). If fused species are susceptible to degradation at the same rate as unfused species (ξ = 1),
then V(h) loses fs dependence entirely and the mitochondrial network has no influence over heteroplasmy
dynamics.

We also explored various different forms of λ(x) and µ(x), which we label A-G after (Johnston and Jones,
2016), and X-Z for several newly-considered functional forms, see Table S3 and Figure S4A-I. Control D of
(Johnston and Jones, 2016) involves no feedback, which we do not explore – see Figure S1, and the discussion
surrounding Eq. (S1). The argument presented in the previous section requires the steady state solution of
the system to be solvable, since we require the explicit form of xss in Eq. (S57), Eq. (S59) and Eq. (S61).
For controls B, C, E, F, G, Y and Z in Table S3, the steady states are solvable and similar arguments to the
above can be applied (see the GitHub repository for Mathematica notebooks). Controls B, C, E, F all satisfy
Eq. (S63); this can be shown numerically for controls A and X. However, controls G, Y and Z satisfy

dh =

√
2µh(1− h)

n(x)

∣∣∣∣∣
x=xss(h)

dW. (S70)

Notably, Eq. (S70) does not depend on fs, unlike Eq. (S63) (see GitHub repository for Mathematica notebooks).
This is because control of copy number occurs in the degradation rate, rather than the replication rate,
for controls G, Y and Z. A modified version of a Moran process (presented below) can provide intuition
for why the diffusion rate of heteroplasmy variance depends on the network state when the population is
controlled through replication, and does not depend on network state when the population is controlled
through degradation.

Choice of nominal parametrization

In this section we discuss our choice of nominal parametrization for the network system in Eq. (1)-Eq. (9),
given the replication rate in Eq. (10). We will first discuss our choice of network parameters.

Cagalinec et al. (2013) found that the average fission rate in cortical neurons is 0.023±0.003 fis-
sions/mitochondria/min. Assuming that this value is representative of the fission rate in general, and
converting this to units of per day, we may write the mitochondrial fission rate as β = 33.12 day−1.

The dimensions of β are day−1 and not mitochondrion−1 day−1. This is because if the propensity (see
Eq. (S12), where Ω = 1) of e.g. Eq. (3) is âfis,w = βwf then the mean time to the next event is 1/(βwf );
therefore the dimension of β is per unit time and copy numbers are pure numbers, i.e. dimensionless. Similar
reasoning constrains the dimension of the fusion rate, see below.

Evaluation of the fusion rate is more involved, since fusion involves two different chemical species coming
together to react whereas fission may be considered as spontaneous. Furthermore, there are 7 different
fusion reactions whereas there are only 2 fission reactions. For simplicity, assume that all species have a
steady-state copy number of xi = 250 (resulting in a total copy number of 1000, heteroplasmy of 0.5 and
50% of mitochondria existing in the fused state). Neglecting subtleties relating to bimolecular reactions
involving one species (see Eq. (S20)), each fusion reaction proceeds at rate âfus,j ≈ γx2i . Since there are
7 fusion reactions (Eq. (1), Eq. (2), Eq. (7)-Eq. (9)), the total fusion propensity is âfus ≈ 7γx2i . Similarly,
the total fission propensity is âfis = β(wf +mf ) = 2βxi. Since we expect macroscopic proportions of both
fused and fissioned species in many physiological settings, we may equate the fusion and fission propensities,
âfus = âfis, and rearrange for the fusion rate γ to yield γ = 2βxi/(7x

2
i ) ≈ 3.8× 10−2 day−1. The orders of

magnitude difference between β and γ stems from the observation that fusion propensity depends on the
square of copy number whereas the fission propensity depends on copy number linearly.

Given the network parameters, we then explored appropriate parametrizations for the genetic parameters:
the mitophagy rate (µ) and the parameters of the linear feedback control (κ, b and δ, see Eq. (10)). mtDNA
half-life is observed to be highly variable: in mice this can be between 10-100 days (Burgstaller et al., 2014a).
For consistency with another recent study investigating the relationship between network dynamics and
heteroplasmy, we use an mtDNA half-life of 30 days (Tam et al., 2015).
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The parameter δ in the replication feedback control (see Eq. (10)) may be interpreted as the “strength of
sensing of mutant mtDNA” in the feedback control (Hoitzing et al., 2017). Assuming that fluctuations in copy
number of mutants and wild-type molecules are sensed identically (as may be the case for e.g. non-coding
mtDNA mutations) we may reasonably assume a model of δ = 1 as the simplest case of a neutral mutation
(although δ 6= 1 still defines a neutral model, since both mutant and wild-type alleles experience the same
replication and degradation rates per molecule, see Eqs.(4)–(6)).

We are finally left with setting the parameters κ and b in the linear feedback control Eq. (10). In the
absence of a network state and mutants, κ is precisely equal to the steady state copy number, since the
degradation rate equals the replication rate when κ = w. However, the presence of a network means that a
subpopulation of mtDNAs (namely the fused species) are immune to death, resulting in κ no longer being
equivalent to the steady state copy number. The parameter b may be interpreted as the feedback control
strength, which determines the extent to which the replication rate changes given a unit change in copy
number.

Given a particular value of b, we may search for a κ which gives a total steady state copy number (n)
which is closest to some target value (e.g. 1000 as a typical total mtDNA copy number per cell in human
fibroblasts (Kukat et al., 2011)). We swept a range of different values of b and found that, for values of b
smaller than a critical value (b∗), a κ could not be found whose deterministic steady state was sufficiently
close to n = 1000. This result is intuitive because in the limit of b→ 0, λ = const. From the analysis above
we have shown that constant genetic rates (µ, λ) result in unstable copy numbers, and therefore a sufficiently
small value of b is not expected to yield a stable non-trivial steady state solution. We chose b ≈ b∗, and the
corresponding κ, such that the steady state copy number is controlled as weakly as possible given the model
structure.

Rate renormalization

In Eqs. (1)–(10) we have neglected reactions such as

XF +XF → XF +XF (S71)

because they do not change the number of molecules in our state vector x = (ws, wf ,ms,mf ). One may ask
whether neglecting such reactions means that it is necessary to renormalize the fission-fusion rates which were
estimated in the preceding section. In estimating the nominal parametrization above, we began by using a
literature value for the mitochondrial fission rate, and then matched the fusion rate such that the summed
hazard of a fusion event approximately balanced the fission rate. This matching procedure is reasonable, since
we observe a mixture of fused and fissioned mitochondria under physiological conditions: choosing a fusion
rate which is vastly different results in either a hyperfused or fragmented network. We must therefore only
justify the fission rate. Eq. (3) assumes that a fission reaction always results in a singleton, and a singleton
is by definition a molecule which is susceptible to mitophagy (see Eq. (6)). Therefore, if fission reactions
always result in mitochondria containing single mtDNAs which are susceptible to mitophagy, then we expect
our model to match well to true physiological rates. If, on the other hand, fission reactions between large
components of the network which are too large to be degraded are common, then renormalization of β by the
fraction of fission events which result in a sufficiently small mitochondrion would be necessary, which would in
turn renormalize γ through our matching procedure. We are not aware of experimental measurements of the
fraction of fission events which result in mitochondria which contain a particular number of mtDNAs. Such
an experiment, combined with the distribution of mitochondrial sizes which are susceptible to mitophagy,
would allow us to validate our approach. Despite this, the robustness of our results over approximately 4
orders of magnitude for the fission-fusion rate (Figure S4A-I) provides some indication that our results are
likely to hold in physiological regions of parameter space.

A modified Moran process may account for the alternative forms of
heteroplasmy variance dynamics under different models of genetic
mtDNA control

We sought to gain insight into why control of population size through the replication rate (λ = λ(x), µ =
const) results in heteroplasmy variance depending on the fraction of unfused mitochondria (see Eq. (13)),
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whereas control of population size through the degradation rate (µ = µ(x), λ = const) results in heteroplasmy
variance becoming independent of network state, where

V(h) ≈ 2λt

n(x)
h(x)(1− h(x))

∣∣∣∣
x=xss

. (S72)

We will proceed by considering an analogous Moran process to the set of reactions presented in Eqs. (1) (9).
First, consider a haploid biallelic Moran process consisting of wild-types and mutants, in a population of

fixed size n. At each step in discrete time, a member of the population is chosen for birth, and another for
death. Let mt denote the copies of mutants at time t. Then,

P (mt+1 = j|mt = i) =


i(n− i)/n2 if j = i± 1

i2/n2 + (n− i)2/n2 if j = i

0 otherwise.

(S73)

It follows that
E(mt+1|mt) = mt. (S74)

Defining ht := mt/n then from Eq. (S73)

V(mt+1|mt) = 2ht(1− ht) (S75)

and therefore

V
(mt+1

n

∣∣∣mt

)
= V(ht+1|mt) =

2

n2
ht(1− ht). (S76)

Suppose that, instead of the process occurring with discrete time, instead the process occurs with continuous
time, where each event is a simultaneous birth and death, and is modelled as a Poisson process. Suppose that
events occur at a rate µ per capita. The waiting time between successive events (τ) is an exponential random
variable with rate µN . Hence the expected waiting time between successive events is

E(τ) =
1

µn
. (S77)

If we take the ratio of Eq. (S76) and Eq. (S77), we have

V(ht+τ |mt)

E(τ)
=

2µht(1− ht)
n

. (S78)

Heuristically, one could interpret Eq. (S78) as a ratio of differentials as follows. If we were to suppose that n
were large enough such that E(τ) is very small, and ht is approximately constant (h0) after a small number of
events, then

∆V(h)

∆τ
≈ V(ht+τ |mt)

E(τ)
=⇒ dV(h)

dt
≈ 2µh0(1− h0)

n
=⇒ V(h, t) ≈ 2µh0(1− h0)

n
t (S79)

where we have replaced the inter-event time τ with physical time t. This result is analogous to Eq. (S72) and
Eq. (12) of Johnston and Jones (2016), and agrees with simulation (Figure S6A).

Now consider the modified Moran process in Figure S6B, which we refer to as a “protected” Moran process.
Let 0 < fs ≤ 1 be the fraction of individuals susceptible to death, which is a constant. nfsht and nfs(1− ht)
mutants and wild-types are randomly chosen to be susceptible to death, respectively, where n is large. In this
continuous-time model, the inter-event time is τ ∼ Exponential(Γ) where Γ will be defined below. Then an
individual from the susceptible population is chosen for death, and any individual is allowed to be born. The
birth and death events occur simultaneously in time.

Again, using t as an integer counter of events, we have

P (mt+1 = j|mt = i) =


nfsht

nfs

n(1−ht)
N if j = i− 1

nfs(1−ht)
nfs

nht

N if j = i+ 1
nfsht

nfs
nht

N + nfs(1−ht)
nfs

n(1−ht)
n if j = i

0 otherwise

(S80)

=


ht(1− ht) if j = i± 1

h2t + (1− ht)2 if j = i

0 otherwise

(S81)
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which is equivalent to the definition of a Moran process in Eq. (S73), meaning that Eq. (S76) applies to the
protected Moran process as well.

We consider two heuristic arguments for choosing the inter-event rate Γ, where the inter-event time
τ ∼ Exponential(Γ). Firstly, if the death rate per capita is constant (µ), then the rate at which a death event
occurs in the system (Γdeath) is proportional to the number of individuals which are susceptible to death:
Γdeath = µnfs. If we assume that the overall birth rate is matched to the overall death rate so that population
size is maintained, as is the case when λ = λ(x) in the network system, then the overall birth rate (Γbirth)
must also be Γbirth = µnfs. Hence,

Γ = Γbirth + Γdeath = 2µnfs (S82)

where µ is a proportionality constant. Since, for a Moran event to occur, both a birth and a death event must
occur, time effectively runs twice as fast in a Moran model relative to a comparable chemical reaction network
model. We therefore rescale time by taking µ→ µ/2, and thus

Γ = µnfs. (S83)

As a result, E(τ) = 1/(µnfs) and therefore, using Eq. (S76) and the reasoning in Eq. (S79),

∆V(h)

∆τ
≈ V(ht+τ |mt)

E(τ)
=⇒ dV(h)

dt
≈ 2µfsh0(1− h0)

n
=⇒ V(h) ≈ 2µfsh0(1− h0)

n
t. (S84)

This is analogous to when λ = λ(x) and µ = const in the network system. Hence, when λ = λ(x) and µ =
const, the absence of death in the fused subpopulation means the timescale of the system (being the time to the
next death event) is proportional to fs. This argument is only a heuristic, since the Moran process is defined
such that birth and death events occur simultaneously and therefore do not possess separate propensities
(Γbirth and Γdeath).

The second case we consider is when each individual has a constant rate of birth, hence Γbirth ∝ n. Then
the death rate is chosen such that Γbirth = Γdeath. In this case Γ = λn, where λ is a proportionality constant.
The same argument from Eq. (S77) to Eq. (S79) may be applied, with an appropriate rescaling of time, and we
arrive at Eq. (S72). This is analogous to when µ = µ(x) and λ = const in the network system. Hence, when
µ = µ(x) and λ = const, the presence of a constant birth rate in the entire population means the timescale of
the system (being the time to the next birth event) is independent of fs.
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Table S1. Key predictions from our mathematical models.

The following results hold for our neutral genetic model of a post-mitotic cell, with a simple model of
mitochondrial network dynamics:

1. The rate of increase of heteroplasmy variance is proportional to the fraction of unfused mitochondria,
but independent of the absolute magnitude of fission-fusion rates, due to a rescaling of time by the
mitochondrial network (Eq.(13), Eq.(S63), Figure 2E-H).

2. The rate of accumulation of de novo mutations increases as the fraction of unfused mitochondria
increases, due to a rescaling of time by the mitochondrial network (Figure 3B-D)

3. When fusion is selective, intermediate fusion-fission ratios are optimal for reducing mean heteroplasmy
(Figure 4A)

4. When mitophagy is selective, complete fission is optimal for reducing mean heteroplasmy (Figure 4B)

Figure S1. Phase portrait for an ODE representation of a network system with constant rates. The
system displays two steady states: a trivial steady state at s+ f = 0, and a non-trivial steady state. At a steady state,
both time derivatives in Eq. (S8) and Eq. (S9) vanish. Trajectories (blue) show the evolution of the system up to
t = 1000. The direction and magnitude of the derivative at points in space are shown by red arrows. Trajectories can
be seen either decaying to s = f = 0 or tending to infinity. γ = 0.01656, β = 33.12, ρ = 0.023, η = 1.1, α = 1.04.
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Table S2. Nominal parametrization for network system. Dimensions of parameters are derived using
individual terms in Eqs. (S29)–(S32); copy numbers of particular species are pure numbers and therefore
dimensionless. Since we have chosen a system size of Ω = 1 throughout, we set the dimension of volume to 1. See
Choice of nominal parametrization for further details of parameter justification.

Parameter Description Value Dimensions Remarks

β Fission rate 33.12 day−1 For cortical neurons, see
(Cagalinec et al., 2013)

γ Fusion rate 3.79× 10−2 day−1 Approximately balances
fission

µ Mitophagy rate 0.023 day−1 From (Tam et al., 2015)

δ Mutant feedback sensi-
tivity

1 dimensionless Potentially appropriate
for e.g. non-coding
mtDNA mutations

b Feedback control
strength

1.24× 10−5 day−1 Chosen as the weakest
control strength which
has a non-trivial steady
state and total copy
number of 1000

κ Steady state copy num-
ber parameter

11.7 dimensionless See remark for b

Figure S2. Deterministic treatment of network system. (A) Deterministic dynamics of total copy number
under linear feedback control, which is controlled to a particular steady state value (see Figure 2A&B). (B) Defining a
knock-down (KD) factor (k−1 = 0.1, 0.2 . . . , 1.0), the fission rate was rescaled to β → β/k (red) and the fusion rate to
γ → γ/k (blue), causing a linear increase and decrease in total copy number respectively under a deterministic
treatment (see Figure 2A&B).
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Figure S3. Stochastic treatment of network system. (A) Copy number variance for stochastic simulations
initially increases, since all stochastic simulations begin with the same initial condition, but then plateaus since the
steady state line is globally attracting (see Figure 2C&D). (B) Error in Eq. (13) in a sweep over the feedback control
strength, b. Dotted line denotes a 5% error according to Eq. (12). (C) V(h) profile for the parametrization with the
largest error in (B). (D) Sweeps of the network rate magnitude (see Figure 2H). Heteroplasmy variance is
approximately independent of absolute network rates over a broad range of network magnitudes. (E) Allowing fused
species to be degraded with relative rate ξ (Eq. (S68)), stochastic simulations for heteroplasmy variance (markers) and
Eq. (S69) (lines) are shown. Fused species degradation induces a linear correction to the heteroplasmy variance
formula.
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Figure S4. Parameter sweeps of network fission-fusion rates for replication-based and
degradation-based control modes show robustness of two heteroplasmy variance formulae
respectively. (A-I) Error in Eq. (13) (ansatz) and Eq. (S72) (ansatz indep network) for sweeps of the fusion and
fission rates for the corresponding feedback control functions in Table S3. Equations are accurate to at least 5% (blue
regions) across large regions of parameter space, for many control laws. Fusion and fission rates are redefined as
γ → γ0MR and β → β0M where M and R denote the magnitude and ratio of the network rates, and γ0, β0 denote
the nominal parametrizations of the fusion and fission rates respectively. Summary statistics for 104 realizations, with
initial condition h = 0.3 and evaluated at t = 500 days. Errors in V(h) (see Eq. (12)) smaller than 5% are truncated
and are shown as blue. Parametrizations where a deterministic steady state could not be found for an initial condition
of h = 0.3 are shown in grey. Inset figures, where present, display the probability of fixation at h = 0. Where insets are
not present, the probability of fixation is negligible. (A-F) When λ = λ(x) and P (h = 0) is low, Eq. (13) performs well
in the high-churn limit. (G-I) When µ = µ(x) and P (h = 0) is low, Eq. (S72) performs well in the high-churn limit.
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Table S3. Nominal parametrizations for the alternative feedback control functions explored. Nominal
parametrizations for the feedback controls in Fig. S4. In all cases, the nominal fission and fusion rates were β = 33.12,
γ = 0.038 respectively.

Interpretation Replication rate Degradation rate Note

Linear feedback (see Fig-
ure 2, S2, S3, S4A)

µ+b(κ−wT −δmT ); see
Table S2

µ; see Table S2 Control E in (Johnston
and Jones, 2016) and
GitHub repository

Relaxed replication (see
Figure S4B)

αµ(wopt − wT −
δmT )/(wT + mT );
α = 1, wopt = 1000,
δ = 1

µ; µ = 0.023 Control A in (Johnston
and Jones, 2016) and
GitHub repository

Differential control for
target population (see
Figure S4C)

α(wopt − wT ) µ; µ = 0.023 Control B in (Johnston
and Jones, 2016) and
GitHub repository

Ratiometric control for
target population (see
Figure S4D)

α(wopt/wT − 1); α = 1,
wopt = 1000

µ; µ = 0.023 Control C in (Johnston
and Jones, 2016) and
GitHub repository

Production independent
of wild-type (see Figure
S4E)

α/wT ; α = 5 µ; µ = 0.023 Control F in (Johnston
and Jones, 2016) and
GitHub repository

General linear feedback
(see Figure S4F)

µ+ b(κ− δ1ws − δ2wf −
δ3ms − δ4mf ); see Table
S2, δ1 = 0.8, δ2 = 1.0,
δ3 = 0.2, δ4 = 0.3

µ; see Table S2 Control X in GitHub
repository

Ratiometric control
through degradation
(see Figure S4G)

λ; λ = 0.023 µwT /wopt; µ = 0.023;
wopt = 200

Control G in (Johnston
and Jones, 2016) and
GitHub repository

Linear feedback in degra-
dation (see Figure S4H)

λ; λ = 0.023 µ + b(wT + δmT − κ);
µ = 0.023, b = 10−4,
κ = 1000, δ = 1

Control Y in GitHub
repository

Differential control for
target population in
degradation (see Figure
S4I)

λ; λ = 0.023 α(wT − wopt); α = 1,
wopt = 1000

Control Z in GitHub
repository
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Figure S5. Ansatz predicts heteroplasmy variance for linear feedback control in a fast mtDNA
turnover regime when fixation probability is low. Stochastic simulations of the linear feedback control network
system with an mtDNA half-life of 2 days (Poovathingal et al., 2012), corresponding to µ = ln(2)/2. (A) The mean
copy number, and (B) the mean heteroplasmy show qualitatively similar dynamics to the nominal parametrisation
presented (see Fig. 2C&D ). (C) Eq.(13) predicts V(h) accurately up to approximately 250 days, where the Eq.(13)
begins to overestimate the variance. (D) The over-estimation of heteroplasmy variance coincides with an increase in
the probability of fixation at h = 0. Parameters apart from µ were chosen according to the protocol outlined in Choice
of nominal parametrization, with 104 repeats. κ = 101.6, b = 2.07× 10−4, for all other parameters see Table S2.

x

Iterate

= wild-type

= mutant

= protected 
   from death

= susceptible
   to death

Wait for time

Death from 
suscetible 
population, birth 
from any individual

A B

Choose mutants
and wild-
types to be susceptible
to death

Figure S6. Exploration of analogous Moran processes. (A) The original biallelic Moran process satisfies
Eq. (S72), where h0 is the initial heteroplasmy, which is equivalent to E(h). (B) The “protected” Moran process. The
population size is constrained to be fixed to some large constant, n. There exist two alleles, mutants (black circle) and
wild-types (white circles). hnfs mutant and (1− h)nfs wild-type molecules are susceptible to death, the rest are
protected from death (denoted by a bar). An exponential random variable is drawn as the waiting time to the next
event (see A modified Moran process may account for the alternative forms of heteroplasmy variance dynamics under
different models of genetic mtDNA control for discussion of the form of the rate Γ). Time is incremented by the waiting
time, then a death event occurs from the susceptible population and a birth event from any individual simultaneously.
The same individual is allowed to be chosen for both birth and death. The process is then repeated iteratively.

39



Figure S7. A deterministic parameter sweep of fusion selectivity and the relative fusion rate for
mitochondrial quality control. An ODE treatment allows smaller heteroplasmy changes to be probed without the
need to resort to an infeasible number of stochastic simulations. Displaying the relative change in heteroplasmy (∆h)
after t = 1000 days. We observe that a reduction in heteroplasmy is achieved at intermediate fusion rates at all
non-zero fusion selectivities investigated. Grey denotes a change which is smaller than floating point precision.
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Table S4. Comparison of previous models with our model of mitochondrial genetic/network dynamics.
Each of the key differences with our model is enumerated, and has a corresponding comment; see Discussion.

Model Key assumptions Key differences Comments

(Tam et al., 2013, 2015)

• Cell consists of 16
sub-compartments

• Fission/fusion
induces migra-
tion between
subcompartments

1. Slower fission-
fusion dynamics
result in larger
rate of increase in
V(h)

2. Fast fission-fusion
rates cause E(h) to
increase

1. Limiting to
regimes where
fission-fusion is
fast, likely re-
sults in loss of
rate magnitude
sensitivity

2. Could be explained
by spatial effects
which we neglect
here

(Mouli et al., 2009)

• Fission follows fu-
sion

• Mitochondria con-
sist of multiple
units

• Sigmoidal rela-
tionship between
number of func-
tional units per
mitochondrion and
activity

1. When fusion is se-
lective, higher fu-
sion rates are opti-
mal

2. When mitophagy
is selective, inter-
mediate fusion
rates are optimal

1. The optimal fusion
rate is an order
of magnitude lower
than the highest
fusion rate consid-
ered

2. Non-linearity
between func-
tion, intra-
mitochondrial
heteroplasmy, and
network state,
may result in in-
termediate fusion
optimality
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