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Abstract

The significant integration of renewable energy sources to electricity grids poses

unprecedented challenges to power systems planning. Each of these challenges is

implied by a particular circumstance faced by the system planner when devising the

expansion plan, which should be tailored to address the needs and objectives of the

system under consideration. Within this context, this thesis is dedicated to propose

methodologies to address three timely situations that may arise when planning the

expansion of the grid.

In the first situation, we consider the case in which the system planner must meet

established renewable penetration targets while complying with multiple determin-

istic security criteria. Renewable targets have been largely adopted as an important

mechanism to foster the decarbonization of power systems. Hence, we propose a

methodology that simultaneously identifies the optimal subset of candidate assets

as well as renewable sites to be developed, while introducing the concept of com-

pound GT n− K security criteria.

In the second situation, we aim to minimize the regret of the system planner under

generation expansion uncertainty. In many cases, e.g. the United Kingdom, the

decision on the transmission expansion plan is taken by a market player that does

not determine the future generation expansion. Within this context, we propose a

5-level MILP formulation to represent the minimization of the regret of the system

planner in light of a set of credible scenarios of generation expansion while enforcing

n− 1 security criterion.

Finally, in the third situation, the objective is to inform the optimal transmission

expansion plan under ambiguity in the probability distribution of RES generation

output. To do so, we present a methodology capable of determining the transmission

plan under deterministic security criterion while accommodating a set of different

probability distributions for RES output in order to integrate ambiguity aversion.
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CHAPTER 1

Introduction

In both centralized and competitive frameworks, decisions on investments in energy

transmission infrastructure play a crucial role in power systems planning. Such de-

cisions are, for instance, one of the keys to achieve the integration of the volumes of

renewable energy sources (RES) required to satisfactorily decrease the current levels

of greenhouse gases emissions [1]. This expansion planning problem consists in the

selection of the most appropriate assets in order to meet the objectives of interest

for the power system planner. In this work, three methodologies are proposed to

address the transmission expansion planning (TEP) problem under different con-

ditions. The first one co-optimizes generation and transmission expansion in order

to meet renewable targets while imposing multiple security criteria. The second

one minimizes the regret of the transmission expansion planner under uncertainty

in generation capacity expansion while securing operation. Finally, the third one

1
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determines the transmission expansion plan to better accommodate RES generation

under uncertainty in the underlying process that governs the realization of the RES

output. In order to withstand the computational burden associated with the afore-

mentioned objectives, the models proposed in this work are formulated within the

framework of multi-level optimization.

Multi-level optimization [2] is a powerful framework to mathematically model hier-

archical decision-making processes. This framework has been successfully used to

develop new methodologies in several different fields, such as for example supply-

chain [3–5], transportation [6–8], government decisions on taxes [9], safety [10–12],

and unit commitment in power systems [13–18].

Within the context of the TEP problem, several multi-level optimization models

have been also proposed. Works [19–21] are some of the relevant examples of bi-

level approaches for TEP. In [19], a bilevel approach was proposed to minimize costs

associated with the transmission expansion plan while facilitating trades in the elec-

tricity market. In [20], the framework presented in [19] was extended by the inclusion

of security constraints. In [21], the authors used a bilevel framework to model the

efficiency benefit (benefit of accessing lower cost distant generation) and the compet-

ition benefit (benefit of improving competition among generators) associated with

additional transmission capacity. In addition, trilevel models such as [22–24] were

also presented to tackle the TEP problem. In [22], a trilevel model was developed

to determine the transmission expansion plan while considering the equilibria asso-

ciated with generation expansion and pool-based market clearing. In [23], a trilevel

formulation was proposed to address the TEP problem under uncertainty in demand

and in available generation capacity of existing generating units. In [24], the TEP

problem was tackled under uncertainty in future generation investments without

considering security standards.
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The first methodology proposed in this work is a two-stage min-max-min model for

co-optimizing the expansion of the transmission system and renewable generation

capacity to meet renewable targets under high security standards and renewable

uncertainty. In order to account for realistic reserve needs and its interaction with

the expansion plan, correlations between renewables injection as well as generation

and transmission (GT) outages are accounted for in a worst-case fashion. In order

to ensure security within a flexible framework, the concept of compound GT n−

K security criteria is presented. Three case studies are proposed to illustrate the

applicability of the proposed model. A case study with realistic data from the

Chilean system is presented and solutions obtained with different levels of security

are tested against a set of 10,000 simulated scenarios of renewable injections and

system component outages.

The second methodology presented in this work aims to solve the transmission ex-

pansion planning (TEP) problem under generation expansion uncertainty in a min-

max regret fashion, when considering flexible network options and n− 1 security cri-

terion. To do so, we propose a five-level mixed integer linear programming (MILP)

based model that comprises: (i) the optimal network investment plan (including

phase shifters), (ii) the realization of generation expansion, (iii) the co-optimization

of energy and reserves given transmission and generation expansions, (iv) the realiz-

ation of system outages, and (v) the decision on optimal post-contingency corrective

control. In order to solve the five-level model, we present a cutting plane algorithm

that ultimately identifies the optimal min-max regret flexible transmission plan in

a finite number of steps. The numerical studies carried out demonstrate: (a) the

significant benefits associated with flexible network investment options to hedge

transmission expansion plans against generation expansion uncertainty and system

outages, (b) the fact that strategic planning-under-uncertainty uncovers the full be-

nefit of flexible options which may remain undetected under deterministic, perfect
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information, methods that only consider a few of the candidate feasible solutions

and (c) the computational scalability of the proposed approach.

Finally, the third methodology aims to deliver a methodology to devise an optimal

transmission expansion planning under ambiguity in renewable probability distri-

bution while addressing industry’s security criterion for failures of equipments. On

the one hand, the uncertainty in renewable production is accounted for by an user-

defined set of “credible” probability distributions (usually referred to as an ambiguity

set), described by exogenously simulated scenarios, as customary in stochastic pro-

gramming. On the other hand, the outages of generators and/or transmission lines

are addressed via adjustable robust optimization.

1.1 Contributions

In this work, three novel methodologies to address the TEP problem are presented.

The main contributions of the first methodology are the following.

(i) Formulating a novel two-stage min-max-min static RG-TEP model for co-

optimizing transmission and renewable generation capacity expansion to meet

renewable targets under correlated uncertainty for renewable injections and

equipment failures.

(ii) Accounting for reserve deliverability through the expanded network by expli-

citly modeling the cost of the optimal siting and deployment under the pres-

ence of different security criteria and correlated renewable generation. It is

worth emphasizing that under such new features, the trade-off between build-

ing more lines to ensure cheaper reserve deliverability and to reduce renewable

curtailment or relying in existing reserve resources is implicitly embedded in

the optimal plan.
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(iii) Expanding the notion of uncertainty sets in the framework of robust optim-

ization for power systems planning by considering two sets of uncertainties,

not simultaneously covered in the state of the art literature: (a) lines and

generating units outages and (b) correlated renewable generation (and loads)

through the Cholesky decomposition of the covariance matrix. It is worth

mentioning that the solutions obtained are tested against out-of-sample sim-

ulated scenarios to corroborate the effectiveness of the worst-case modeling

choice.

(iv) Introducing the concept of compound (combined) GT n− K security criteria

in transmission expansion planning in which the level of imbalance under line

and generation contingency events (independent or not) can be controlled in

the planning stage for different user-defined levels of severity.

With respect to the second methodology, the main contributions are as follows.

(i) A novel 5-level MILP formulation that represents the min-max regret TEP

problem under generation expansion uncertainty while imposing n− 1 secur-

ity criterion. It is worth mentioning that the proposed model is sufficiently

general to consider n− K security, however, in this work, we focus on n− 1

security. The solution for the proposed model determines optimal portfolios of

conventional and flexible network investments (e.g. phase shifters) while op-

timizing pre- and post-fault operational measures (from both generation and

phase shifters) to efficiently and securely deal with long-term uncertainties

(volume and location of future generation deployment) and system failures.

It should be emphasized that in the literature all the aforementioned features

have not been addressed yet in the same model.

(ii) A solution method that effectively determines the global optimal solution of

the proposed 5-level model in a finite number of iterations. This solution
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method is based on Benders decomposition to obtain the optimal transmis-

sion expansion plan and on column and constraint generation to impose a

deterministic security criterion.

Finally, the third proposed methodology has the following main contributions.

(i) To formulate a novel three-level system of optimization problems to determ-

ine the transmission expansion plan under uncertainty in RES output while

considering the possibility of outages of system elements. Renewable variab-

ility is addressed in a scenario-based framework, whereas equipment failure is

considered by modeling deterministic security criterion in adjustable robust

optimization framework.

(ii) To derive a tailored outer-approximation/column-and-constraint generation

algorithm to solve the proposed multi-level problem to optimality in a finite

number of steps. This solution algorithm effectively approximates the CVaRα

of the system power imbalance.

(iii) To introduce a practical method to consider ambiguity on renewable produc-

tion probability distribution in the TEP problem.

1.2 List of publications
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1.3 Structure of the thesis

The content of this thesis comprises three methodologies to address different cir-

cumstances of the TEP problem. Each methodology is fully presented and described

within a chapter.

In chapter 2, we present a methodology to determine generation and transmission

expansion to achieve RES penetration targets under multiple deterministic security

criteria.

In chapter 3, we propose a methodology to minimize the regret of the system plan-

ner while expanding the transmission grid under uncertainty in future generation

expansion.

In chapter 4, we introduce a methodology to devise the transmission expansion plan

under ambiguity in the probability distribution associated with RES generation.

Finally, in chapter 5, we pose the main conclusions and comment potential future

avenues of research.



CHAPTER 2

Reliable Renewable Generation and

Transmission Expansion Planning:

Co-Optimizing System’s Resources for

Meeting Renewable Targets

Aiming to reduce greenhouse gases emissions, power systems worldwide are increas-

ing the utilization of renewable energy sources (RES). In order to do so, the estab-

lishment of renewable targets is one of the mechanisms largely adopted to guide this

RES integration process. Within this context, many countries have set policy targets

related to renewable energy. The European Union (EU), for example, established

a target to meet 20% of its energy consumption by means of renewable sources by

8
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2020 [25]. Some EU member countries have even more strict targets, e.g., Germany

with 30% by 2020 and 60% by 2050.

In order to accommodate the variability of renewable sources under tight security cri-

teria, the system might require additional levels of quick-response reserves. Within

this framework, the transmission system plays a key role, since it allows the system

operator to use the cheapest resources to ensure system reliability. However, trans-

mission systems were not originally designed to cope with such levels of renewable

penetration. Therefore, a renewable-driven expansion of the generation demands a

reorientation of current electricity networks. In this vein, several technical reports

and scientific articles have highlighted the importance of transmission investments

to achieve renewable energy targets [26–28].

Transmission expansion planning (TEP) has typically been addressed by a reactive

approach, where the transmission planner reacts by building transmission lines to

interconnect committed generation expansion projects. However, a proactive ap-

proach for TEP has recently captured the attention of researchers and Regulatory

Authorities as an alternative to the reactive approach. In the proactive approach,

the transmission planner anticipates the best generation investment decisions. In

this manner, the transmission planner is able to induce generation expansions with

higher social welfare. Several works have shown the benefits of using a proactive

TEP instead of a reactive TEP (see [29–31]).

Proactive transmission planning is a type of co-optimization that is particularly rel-

evant for large transmission investments intended to connect load centers to remote

areas with high renewable generation potential. The recognition of co-optimization

for transmission and generation capacity expansion has been reported in several

works and technical reports [26–29,32]. In the specific case of renewables, candidate

areas are, in general, known in advance. Therefore, aggressive incentive (subsides)
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policies can be largely used to drive new investments. Hence, the co-optimization of

the transmission system and the new capacity of renewable generation is a power-

ful tool for planners, policy makers, and regulators. Within this framework, it is

possible to efficiently achieve high renewable penetration targets [27] while account-

ing for the complex interaction between the selection of new renewable sites and

candidate transmission lines.

In addition to that, the proper determination of reserve levels and siting for a reli-

able operation of power systems under the presence of large amounts of renewable

energy sources is a timely topic. Several works [33–36] have suggested that reserve

needs and costs increase when renewable penetration rises. Clearly, the expansion of

renewable projects changes the manner of operating power systems, and therefore,

significantly impacts the optimal transmission plan and the optimal reserve siting.

Furthermore, renewable energy resources are usually located in remote areas, distant

from load-demand centers and conventional generation (reserves). Such character-

istics of renewable sources generally impact the capability of the system to guarantee

reserve deliverability , whose importance has been highlighted in [37] and [38]. On the

other side, investments in intermittent renewable projects, such as wind farms, can

be financially jeopardized by renewable curtailment. Nevertheless, the side effect of

curtailing renewable resources could be mitigated by means of the joint optimization

of system’s resources in the planning level.

Two-stage robust optimization [39], also known as adjustable robust optimization

(ARO), has been extensively utilized for operation problems with large renewable

penetration [40–42]. This approach is also emerging in transmission expansion plan-

ning applications with renewable energy generation [43]. Within power systems

operation framework, robust models have been proposed in the literature consider-

ing reserve deliverability. For instance, [42] explicitly considers deliverability while

determining reserve levels by means of joint energy and reserve scheduling. Within
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the context of transmission planning, some of the relevant two-stage robust optim-

ization models proposed in the literature are presented in [23] and [44]. On the

one hand, in [23], renewable variability and generation contingencies are considered

by means of demand and generation capacity uncertainty sets while neglecting fail-

ures of transmission lines. On the other hand, in [44], outages of transmission and

generating assets are taken into account while disregarding the effect of renewable

variability.

Within this context, the objective of the work developed in this chapter is to propose

a two-stage renewable generation and transmission expansion planning (RG-TEP)

model in order to jointly identify the best subset (within a set of candidates) of

new transmission assets and renewable sites to be developed. The main goal of this

co-optimization planning model is to address renewable targets. While addressing

these targets, the model takes into account the least-cost reserve scheduling to ensure

reserve deliverability under renewable variability and outages of generation and/or

transmission assets.

To achieve the aforementioned objective and goal, the model proposed in this chapter

also considers the cost of optimal reserve levels allocated throughout the expanded

network. This consideration enables the possibility of simultaneously balancing two

types of cost. On the one hand, the cost of expensive reserve resources, which may

possibly lead to significant amounts of penalties due to renewable curtailment. On

the other hand, the cost of building new lines to ensure least-cost reserve deliverab-

ility and minimal loss of available renewable generation. In order to model realistic

reserve requirements and their interaction with the expansion plan, the proposed

formulation comprises outages of generation and transmission assets and nodal in-

jection correlation in a worst-case fashion. It is worth mentioning that the worst-case

metric is used to identify the events which must be comprised such that the planner

will be guarded against any scenario within a defined uncertainty set.
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With the objective of ensuring security within a flexible framework, we present in this

chapter the concept of compound GT (generation and transmission) n− K security

criteria. Within the proposed security criteria, we can set different user-defined

thresholds for the maximum allowed system power imbalance. More specifically, we

can plan the expansion of the system in order to simultaneously guarantee 0% of

system power imbalance for n− 0 and n− 1 security criteria, while permitting, e.g.,

a maximum of 1% and 2.5% of system power imbalance for n− 2 and n− 3 security

criteria, respectively. Such modeling feature extends previous works ( [23,36,44,45])

while providing more flexibility and constitutes a highly practical feature for system

planners.

As a consequence of the aforementioned features included in the modelling, the

proposed framework provides planners with an effective computational methodo-

logy capable of assessing the trade-off between additional security criteria in a very

flexible fashion based on industry standards (n− K criteria) and the cost of oper-

ating and expanding the system under different levels of renewable penetration and

correlation patterns.

The remainder of the chapter is organized as follows. Section 2.1 specifies the nomen-

clature associated with this chapter. Section 2.2 describes the mathematical model

for the TEP problem. Section 2.3 presents the solution methodology developed to

solve the problem. Finally, Section 2.4, illustrates the performance of the proposed

methodology with case studies.

2.1 Nomenclature

The mathematical symbols used throughout this chapter and its corresponding ap-

pendices are classified below as follows.
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Sets

I Set of generator indexes.

Ib Set of indexes of generators connected to bus b.

LC Set of indexes of candidate transmission lines.

LE Set of indexes of existing transmission lines.

L Set of indexes of all transmission lines, equal to
(
LE ∪ LC).

NE Set of indexes of existing buses.

NRE Set of indexes of candidate buses with potential renewable energy.

N Set of indexes of buses, equal to
(

NE ∪ NRE).

Parameters

ΓD Conservativeness parameter.

ΓW Conservativeness parameter.

ΣD Estimated nodal demand covariance matrix.

ΣW Estimated nodal renewable generation covariance matrix.

∆DK,Σ Maximum level of system power imbalance for an n− K security criterion.

CCap
l Cost per MW of candidate lines.

CRE Construction cost of new node with potential renewable energy.

CI
K Cost of imbalance under the worst-case contingency having K contingencies.

Cl Construction cost of candidate line l.



14 Chapter 2. Reliable Renewable GTEP

Cp
i Production cost of generator i.

Cd
i Reserve-down cost of generator i.

Cu
i Reserve-up cost of generator i.

D̂b Nominal demand at bus b.

FMin
l Minimum power flow capacity of candidate line l.

FMax
l Maximum power flow capacity of candidate line l.

Fl Power flow capacity of existing line l.

f r(l) Sending or origin bus of line l.

K Number of unavailable system components.

LD Lower triangular matrix that satisfies the equality ΣD = LDLDT.

LW Lower triangular matrix that satisfies the equality ΣW = LW LWT.

n Number of system components.

Pi Capacity of generator i.

RD
i Reserve-down limit of generator i.

RU
i Reserve-up limit of generator i.

to(l) Receiving or destination bus of line l.

Target Target of renewable generation as percentage of the total demand.

Ŵb Expected renewable generation at bus b.

xl Reactance of line l.
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Decision Variables

∆D+wc
b Power surplus equivalent to the energy spillage at bus b under the worst-case

contingency.

∆D−wc
b Power deficit equivalent to the energy insufficiency at bus b under the worst-

case contingency.

∆DK,Σ Worst-case system power imbalance, given K and first-level decisions.

θb Phase angle at bus b in the pre-contingency state.

θwc
b Phase angle at bus b under the worst-case contingency.

aG
i Binary variable that is equal to 0 if generator i is unavailable under the worst-

case contingency, being 1 otherwise.

aL
l Binary variable that is equal to 0 if line l is unavailable under the worst-case

contingency, being 1 otherwise.

Db Demand at bus b.

ed Error on the demand.

ew Error on the renewable generation.

FC
l Power flow capacity of line l.

fl Power flow of line l in the pre-contingency state.

f wc
l Power flow of line l under the worst-case contingency.

pi Power output of generator i in the pre-contingency state.

pwc
i Power output of generator i under the worst-case contingency.

vl Binary variable that is equal to 1 if candidate line l is built, being 0 otherwise.



16 Chapter 2. Reliable Renewable GTEP

Wb Renewable generation at bus b.

yb Binary variable that is equal to 1 if candidate bus b is built, being 0 otherwise.

2.2 Mathematical Formulation

The proposed RG-TEP model aims at determining the optimal renewable genera-

tion and transmission expansion plan considering correlated nodal injection uncer-

tainty as well as multiple security criteria while ensuring reserve deliverability. A

conventional method to address this problem would be a single-level formulation

that exhaustively and explicitly enumerates all possible cases of contingencies for

all the comprised multiple security criteria combined with several possible scenarios

of renewable generation realization. This approach would, in fact, lead to a highly

combinatorial problem that can easily become intractable. In [44], for comparison

purposes, a conventional single-level formulation to address a TEP problem consider-

ing individual security criteria was implemented. Due to computational limitations,

when the imposed security criterion was tighter than n− 1, such model could not be

solved to optimality for the 118-bus system with 311 elements (number of generators

plus the number of existing and candidate transmission lines). For n− 3, it was not

even possible to load the matrix of the problem into the computer memory.

In this chapter, we not only consider individual security criteria, but also multiple

security criteria simultaneously along with nodal injection uncertainty. In this case,

it is necessary to decompose the problem in different levels. In this context, we

propose an adaptive robust optimization model to address the aforementioned ob-

jectives. The proposed model is a trilevel formulation, where the two lowermost

optimization problems represent an oracle that finds the worst-case scenario, i.e.,

a single scenario that causes the most severe imbalance in the system. This oracle
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replaces the very large set of constraints added to the RG-TEP problem mimicking

all future operations for each scenario.

MINIMIZE (Costs of line and RES investment + Costs of operation + Cost of worst-case imbalance)
s.t.:

Multiple security criteria imbalance limits
n� 0 n� 1

Pre-contingency least-cost energy and reserve dispatch
Line and RES expansion limits
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Figure 2.1: Three-level robust TEP framework

Each level, as illustrated in Figure 2.1, has its role described below.

(i) First Level : This level determines the investment plan, i.e., it decides which

candidate buses with potential renewable generation, y, should be built and

which candidate lines should be installed and how much should be their capa-

cities, x. In addition, pre-contingency energy and reserve system dispatch, q,

is also determined by the first level while meeting constraints associated with

power balance, power flow, and generation limits.

(ii) Second Level : Given the first-level decisions on investments and operation, the

second level seeks to identify the contingency as well as the renewable nodal
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injection and load demand realization that would together lead to the worst-

case system power imbalance. If the imposed security criterion is n− 1, the

contingency state identified in the second level will comprise the worst-case

failure of one of the system elements. If it is n− 2 instead, the contingency

identified will comprise the worst case combination of failures of two system

elements. The same rationale applies for any n− K security criterion. Hence,

the second level finds simultaneously the values for the uncertainty paramet-

ers of renewable generation w, load demand d, and element failures a that

generate the worst imbalance in the system.

(iii) Third Level : Once first and second level decisions are taken, the third level

determines the post-contingency corrective actions, z, to circumvent the worst-

case realization of renewable generation and outages of system elements im-

posed in the second level. These corrective actions are performed by making

use of the resources provided by the first level decision, e.g., newly built lines

and scheduled reserves.

Note that, as we comprise multiple security criteria simultaneously in our formu-

lation, second and third levels are replicated for each considered security criterion

(see Figure 2.1). For example, for the compound security criterion K(0 → 1), we

have replicated second and third level problems for each individual security level,

namely n − 0 (where only renewable uncertainty is considered) and n − 1 (where

both renewable and n− 1 security criterion are considered).

2.2.1 The TEP mathematical framework

In its compact mathematical programming form, the TEP problem involves the min-

imization of the total network investment cost and future operational costs to find
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an optimal transmission expansion plan that enables the system to meet the future

demand growth. In addition, in order to achieve national and/or regional renewable

energy targets, a reinforced transmission infrastructure is also needed to deliver new

renewable energy and reliably operate the power system while accommodating the

variability of RES.

Under a deterministic framework, the load and supply (including RES generation)

parameters are assumed to be known and given in advance. The compact form of a

traditional TEP problem with RES co-optimization is depicted in (2.1).

min
x,y,q

c⊤linx + c⊤resy + c⊤opeq

s.t. (x, y) ∈ I (2.1)

q ∈ Q(x, y)

Variable x is related to the investment in new transmission lines and their optimal

capacity, y is associated with the investment in renewable energy sources, and q

refers to the system operation variables (line flows, energy generated and nodal

voltage angles). Within this context, model (2.1) does not consider investments in

conventional units. Nevertheless, this model could be adapted to do so without in-

terfering in the mathematical properties of the formulation. In addition, model (2.1)

belongs to the class of static transmission planning, which determines the subset of

candidate assets that should be built and where they should be located. Unlike

dynamic planning however, the static framework does not consider the timing of the

investments. Despite this limitation, static models allow for a better description of

the system requirements, such as the security criteria imposed in this work. It is

worth mentioning that static and dynamic approaches are likely to lead to different
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results and a comparison between both frameworks to understand which one is more

suitable is case-dependent. This comparison is out of the scope of this work. Here,

we have chosen to formulate a static model in order to focus the investigation on

the benefits provided by a reliability oriented expansion planning.

The objective function in (2.1) seeks to minimize the total investment costs related

to the expansion/reinforcement of the network, the construction of new nodes for

absorbing new renewable potential (or expanding existing capacities), and the sys-

tem operation costs. Note that, in the presence of a deregulated competitive market

for generation, RES investment are done by private entities (as in most of the coun-

tries). In this setting, cres is the cost of generation expansion. Notwithstanding,

this cost could reflect centralized planning decisions by also including investment

costs in RES. Feasible decisions on transmission investment and on development of

new RES nodes belong to set I , which represents: (i) candidate lines for expansion,

(ii) candidate buses with RES potential, (iii) logic constraints that do not allow the

construction of lines connecting the system to any candidate RES node where there

is not investment in RES generation, and (iv) minimum renewable energy generation

target. Finally, the system operation is modified by the network configuration and

RES investments. The system operation is described by set Q(x, y). Without loss

of generality, we simplify the set of constraints for this basic TEP model with the

symbol H, i.e., (x, y, q) ∈ H ⇐⇒ {(x, y, q)|(x, y) ∈ I , q ∈ Q(x, y)}.

2.2.2 The n− K-contingency-constrained TEP

The network planner should expand the system with adequate resources in order

to ensure the reliability required in the operational level. Under the n− K security

criterion approach, the system should withstand the loss of up to K elements (see

[14, 16, 17] and references therein). To achieve this objective, the scheduling of
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reserves is necessary to meet demand under any possible post-contingency operation,

i.e., after the loss of any combination K system elements. To deal with this problem,

conventional contingency-constrained (CC) approaches are based on contingency-

dependent models, which characterize the availability of the elements (generators

or lines) under a given post-contingency state of the system by means of binary

parameters. Within this context, aG
i is defined to represent the availability of the

generation unit i, i.e., aG
i is equal to 1 if generator i is available, being 0 otherwise.

Similarly, aL
l is related to the availability of transmission line l. A post-contingency

state κ represents a state of the system where a given set of its elements is out of

service. Under this framework, any post-contingency state κ can be represented by

a binary vector a(κ) =
[
aG⊤(κ), aL⊤(κ)

]⊤
.

Under an n− 1 criterion, there must exist a feasible operating point after the outage

of any individual element. Therefore, in contingency-dependent models, n sets of

operation constraints, one for each possible post-contingency state κ, should be

explicitly incorporated in the optimization problem. If the adopted security criterion

is n− 2, then we have (n
2) possible cases of post-contingency states to account for

in the model and each one requires a set of operation constraints to be embedded

into the problem. Clearly, the size of the problem easily reaches intractability as the

security criterion considers higher order criteria. To cope with this problem, [44]

proposes to consider the elements of the availability, or contingency, vector a as

binary decision variables of a second-level mixed integer optimization problem. This

optimization level searches for the worst-case post-contingency state by maximizing,

in the space of the availability vectors a, the imbalance of the system given the first-

level operational schedule. In this way, all contingencies are implicitly modeled

in the formulation by the lower-level optimization problem (we refer to [17] for a

simple example of this rationale). Thus, following the findings in [44], the n− K-

contingency-constrained TEP problem with RES co-optimization is formulated in
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(2.2)–(2.4), where a cost penalty and a constraint are both considered for the worst-

case imbalance, (2.4).

min
(x,y,q)∈H

c⊤linx + c⊤resy + c⊤opeq + CI∆DK(x, y, q) (2.2)

s.t. ∆DK(x, y, q) ≤ ∆DK (2.3)

∆DK(x, y, q) = max
a∈U a

K

(
min

z∈Z(x,y,q,a)
c⊤corz

)
(2.4)

The objective function (2.2) comprises the extra cost of the worst-case system power

imbalance, CI∆DK(x, y, q), which is the cost related to the worst realization of up

to K simultaneous outages. The outer optimization problem in (2.4) is devoted to

identify the availability binary vector a with the worst combination of K outages

(zeros) for a given solution of the TEP problem (line expansion, RES investments,

and nominal operational plan that defines the scheduling of energy and reserves).

The inner problem in (2.4) minimizes the system damage (imbalance) by means of

corrective actions (up- and down-reserve deployment within the limits scheduled in

the upper-level and taking into account the decision on network expansion) after a

contingency occurs. The lower-level vector of variables z is associated with the set

of feasible corrective actions that can be taken by the system operator to redispatch

the system after the occurrence of a given contingency. Such variables belong to

set Z(x, y, q, a), which depends on the remaining network configuration given by

the availability vector a, on the investment decisions, and on the scheduling of

energy and reserves. Finally, in (2.3), an upper bound on the worst-case imbalance

is imposed to express the reliability level required by the planner for the adopted

criterion.

In order to comply with the aforementioned requirement for the imbalance function

∆DK(x, y, q), the availability uncertainty set, U a
K, is defined as follows.

U a
K =

{
a ∈ {0, 1}n

∣∣∣ ∑
i

aG
i + ∑

l
aL

l ≥ n− K

}
, (2.5)
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where n is the total number of elements in the system (generators and transmission

lines). Note that the maximum number of simultaneous outages is K, regardless if

they are lines or generators. This practice is referred to as a joint GT n−K security

criterion [17].

2.2.3 Modeling correlated RES generation and demand un-

certainty

The expansion planning of a transmission infrastructure is a long-term problem.

Some of the relevant issues that should be considered while determining such expan-

sion are demand growth and future RES generation, which are not easy to forecast.

Furthermore, RES generation variability requires higher levels of spinning reserves

(generally from conventional generators) to ensure a secure operation. Hence, the

transmission network plays a key role in making reserve sources accessible and in

connecting RES injection to nodes with net demand. Within this context, in this

chapter, we address the TEP problem while taking into account reserves needs, RES

generation and demand uncertainty and their spatial correlation to guarantee deliv-

erability of reserves. Spatial correlation between nodal demands and between nodal

renewable injections are characterized by their nodal covariance matrices (Σd, Σw),

which are factorized via Cholesky decomposition [46], i.e, Σd = Ld(Ld)⊤ for demand

and Σw = Lw(Lw)⊤ for RES generation. Within this context, RES generation and

demand polyhedral uncertainty set is defined as:

Ud,w
Σ =

{
(d, w) ∈ Rnd×nw

∣∣∣
d = d̂ + sdLded, || ed ||1≤ Γd, ed ∈ [−1, 1]n

d

w = ŵ + swLwew, || ew ||1≤ Γw, ew ∈ [−1, 1]n
w

}
, (2.6)
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where ed and ew are normalized error vectors whose components assume values

between −1 and 1 for all nd-demand-variable nodes and nw-RES nodes; d̂ and ŵ

are the vectors of nominal values of demand and RES generation, respectively. The

uncertainty budget represented by Γd and Γw for demand and RES generation, re-

spectively, controls the number of uncertain parameters that can deviate from their

nominal value by means of norm-1 constraints imposed on the error vectors. Addi-

tionally, the amplitude of such deviations is controlled by sd and sw, respectively.

Therefore, the level of conservativeness or stress associated with the uncertainty set

is controlled by those four parameters. It is worth mentioning that such uncertainty

set does not depend on the binary variable y, which represents the decision to build

or not a candidate bus. Finally, it is relevant to say that although possible cross-

correlation between loads and renewable injections could be accounted for in the

proposed framework, for the sake of simplicity, we do not consider this option in

this work.

2.2.4 The reliable TEP model for large renewable energy

penetration

The Cartesian product between the previously described uncertainty sets associ-

ated with the security criteria, demand and RES generation uncertainty results in

U a,d,w
Σ,K = U a

K × U
d,w
Σ . By considering such combined uncertainty set, the transmis-

sion planning is intended to withstand, under a controlled level of imbalance, the

loss of up to K elements of the system for all demand and RES generation scenarios

comprised in Ud,w
Σ .

In order to provide a wider control of the system reliability, we propose the utilization

of multiple (simultaneous) GT n− K security criteria. Although imbalance is not

allowed in the pre-contingency state, the planner has the flexibility to control the
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maximum imbalance under each n − K security criterion comprised in the set of

criteria K, for all demand and renewable generation scenarios in Ud,w
Σ . The model

is sketched in Fig. 2.1 and its compact mathematical formulation is the following:

min
(x,y,q)∈H

c⊤linx + c⊤resy + c⊤opeq + f
(
{∆DK,Σ(x, y, q)}K∈K

)
(2.7)

s.t. ∆DK,Σ(x, y, q) ≤ ∆DK,Σ, ∀K ∈ K (2.8)

∆DK,Σ(x, y, q) = max
(a,d,w)∈U a,d,w

Σ,K

(
min

z∈Z(x,y,q,a,d,w)
c⊤corz

)
, ∀K ∈ K. (2.9)

The rationale behind (2.7)–(2.9) comprises the minimization of costs associated with

investment in lines, investment in new renewable generation, operation (reserve and

generation scheduling) and system imbalance. The system imbalance is represented

by the linear penalty function f (·), which returns the cost associated with the worst-

case imbalance incurred under each security criteria. Additionally, the imbalance

associated with the solution of (2.9) is limited by a user-defined threshold in (2.8).

Problem (2.9) and imbalance limits (2.8) are parameterized by the security criterion

level K ∈ K. Under this framework, it is possible to set different admissible levels

of system power imbalance depending on the security parameter K. For instance,

we can impose no system power imbalance for conventional criteria, e.g. n − 1,

while admitting an acceptable maximum amount of system power imbalance for

higher-order security criteria.

The simultaneous consideration of multiple security criteria facilitates the control

of the system reliability under customary and severe contingency conditions in the

planning stage. Such framework can be used to assess the trade-off between the

reliability provided by higher order security criteria and the cost to implement such

criteria, which is incurred by network reinforcement and more conservative operation

of the system. In a combined (n− 0)(n− 1)(n− 2)(n− 3) security criterion, for

example, the user may set a higher penalty cost and/or impose a stricter limit in
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the right hand side of constraints (2.8) for imbalances caused by outages of one

component, which have a larger probability to occur. On the other hand, a smaller

penalty cost would be set for imbalances caused by contingencies comprising three

components, which are less likely to materialize. It is worth mentioning that when

considering a single n− 3 security criterion and allowing an acceptable amount of

system power imbalance, it is not possible to guarantee that the decision will impose

a null imbalance for lower order security criteria such as n− 2, n− 1, or even n− 0

security criteria.

Finally, the set of corrective actions of the third-level, Z(x, y, q, a, d, w), considers

the redispatch of the system after the occurrence of a given contingency, a, and

realization (scenario) of demand and renewable generation, (d, w). It is worth

mentioning that Z is a polyhedral set of the form Az ≤ b(x, y, q, a, d, w). Thus,

the first and second-level variables only affect the third-level problem through its

right-hand-side. In appendix A, the detailed mathematical formulation for the three-

level model (2.7)–(2.9) is provided.

2.3 Solution approach

The proposed TEP formulation, (2.7)–(2.9), is a three-level optimization model (see

Fig. 2.1), which can be conveniently reformulated as an equivalent bilevel program.

To carry out this transformation, we first notice that the third level minimization

problem is a linear program, therefore its primal and dual versions have the same

optimal solution. In addition, the dual of the third level is a maximization problem

aligned with the objective of the middle level problem. Then, the original middle

level maximization problem, (2.9), which aims to find vectors (a, d, w) that maxim-

ize the optimal value of the third-level problem, is thus rewritten to maximize the

lower-level dual-objective function, b(x, y, q, a, d, w)⊤µ. In such new problem, the
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original lower-level dual decision vector, µ, is considered as an additional optimiza-

tion variable. Moreover, due to strong duality, by taking into account the lower-level

dual feasibility, µ ∈ ZD, the optimal value of the new second-level problem meets

the third-level one. As a result, levels 2 and 3 are recast as an equivalent single-level

mixed integer nonlinear problem parameterized on the upper-level decisions. After

this transformation, the following equivalent-bilivel optimization problem, (2.10)–

(2.12), is obtained:

min
(x,y,q)∈H

c⊤linx + c⊤resy + c⊤opeq + f
(
{∆DK,Σ(x, y, q)}K∈K

)
(2.10)

s.t. ∆DK,Σ(x, y, q) ≤ ∆DK,Σ, ∀K ∈ K (2.11)

∆DK,Σ(x, y, q) = max
(a, d, w) ∈ U a,d,w

Σ,K ,

µ ∈ ZD

b(x, y, q, a, d, w)⊤µ, ∀K ∈ K. (2.12)

Similarly to [17, 44], the worst-case imbalance function ∆DK,Σ(x, y, q) (which is a

recourse function) is the maximum of affine functions of the first-level variables para-

meterized on the second-level feasible solutions. Therefore, it is a convex function.

Under this assumption, model (2.10)–(2.12) is suitable for both Benders decomposi-

tion (dual approach) and column-and-row generation (primal approach) algorithms,

which ensure convergence to a near-global-optimal solution. Finally, following the

findings of [44] and [42], bilinear terms in the objective function (2.12) (due to the

product between µ and the middle-level variables, a, d, w) can be linearized. Thus,

(2.10)–(2.12) can be solved by means of available mixed integer linear programming

(MILP) commercial solvers [47]. The detailed solution methodology is presented in

appendix B.
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2.4 Case Studies

The performance of the proposed model and solution methodology is illustrated in

this section. Three cases are utilized to do so. The first one comprises a small 3

(existing) + 2 (candidate)-bus test system that illustrates the impact of considering

multiple security criteria under the presence of correlated-renewable injection un-

certainty. The second case, based on the main Chilean power system, demonstrates

the effectiveness of the proposed methodology in a realistic case study. Finally, the

third one, based on the standard IEEE 118-bus system, analyses the performance

of the solution algorithm for a meshed topology with more than hundred buses.

The presented methodology was implemented on a computer with two Intel R⃝ Xeon R⃝

E5–2697 v2 processors at 2.7 GHz and 512 GB of RAM, using Xpress-MP 7.8 under

MOSEL [47].

2.4.1 (3e+2c)-Bus System Case Study

As depicted in Fig. 2.2, this system has three existing buses with eight conventional

generation units and two candidate buses with potential wind generation. The sys-

tem comprises two existing transmission assets and twenty-one candidates, which

are represented by the dashed lines. Each dashed line corresponds to several can-

didate circuits. In this case study, we set the standard deviation of the renewable

generation of buses 4 and 5 to 23.11% of their maximum output and we consider

sw equal to 1. Then, we perform a sensitivity analysis on the correlation factor ρ.

The dashed line between buses 1 and 2 comprises 9 candidate circuits, whereas each

dashed lines between buses 2 and 3, 4 and 2, and 5 and 2 refers to 4 candidate

circuits. Detailed data for this case study can be found in the data document [48].

To depict the impact of considering multiple security criteria under the presence of

correlated-renewable injection uncertainty, four different combined security criteria
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Figure 2.2: 3(existing)+2(candidate)-nodes power system

are considered in each study: 1) pure (n− 0), where only renewable variability is

addressed, 2) combined (n − 0) and (n − 1), 3) combined (n − 0), (n − 1), and

(n − 2), and 4) combined (n − 0),(n − 1), (n − 2) and (n − 3). Hereinafter, we

use the the acronym K(0) to represent a single (n− 0) security criterion, whereas

K(0→ 3) refers to a compound security criterion ranging from (n− 0) to (n− 3).

For all of the composed criteria, renewable variability is considered as described in

the previous section. For simplicity purposes, demand variability is neglected.

In this case study, a sensitivity analysis is performed to investigate the impact of

correlation between renewable sources under combined security criteria on spinning

reserve costs and transmission expansion investments. For the individual security

criteria (n − 0), (n − 1), and (n − 2) comprised in the aforementioned combined

criteria, we consider the penalization cost CI
K=0,1,2 equal to 4× 103$/MWh, and for

the individual (n− 3), the penalization CI
K=3 is set to 600$/MWh. The tolerance for

convergence is 5× 10−3. In addition, the available renewable nominal generation in

the two candidate buses corresponds to 63.1% of the total energy demand. Finally,

the spillage factor γSpil is set to 10−2.

In Table 2.1, the costs associated with reserve levels for each considered correlation

and combined security criteria are shown. There is a clear pattern of increase in
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Table 2.1: Total Reserve Cost ($/hour)

Correlation
Security Criteria

K(0) K(0 → 1) K(0 → 2) K(0 → 3)
-100% 000.00 162.00 0349.00 01069.22
-50% 095.99 282.19 0492.79 06992.92
0% 111.38 300.88 0515.38 07945.11
50% 177.50 384.60 0654.30 11336.40
100% 248.50 480.50 3693.50 14845.60

reserve needs when the security criterion becomes tighter. In addition, as correlation

increases, the required levels of spinning reserves become higher.

Table 2.2: Total Investment in Lines ($/hour)

Correlation
Security Criteria

K(0) K(0 → 1) K(0 → 2) K(0 → 3)
-100% 6704.62 13760.30 21477.00 29307.80
-50% 7916.44 15064.90 22652.90 28361.10
0% 7954.40 15122.20 22791.30 28043.30
50% 7990.86 15159.90 22859.90 29151.10
100% 9319.00 16374.50 22947.00 29330.40

Table 2.2 displays the investments in transmission lines undertaken for each correl-

ation and combined security criteria. As we can see, a correlation increase leads

to higher investments in transmission lines for combined security criteria up to

K(0→ 2). Two reasons are behind this effect. The first is due to the fact that usu-

ally additional line capacity is needed to accommodate positively correlated peaks

of renewable injection. The second is related to the ability to deliver reserves. The

higher the correlation between RES buses, the higher the required reserve level to

ensure system reliability. Since the cheapest conventional generators are located at

bus 1, a higher correlation implies in more investment to bring cheap reserves from

bus 1, i.e., an extra investment is needed to ensure reserve deliverability. However,

for the K(0 → 3) criterion, the pattern for investments in lines is broken since

the available candidate lines are not sufficient to bring the required levels of cheap

reserves from bus 1. This is reflected in the faster rate of growth of reserve costs
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for K(0 → 3) from correlation equal to -100% up to correlation equal to 100%, as

reported in Table 2.1.

2.4.2 Main Chilean Power System Case Study

We illustrate the proposed model using a stylized representation of the main Chilean

power system (Sistema Interconectado Central, or its acronym SIC). The stylized

SIC comprises 27 nodes, 52 existing lines, and 282 generating units. The data

(transmission lines, generating units, locations, demands, etc) is obtained from the

Chilean Regulatory Authority [49] and SIC System Operator [50]. We have chosen 66

candidates lines for expansion. Full generation, lines and demand data are available

in [48]. Our study focuses on the year 2025, for which Chilean Law has set a 20%

renewable energy generation target. Nodal demand is projected according to the

CNE’s technical report [49]. We have considered here that renewable generation

targets are reached with wind and solar energy resources only. Potential future RES

generation data are obtained from the MAPS-Chile initiative project [51].

We have imposed simultaneous security criteria with different thresholds. System

power imbalance is limited in terms of the total demand to 0% for the individual

security criteria (n− 0), (n− 1), and (n− 2) and to 2.5% for the individual (n− 3).

In addition, load shedding is penalized with a cost of 4 × 104$/MWh, and the

convergence gap is set to 5× 10−3 for imbalances associated with up to two outages,

while imbalances associated with three outages are penalized by 40$/MWh, with a

convergence gap of 3× 10−2. Finally, the spillage factor γSpil is set to 10−3 in this

case study.

The model outcomes are summarized in Table 2.3. In columns 2 to 5, results for

different security criteria are provided. In rows 2 to 5, we present the costs related to

operation of and investment in new transmission lines and renewable energy capacity
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Table 2.3: Results for the Chilean Power System

Security Criteria K(0) K(0 → 1) K(0 → 2) K(0 → 3)

Total Sys. Cost(103$) 236.89 250.70 261.96 268.79
Total Ope. Cost(103$) 201.41 215.12 222.72 228.98
Inv. in Trans. Lines(103$) 006.69 006.77 010.43 011.00
Inv. in New Buses(103$) 028.80 028.80 028.80 028.80

Down Spinning Reserve(MW) 0 1511.88 2932.13 3035.17
Up Spinning Reserve(MW) 114.00 1161.91 1526.06 2287.67

No. of Lines Built 14 14 25 27
RES Penetration (%) 20.25 20.25 20.25 20.25
Aver. Inv.&Ope. Cost($/MWh) 20.94 22.16 23.16 23.76

WC LOL for K = 0 (%) - - - -
WC LOL for K = 1 (%) 12.16 - - -
WC LOL for K = 2 (%) 20.48 05.56 - -
WC LOL for K = 3 (%) 23.76 13.29 7.82 1.82

Time of resolution (s) 88.01 1408.28 47226.90 78358.40

expansion in thousands of dollars1. As it is expected, operation costs increase while

the imposed security criteria becomes tighter. However, investment costs in new RES

nodes as well as RES penetration remain equal for all security criteria, as shown in

rows 5 and 9. In order to accomplish identical RES penetration with different and

more stringent security criteria, it is necessary to undertake higher investments in

transmission lines. Thus, if the expansion is planned without security criteria, the

number of constructed lines is 14, with a cost of 6.69 thousand dollars. However,

under the combined K(0→ 3) security criterion, the number of built lines increases

to 27, resulting in a cost of more than 11 thousand dollars. It is worth mentioning

that costs presented in Table 2.3 refer to one hour of operation. Thus, the value of

6.69 thousand dollars per hour associated with line investments for K(0) is actually

equivalent to approximately 58.60 million dollars per year. Assuming a 30 years life

time, this is equivalent to 1.80 billion dollars. Similar results have been reported

1These results are associated with a single time interval, i.e., a representative worst-case hour
obtained by the two lowermost optimization problem. This is consistent with previously reported
works on the subject of static planning, [23, 43, 44], and sufficient to capture the effect of the new
features proposed in this study.
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previously in [52] for the Chilean system. Levels of up- and down-spinning reserves

are shown in rows 6 and 7. Such levels of up and down reserves rise from light to

rigorous security criteria.

The optimal number of lines to build, the percentage of renewable penetration, and

the total average cost per MWh of demand for each security criterion are respect-

ively shown in rows 8, 9, and 10 of Table 2.3. Note that the average cost of the

energy supply is calculated by taking into account operational, RES capacity, and

transmission expansion costs. In this study, for a renewable penetration equal to

20.25% of the demand share, for all cases, the average cost slightly increases as the

imposed security criteria become tighter. It should be noted that the investment in

new lines to comply with K(0 → 1) criterion is slightly higher than the necessary

investment required by pure K(0). In this case, most of the increase in reliability

is addressed by significantly higher levels of allocated reserves. However, under a

K(0 → 2) criterion, both investment plan and reserve levels notably differ from

the K(0→ 1) case due to the quasi-radial characteristics of the Chilean power sys-

tem. Nevertheless, since more lines are built for K(0→ 3) than for K(0) and these

lines are strategically chosen to guarantee security at minimum cost, the delivery

of cheaper reserves is facilitated. As a consequence, although the up-spinning re-

serve requirements rise from 114MW for K(0) to 2287.67MW for K(0 → 3), the

operational cost only increases less than 14% from K(0) to K(0 → 3). This effect

reinforces the importance of considering reserve deliverability while planning system

expansion as it is proposed in the methodology presented in this work.

The worst-case load shedding for contingencies with up to 3 outages is shown in

rows 11 to 14. According to these results, an expansion plan without any security

criteria could lead to severe costs of load shedding. More specifically, 12.16% of

the load demand may be curtailed by a single outage, while up to 23.76% of the

load demand may be non-served due to a combination of 3 simultaneous outages.
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However, an increase in the security requirement implies in significant reduction of

the worst-case load shedding, which drops under the given threshold at the expense

of having higher system operational and investment costs, as expected. Finally,

CPU times to achieve the solutions are shown in row 14.

In order to assess the reliability of the solutions provided by the proposed methodo-

logy, we performed an out-of-sample Monte Carlo simulation test. This test aims to

analyze the reliability and cost for the solutions obtained using different compound

security criteria. To do that, after running the model, we generated 10,000 scen-

arios assuming independently generated Bernoulli trials for each line and generator

state (1 for on-service and 0 for out-of-service state), with 0.1% and 1% probability

for the out-of-service states, respectively, according to [53]. Renewable generation

output scenarios are obtained by means of multivariate Gaussian random samples

with mean equal to the estimated values for the nominal outputs and covariance

matrix used in the uncertainty set definition. Therefore, it is worth mentioning that

this out-of-sample numerical testing is based on scenarios generated under higher

uncertainty than that used to construct the optimization problem.

Table 2.4 shows the load shedding level, or loss of load (LOL), for different solutions,

each of them obtained for different security criteria. The expected value (average

among all the 10,000 scenarios) and the conditional value at risk (CVaR) with 95%

confidence (average among the highest 500 scenarios) for the LOL are shown in rows

11 and 12 of Table 2.4.

In the K(0) case, where no security criterion is enforced and only renewable variabil-

ity is taken into account through U a,d,w
Σ,K (column 2 of Table 2.4), there is a significant

probability of observing a deep LOL. According to column 2, the probability of an

event in which a LOL of 5 to 10% of the overall system demand takes place exceeds

20%. Also for the K(0) case, although the expected LOL corresponds to 3.49%
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Table 2.4: Out-of-sample Monte Carlo Simulation Test for the Chilean Power System

Security Criteria K(0) K(0 → 1) K(0 → 2) K(0 → 3)

LOL Interval (% of demand) LOL Probability

=0% 11.77% 85.72% 93.72% 96.88%
(0-1]% 07.65% 02.94% 02.22% 00.87%
(1-2]% 15.99% 04.35% 01.92% 01.10%
(2-3]% 15.44% 02.94% 01.10% 00.60%
(3-4]% 13.84% 01.86% 00.56% 00.24%
(4-5]% 10.25% 01.12% 00.23% 00.19%

(5-10]% 21.81% 01.04% 00.25% 00.12%
>10% 03.25% 00.03% 00.00% 00.00%

Expected LOL (% of demand) 03.49% 0.34% 0.12% 0.06%
CVaR of the LOL (% of demand) 11.13% 4.20% 2.16% 1.23%

Expected Total Costs [K$] 410.01 268.82 269.19 272.46
CVaR of the Total Costs [K$] 746.52 442.48 361.11 330.38

of the demand, the 95%-CVaR reaches the amount of 11.13%. If the K(0 → 1)

security criterion (column 3 of Table 2.4) is chosen, the reliability of the system

significantly increases in comparison to K(0) criterion. For instance, the probability

of having zero LOL increases from 11.77% to 85.72% (row 1 of Table 2.4). However,

for the K(0 → 1) case, more than 6% of the scenarios still imply in LOL higher

than 2%. For the compound security criteria K(0 → 2) and K(0 → 3), the levels

of 95%-CVaR of LOL significantly decrease to 2.16% and 1.23% of the system de-

mand, respectively. Also, according to the fourth and fifth columns of Table 2.4,

the probability of experiencing scenarios in which the loss of load is higher than 2%

of the system demand falls to 2.14% and 1.15%, respectively.

The last two rows of Table 2.4 show the expected and 95%-CVaR of total (first

and second stage) costs for the four planning solutions associated with the security

levels under consideration. Observe that, as a result of the protection provided, the

more stringent security criteria, the lower the CVaR of the total costs (transmission

investments plus operation costs plus system power imbalance costs). It should

be noted that the expansion plan without any security criteria results in the most



36 Chapter 2. Reliable Renewable GTEP

Figure 2.3: Empirical CDF of renewable curtailment from Monte Carlo simulation

expensive aggregate cost due to its corresponding high load shedding and renewable

curtailment.

Figure 2.3 shows the cumulative distribution function of the renewable curtailment.

This curtailment is measured in terms of percentage of the total nominal RES gener-

ation capacity after investment. Although all optimal expansion plans reach 20.25%

of renewable penetration (see Table 2.3), there is significant renewable curtailment

depending on the assumed security level requirement. For instance, if no security

criterion is imposed, only less than 20% of the scenarios do not incur in renewable

curtailment. On the other hand, if K(0 → 3) security criterion is enforced, more

than 80% of the scenarios do not have renewable curtailment.

2.4.3 (118e+4c)-Bus System Case Study

In this case study, we apply the proposed methodology for a modified version of the

standard IEEE 118-bus test system. Here, we consider this system with 118 existing

buses, 4 candidates buses with potential renewable generation sources, and 53 can-

didate transmission lines. Such candidate sources, if connected to the system, can

contribute together to meet up to 24.81% of the system demand with their nominal
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output. Each of these potential renewable sites is considered to have a standard

deviation equivalent to 17% of its maximum generation output. In addition, the

correlation factors between the outputs of candidate buses 119 and 120 and between

the outputs of candidate buses 121 and 122 are set to 0.75. For the (n− 0), (n− 1),

and the (n− 2) security criteria, null load shedding is imposed, whereas, 3.5% of

load shedding is allowed in the worst case of triple contingencies. In this case study,

the target to meet at least 20% of demand by renewable generation is also imposed.

Full data for this case study can be accessed in [48].

Table 2.5: Results for the (118e+4c)-Bus System

Security Criteria K(0) K(0 → 1) K(0 → 2) K(0 → 3)

Total System Cost(103$) 18.93 21.72 36.86 37.50
Down Spinning Reserve(MW) 12.00 28.00 28.00 29.00
Up Spinning Reserve(MW) 28.00 301.02 245.28 275.29
Number of Lines Built 6 8 21 21

Time of resolution (s) 14.09 898.76 18,934.50 20,393.70

Table 2.5 summarizes the attained results for this system. Total (operation and

investments) system cost increases with the stringency of the security criterion.

The renewable generation expansion solution reaches the maximum level (24.81%)

available for all criteria. The level of down-spinning reserves grows with the safety

of the system. However, the required level of up-spinning reserves decreases from

the K(0 → 1) to the K(0 → 2) security criteria since there is a major investment

in the transmission network. This investment enables the procurement of cheaper

reserves to meet the security requirement. In addition, the deliverability of reserves

is improved, therefore eliminating the need for redundant amounts of reserves. This

optimal balance between reserves and transmission expansion is only possible due to

the explicit consideration of reserves into the RG-TEP problem. Time of resolution

is shown in the last row for all criteria.
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A Five-Level MILP Model for Flexible

Transmission Network Planning under

Uncertainty: A Min-Max Regret Approach

Transmission expansion plays a key role in integrating growing volumes of renew-

able energy sources (RES) and thus in decarbonizing power systems. Planning new

transmission assets to integrate RES, however, has become increasingly difficult due

to mid- and long-term uncertainties associated with the amount and location of de-

ployment of renewable generation [28,54,55]. Additionally, network design has to be

secured [44,56] which refers to the need to withstand outages of components through

an efficient portfolio of preventive and corrective actions. As a consequence, there

is growing interest in system models that can inform future transmission network

38
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planning in order to accommodate the forthcoming renewable generation (that is

uncertain) in an economically efficient and secured fashion. In this context, this

chapter proposes a novel optimization model for transmission expansion planning

(TEP) based on the concept of min-max regret [57] that considers uncertainties as-

sociated with future generation expansion while taking into account deterministic

security standards.

Recent works have addressed transmission expansion planning to comply with reli-

ability standards [56], [44]. In [56], a trilevel model to plan transmission investments

under uncertain demand and wind generation is proposed. In order to tackle the

problem of expanding transmission infrastructure while complying with determin-

istic n− K security criterion, [44] proposed a two-stage robust optimization model

to consider all possible generation and transmission contingencies in the transmis-

sion expansion planning framework. Despite the relevance of the aforementioned

works, they did not consider opportunities for investment in flexible alternating cur-

rent transmission system (FACTS) devices, which can improve the flexibility of the

transmission network to deal with uncertainty and also support delivery of system

security requirements at efficient cost.

In effect, the role of FACTS devices has received considerable attention in recent

literature [58–62]. In [58], the DC optimal power flow (DC-OPF) problem is formu-

lated as a non-linear model, which is then recast as a MILP, effectively representing

the role of FACTS in providing flexibility and hence reducing operating costs. In [59],

an approach for deciding day-ahead dispatch that considers FACTS devices to fa-

cilitate corrective actions is proposed. In [60], the authors provide an assessment

of the benefits of flexible DC and AC transmission assets when considering post-

contingency control of FACTS setpoints. On the transmission planning side, [61]

presents a MILP model to address the TEP problem considering series compens-

ation devices among the candidate transmission assets without imposing security
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criteria. In [62], a stochastic TEP model is proposed to assess the value of incorpor-

ating flexible assets to the grid. The importance of the aforementioned progresses

notwithstanding, determining optimal portfolios of conventional and flexible net-

work investments while optimizing pre- and post-fault operational measures (from

generation and network components) to efficiently and securely deal with long-term

uncertainties (volume and location of future generation) and system failures has not

yet been addressed.

Under a contingency state, besides deciding the set of post-contingency corrective ac-

tions, system operators must also ensure deliverability of scheduled reserves in order

to match supply and demand post-fault without overloading network infrastructure.

In some conditions, however, it may be difficult to guarantee deliverability of re-

serves while respecting Kirchhoff’s laws due to the presence of network loop flows

as shown in [63]. In this case, the flexibility provided by FACTS devices may play

a fundamental role, offering the necessary leeway to ensure supply-demand balance

while complying with network constraints following the occurrence of an outage of

any generation plant or transmission circuit. Thus, this chapter analyses the pos-

sibility of investing in phase-shifters alongside transmission lines to reinforce the

grid.

The value of the notion of regret as an approach to measure risk in decision mak-

ing under uncertainty has already been recognized in the classical academic lit-

erature [64, 65]. In the context of expansion planning models for power systems,

approaches based on the minimization of the maximum regret have been proposed

in the nineties [66] for generation expansion planning and recently for transmis-

sion expansion planning [55, 67]. In addition, in industry, the min-max regret has

also been already accepted as the most appropriate metric for transmission expan-

sion planning by the major player of the power sector in the UK, namely National

Grid [68, 69]. Despite the relevance of the aforementioned academic works, they do



41

not consider all the features that are simultaneously included in our proposed meth-

odology. These features are: (i) the determination of the transmission expansion

plan that minimizes the regret of the system planner under uncertainty in future

generation expansion; (ii) the inclusion of deterministic security criterion (n−K) to

better characterize the operational side while planning the transmission expansion;

(iii) the incorporation of flexible devices among the candidate transmission assets

to provide better controllability of the transmission grid; (iv) and the consideration

of the balance between scheduling spinning reserves and investing in transmission

assets. The simultaneous inclusion of all the aforementioned features in a single

methodology is a key factor that allows in the planning stage the consideration of

the value of investing in transmission assets that increase operational flexibility. The

benefit of considering these features in the transmission expansion problem notwith-

standing, it implies significant challenges mostly due to computational burden since

the number of constraints to represent them may render the problem intractable.

To circumvent these challenges, in this chapter, we propose a five-level formulation

for the TEP problem considering features (i) to (iv), which precisely reproduce the

decision process hierarchy faced by the decision maker, and a solution methodology

based on a decomposition scheme capable to provide near-optimal solutions with

moderate computational effort.

Regarding the min-max regret approach utilized by National Grid, it should be

noted that such approach is a heuristic process that cannot guarantee optimality. As

described in [69], National Grid considers only a few candidate transmission plans.

Each of these plans is obtained by selecting an individual scenario of generation

expansion and identifying the best transmission expansion plan for this particular

scenario under perfect information. Then, the regret of using the best solution of one

particular scenario is evaluated under the realization of the other scenarios. This

process is repeated for each candidate transmission plan (there is one candidate
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transmission plan per scenario under perfect information). The preferred option

is then chosen in [69] as the option that leads to the minimum maximum regret.

This approach may be narrow in scope since it may disregard investments that

have potential to minimize the maximum regret but do not appear in any of the

solutions under perfect information. The need for considering in the planning model

many operational details, which significantly affect the investment plan and therefore

need to be considered, imposes computational challenges that justify the use of a

heuristic process. However, this choice also imposes sub optimality. Hence, we

propose a methodology that more comprehensively minimizes the maximum regret

by considering all possible transmission plans (i.e. all possible combinations of

candidate transmission assets) to minimize the maximum regret in our proposed

optimization model while considering relevant details from the operational side that

affect the evaluation of the resulting operational cost.

The concept of minimizing the maximum regret in the TEP problem under uncer-

tainty in future generation capacity has already been addressed in [55], which also

provides a comprehensive comparison between min-max cost and min-max regret

approaches.

Likewise, the methodology proposed in the present work also considers the TEP

problem under uncertainty in future generation capacity. However, this chapter is

different to [55] in four remarkable aspects. Firstly, unlike [55], we consider industry

reliability practices and model deterministic n − 1 security criterion, i.e., the res-

ulting transmission plan effectively provides system operators with necessary set of

preventive and corrective actions to withstand any credible outage while planning

the system dispatch. Secondly, flexible network investment is considered through

phase-shifters that are included in the array of candidate transmission assets, and

this is critical to efficiently deal with contingencies and long-term uncertainty in

volume and location of RES. Thirdly, the scheduling of spinning reserves is taken
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into account so that the trade-off between operational measures (scheduling reserves)

and installing new transmission assets can be truly optimized. Finally, instead of

considering continuous intervals of future newly added capacity, our proposition ac-

counts for a set of discrete, credible expansion scenarios1. Regarding the discrete set

of generation expansion scenarios, it is worth mentioning that we do not claim that

this proposed approach to represent the uncertainty in generation expansion is more

(or less) appropriate than that proposed in [55]. Instead, we argue that our approach

constitutes an interesting alternative that is in line with current industry practices.

Moreover, it is important to highlight that the consideration of security criteria in

the min-max regret model implies significant changes in the modeling structure as

compared to [55], regardless of the scenarios considered for generation expansion.

Hence, the 5-level optimization model and the solution algorithm proposed in this

chapter are required to deal with the improvements carried out.

The remainder of the chapter is organized as follows. Section 3.1 specifies the no-

menclature associated with this chapter. Section 3.2 presents the 5-level framework

proposed; Section 3.3 shows the mathematical formulation; and Section 3.4 de-

scribes the proposed solution methodology. Finally, in Section 3.5, we present the

case studies.

3.1 Nomenclature
The mathematical symbols used throughout this chapter and its corresponding ap-

pendix are classified below as follows.

Sets

I Set of indexes of all generators, equal to
(

Ic ∪ Iw
)
.

1In the UK, for instance as explained in [69], National Grid represents uncertainty in future
energy capacity by means of four representative plausible scenarios. These scenarios are developed
after an extensive consultation of industry experts. In this chapter, we also use a discrete set of
scenarios following this industry practice. However, the generation of such scenarios is out of the
scope of this thesis. We aim to provide a methodology for which these scenarios are an input. The
scenarios used in this chapter are illustrative.
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Ib Set of indexes of generators connected to bus b.

Ic Set of indexes of conventional power plants.

Iw Set of indexes of potential new renewable generators.

L Set of indexes of all transmission lines, equal to
(
LC ∪ LF ∪ LPS).

LC Set of indexes of transmission lines that are candidate to be built.

LF Set of indexes of fixed existing transmission lines, i.e, existing lines that are not

candidate for placement of phase shifters.

LPS Set of indexes of existing transmission lines that are candidate for placement

of phase shifters.

N Set of indexes of buses.

Functions

I(·) Investment cost function.

MaxReg(·) Maximum regret function.

Parameters

ψ Capacity limit of phase shifters.

CCap
l Annual cost per MW of candidate line l.

CD
i Reserve-down cost of generator i.

C f ix
l Annual fixed cost of installation of candidate transmission asset l.

CI Cost of system power imbalance.
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CP
i Production cost of generator i.

CS Cost of wind spillage.

CU
i Reserve-up cost of generator i.

Dbt Demand at bus b, during snapshot t.

dt Number of hours of snapshot t.

Fl Power flow capacity of existing line l.

f
C
l Maximum power flow capacity of candidate line l.

f r(l) Sending or origin bus of line l.

Pi Capacity of generator i.

RD
i Reserve-down limit of generator i.

RU
i Reserve-up limit of generator i.

to(l) Receiving or destination bus of line l.

Wits Available capacity of renewable generator i at snapshot t in scenario s.

xl Reactance of line l.

Decision Variables

∆t System power imbalance at snapshot t under the worst-case contingency given a

transmission expansion plan, a generation expansion realization, and a schedul-

ing of power and reserves.

∆Dwc
t System power imbalance at snapshot t under the worst-case contingency

given a transmission expansion plan, a generation expansion realization, and

a scheduling of power and reserves.
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∆D+
bt Power surplus at bus b, at snapshot t.

∆D−bt Power deficit at bus b, at snapshot t.

θbt Phase angle at bus b, at snapshot t, in the pre-contingency state.

θwc
bt Phase angle at bus b, at snapshot t, under the worst-case contingency given a

transmission expansion plan, a generation expansion realization, and a schedul-

ing of power and reserves.

ψlt Phase-shifting angle in line l, at snapshot t, in the pre-contingency state.

ψwc
lt Phase-shifting angle in line l, at snapshot t, under the worst-case contingency

given a transmission expansion plan, a generation expansion realization, and

a scheduling of power and reserves.

aG
it Binary variable that is equal to 0 if generator i is unavailable at snapshot t

under the worst-case contingency, given a transmission expansion plan, a gen-

eration expansion realization, and a scheduling of power and reserves, being 1

otherwise.

aL
lt Binary variable that is equal to 0 if line l is unavailable at snapshot t under

the worst-case contingency, given a transmission expansion plan, a genera-

tion expansion realization, and a scheduling of power and reserves, being 1

otherwise.

flt Power flow of line l, at snapshot t, in the pre-contingency state.

f C
l Power flow capacity of candidate line l.

f wc
lt Power flow of line l, at snapshot t, under the worst-case contingency given a

transmission expansion plan, a generation expansion realization, and a schedul-

ing of power and reserves.
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pit Power output of generator i, at snapshot t, in the pre-contingency state.

pwc
it Power output of generator i, at snapshot t, under the worst-case contingency

given a transmission expansion plan, a generation expansion realization, and

a scheduling of power and reserves.

rd
it Down-spinning reserve provided by generator i, at snapshot t.

ru
it Up-spinning reserve provided by generator i, at snapshot t.

vl Binary variable that is equal to 1 if candidate transmission asset l is installed,

being 0 otherwise.

Dual Variables

βbt Dual variable associated with the power balance equation at bus b, at snapshot

t, under the worst-case contingency given a transmission expansion plan, a

generation expansion realization, and a scheduling of power and reserves.

γ+
it , γ−it Dual variables associated with the constraints imposing the lower and upper

bounds on pwc
it for generating unit i.

η+
it , η−it Dual variables associated with the constraints imposing the lower and upper

bounds on ψwc
lt for line l.

ξ+lts, ξ−lts Dual variables associated with the lower- and upper-bound constraints for

transmission in candidate line l, at snapshot t, in scenario s of generation

expansion.

π+
lt , π−lt Dual variables associated with the constraints imposing the lower and upper

bounds on f wc
lt for existing line l.
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ρ+lts, ρ−lts Dual variables associated with the lower- and upper-bound constraints re-

lating power flow and phase angles for candidate line l, at snapshot t, in

scenario s of generation expansion.

σ+
lt , σ−lt Dual variables associated with the lower- and upper-bound constraints re-

lating power flow and phase angles for candidate line l, at snapshot t, under

the worst-case contingency given a transmission expansion plan, a generation

expansion realization, and a scheduling of power and reserves.

ϕ+
lts, ϕ−lts Dual variables associated with the lower- and upper-bound constraints for

phase-shifting in candidate line l, at snapshot t, in scenario s of generation

expansion.

χ+
lt , χ−lt Dual variables associated with the constraints imposing the lower and upper

bounds on f wc
lt for candidate line l.

ωlt Dual variable associated with the equation relating power flow and phase angles

for existing line l, at snapshot t, under the worst-case contingency given a

transmission expansion plan, a generation expansion realization, and a schedul-

ing of power and reserves.

3.2 5-level framework

As discussed in [70], the time required to install new renewable generation can be

considerably shorter than that required to build new network infrastructure. As

a result, network planners may have to take transmission expansion decisions in

advance of generation investments (and therefore under uncertainty). In this con-

text, the proposed framework minimizes exposure to the two following conditions

that may lead to increased regret: (i) cost of stranded network assets in case that
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Figure 3.1: Framework diagram.

future generation is not fully deployed, and (ii) increased congestion and renewable

resource curtailment costs in case that new RES is deployed without the adequate

network investment. In order to minimize the exposure to these regrets, the pro-

posed framework explicitly considers the uncertainty associated with future genera-

tion expansion in terms of amount and location. Additionally, our framework plans

secured network infrastructure since it considers all credible (n − 1) outages and

contingencies of system components. Hence, we propose a methodology to minimize

the maximum regret in the TEP problem while securing network operation. In or-

der to do so, this methodology determines an optimal portfolio of conventional and

flexible network investments. The determination of this portfolio takes into account

the optimization of pre- and post-fault operational measures (from generation and

network assets, e.g. reserves and phase shifters). In this manner, we can efficiently

and securely deal with long term uncertainties (capacity and location of future gen-

eration) while meeting system security criteria. Flexible network investments are

modeled since they can support integration of RES by alleviating network congestion

pre- and post-fault and therefore reducing the need for new transmission lines.
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Fig. 3.1 illustrates the five-level structure of the proposed methodology. In the

first level, the min-max regret transmission plan is determined. In the second level,

generation expansion realizes. In the third level, the pre-contingency schedule of

power and reserves is determined considering the previously obtained transmission

plan and the realized generation expansion (from first and second level). In the

fourth level, any single outage or contingency realizes. Finally, in the fifth level the

post-contingency schedule is determined.

3.3 Mathematical Formulation

The methodology proposed in this chapter aims to determine the transmission ex-

pansion plan (comprising conventional and flexible transmission assets) under gen-

eration expansion uncertainty while imposing deterministic security criterion. This

objective is itself challenging since it involves the solution of a highly combinatorial

problem. Hence, the representation of this problem in a single level formulation

can become computationally intractable even for a system with a relatively small

number of nodes. Therefore we present in this section a model decomposed in five

levels in order to achieve our objectives with moderate computational effort.

The minimization of the maximum regret in the TEP problem under generation

expansion uncertainty can be written as:

Minimize(
v, f C

)
∈X

MaxReg
(
v, f C) (3.1)

subject to:

MaxReg
(
v, f C) = max

s∈Ω

{
I(v, f C)

+ ∑
t∈T

dt

[
min

(p,r)∈P
(

v, f C,gts

) {cop(p, r)
}]
− c∗s

}
, (3.2)
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where

X =

 v ∈ {0, 1}|LPS∪LC|,

f C ∈ R|L
C|

∣∣∣∣∣∣∣
0 ≤ f C

l ≤ f
C
l vl;

∀l ∈ LC

∣∣∣∣∣∣∣
 .

In (3.1)–(3.2), the objective function to be minimized (3.1) is the maximum regret

among all scenarios of future generation capacity. In our case, each scenario cor-

responds to a potential generation expansion plan, represented by vector gts, which

captures the possible evolution pathways of RES capacity in the future. The total

cost of each scenario represents the sum of investment and operation costs across

all the operating conditions (or snapshots) that belong to set T, where duration of

each snapshot dt is specified (i.e. number of hours). The investment cost is given

by I(v, f C), where v is a vector of binary investment decision variables associated

with new lines and phase shifters, and vector f C comprises the continuous decision

variables associated with the capacity of new transmission lines. Similarly to [71]

and [72], we represent the capacities of candidate lines as continuous decision vari-

ables. Nevertheless, it should be emphasized that, with very slight modification in

the input data, our proposed methodology can also replicate the binary approach

undertaken for transmission investment as in [23,28,44,55,56], and [24], to mention

a few. More specifically, in X , the user can limit the value of each of these continu-

ous decision variables related to capacity through adequate upper and lower capacity

bounds which will be multiplied by the binary decision variable associated with line

investment. In this manner, if the binary variable associated with a candidate line

investment results equal to one (i.e., if the line is built), the capacity of this line will

be equal to the bounded predefined value set in X , following exactly the binary

approach undertaken in [23,28,44,55,56], and [24]. Hence, by choosing appropriate

values of lower and upper bounds for line capacity, the user is able to decide whether

newly built lines can have a single, fixed specific predefined capacity value or one
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that can be optimized within a range as a continuous decision variable. Sets LPS

and LC refer to indexes of existing lines that are candidates for placement of phase

shifters and new transmission lines, respectively. The operation cost, cop(p, r), is

a function of the vectors p and r, which represent the power and spinning reserves

scheduled, respectively across all possible operating points P
(
v, f C, gts

)
. The re-

gret of a scenario is defined as the difference between (i) the cost (investment and

operation) incurred in the decision obtained under uncertainty and (ii) the cost of

the decision obtained under that particular scenario when assuming perfect inform-

ation (i.e. full certainty about evolution of future generation capacity), given by

c∗s . Note that the n − 1 security criterion is enforced for both cases, namely un-

certain future and perfect information. Hence, the maximum regret is the largest

regret value among all considered scenarios, as defined in (3.2). It is important to

highlight that the scenario that would lead to the maximum regret is not defined a

priori, being decision-dependent and thus a result of the optimization.

Expression (3.2) can be rewritten as:

MaxReg
(
v, f C) = max

s∈Ω

{
I(v, f C) + ∑

t∈T
dtCO

ts − c∗s

}
, (3.3)

where

CO
ts = min

(p,r)∈P
(

v, f C,gts

) {cop(p, r)
}

.

As in [17], the inner problem shown in (3.3) that schedules generation power outputs

and reserves can be written as:

CO
ts = Minimize

∆Dwc
t ,θbt,ψlt, flt,
pit,rd

it,r
u
it

∑
i∈Iw

CS(Wits − pit) + ∑
i∈Ic

CP
i pit + ∑

i∈Ic

CU
i ru

it + ∑
i∈Ic

CD
i rd

it

+ CI∆Dwc
t (3.4)
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subject to:

∑
i∈Ib

pit + ∑
l∈L|to(l)=b

flt − ∑
l∈L| f r(l)=b

flt = Dbt; ∀b ∈ N (3.5)

flt =
1
xl

(
θ f r(l),t − θto(l),t

)
; ∀l ∈ LF (3.6)

flt =
1
xl

(
θ f r(l),t − θto(l),t + ψlt

)
; ∀l ∈ LPS (3.7)

−Ml
(
1− vl

)
≤ flt −

1
xl

(
θ f r(l),t − θto(l),t

)
≤ Ml

(
1− vl

)
: (ρ+lts, ρ−lts);

∀l ∈ LC (3.8)

− vlψ ≤ ψlt ≤ vlψ : (φ+
lts, φ−lts); ∀l ∈ LPS (3.9)

− Fl ≤ flt ≤ Fl; ∀l ∈
(
LF ∪ LPS) (3.10)

− f C
l ≤ flt ≤ f C

l : (ξ+lts, ξ−lts); ∀l ∈ LC (3.11)

0 ≤ pit ≤ Pi; ∀i ∈ Ic (3.12)

0 ≤ pit ≤W its; ∀i ∈ Iw (3.13)

pit + ru
it ≤ Pi; ∀i ∈ Ic (3.14)

pit − rd
it ≥ 0; ∀i ∈ Ic (3.15)

ru
it ≤ RU

i ; ∀i ∈ Ic (3.16)

rd
it ≤ RD

i ; ∀i ∈ Ic (3.17)

ru
it = 0; ∀i ∈ Iw (3.18)

rd
it ≤ pit; ∀i ∈ Iw (3.19)

∆Dwc
t = max

∆t,aG
it ,aL

lt

{
∆t (3.20)

subject to:

f
(
{aG

it}i∈I , {a
L
lt}l∈L

)
≥ 0 (3.21)

aG
it ∈ {0, 1}; ∀i ∈ I (3.22)

aL
lt ∈ {0, 1}; ∀l ∈ L (3.23)
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∆t = min
∆D+

bt,∆D−bt,
θwc

bt ,ψwc
lt , f wc

lt ,pwc
it

[
∑

b∈N

(
∆D+

bt + ∆D−bt

)
(3.24)

subject to:

∑
i∈Ib

pwc
it + ∑

l∈L|to(l)=b
f wc
lt − ∑

l∈L| f r(l)=b
f wc
lt − ∆D+

bt + ∆D−bt = Dbt :

(
βbt

)
; ∀b ∈ N (3.25)

f wc
lt =

aL
lt

xl

(
θwc

f r(l),t − θwc
to(l),t

)
:
(
ωlt

)
; ∀l ∈ LF (3.26)

f wc
lt =

aL
lt

xl

(
θwc

f r(l),t − θwc
to(l),t + ψwc

lt
)

:
(
ωlt

)
; ∀l ∈ LPS (3.27)

−Ml
(
1− vlaL

lt
)
≤ f wc

lt −
1
xl

(
θwc

f r(l),t − θwc
to(l),t

)
≤ Ml

(
1− vlaL

lt
)

:(
σ+

lt , σ−lt
)
; ∀l ∈ LC (3.28)

− Fl ≤ f wc
lt ≤ Fl :

(
π+

lt , π−lt
)
; ∀l ∈

(
LF ∪ LPS) (3.29)

− aL
lt f C

l ≤ f wc
lt ≤ aL

lt f C
l :

(
χ+

lt , χ−lt
)
; ∀l ∈ LC (3.30)

aG
it
(

pit − rd
it
)
≤ pwc

it ≤ aG
it (pit + ru

it
)
:
(
γ+

it , γ−it
)
; ∀i ∈ I (3.31)

− vlψ ≤ ψwc
lt ≤ vlψ : (η+

lt , η−lt ); ∀l ∈ LPS (3.32)

∆D+
bt, ∆D−bt ≥ 0; ∀b ∈ N

]}
. (3.33)

Formulation (3.4)–(3.33) is a tri-level model, where the upper-level (3.4)–(3.19) refers

to the pre-contingency generation dispatch of power and reserves. The decision vari-

ables of the upper-level are voltage angles, θbt, phase-shifting angles, ψlt, power flows,

flt, power outputs, pit, up- and down-spinning reserves, ru
it and rd

it, as well as the sys-

tem power imbalance, ∆Dwc
t . Coefficients CS, CP

i , CU
i , CD

i , and CI represent cost of

wind spillage, generation, up- and down-spinning reserves, and system power imbal-

ance (which is penalized by a large number to avoid infeasible solutions), respectively.

Parameters Dbt, Ml, xl, ψ, Fl, Pi, RU
i , and RD

i correspond to demand, sufficiently

large constants (associated with the disjunctive approach, also used in [55] and [61]),
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reactances of lines, and capacity limits of phase shifters, transmission, generation

and reserves, respectively, while W its represents the available capacity of renew-

able generator i at snapshot t in scenario s. Note that gts = [PT|RUT |RDT |W T
ts]

T.

Sets I, Iw, Ic, Ib, N, L, and LFinclude (in this order) all generating units, renew-

able generators, conventional power plants, generators attached to bus b, buses, all

transmission lines, and existing transmission lines that cannot accommodate a new

phase shifter. Dual variables ρ+lts, ρ−lts, φ+
lts, φ−lts, ξ+lts, and ξ−lts reflect the impact

of the transmission plan on operating cost. The middle-level (3.20)–(3.23) is asso-

ciated with the identification of the worst-case contingency state for the schedule

determined in the pre-contingency state, and thus decision variables of the middle-

level are the availability of generators, aG
it , and lines, aL

lt as well as the auxiliary

variable ∆t, which is an output of the lower-level problem. Finally, the lower-level

(3.24)–(3.33) represents the system redispatch actions (or corrective actions) to deal

with the worst-case contingency state, and thus decision variables of the lower-level

are θwc
bt , ψwc

lt , f wc
lt , and pwc

it that represent post-contingency control of generation

and network assets. ∆D+
bt and ∆D−bt are the nodal power violations. Note that dual

variables are written within parenthesis after colons.

The objective function (3.4) of the upper-level formulation includes costs of wind

spillage, generation, up- and down-spinning reserves as well as the system power

imbalance cost. Constraints (3.5) refer to the nodal power balance. In a DC load

flow fashion, constraints (3.6), (3.7), and (3.8) represent power transfers through

existing lines, existing lines that are candidate to have a phase-shifter installed, and

candidate lines to be built, respectively. Constraints (3.9) limit the control actions of

phase-shifters. Constraints (3.10) and (3.11) limit power transfers through existing

and candidate lines, respectively. Similarly, capacities associated with generating

units are enforced by (3.12) on existing units and by (3.13) on coming units under

a given generation expansion scenario s. Limits to up- and down-spinning reserves
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are modeled by constraints (3.14)–(3.19).

The middle-level problem (3.20)–(3.23) finds the maximum system power imbalance

associated with the pre-contingency schedule obtained by the upper-level. This

identification is undertaken by optimizing vectors aG
t and aL

t , whose components

indicate the availability of each element, e.g., aG
it represents the availability of the

generating unit i, i.e., it assumes a value equal to 1 if generator i is available and 0

otherwise. Likewise, aL
lt is related to the availability of transmission line l. Constraint

(3.21) ensures the prescribed levels of security, which can be written as ∑i∈I aG
it +

∑l∈L aL
lt ≥ |I| + |L| − 1 for the n − 1 criterion. Constraints (3.22) and (3.23)

describe the binary nature of vectors aG
t and aL

t .

The lower-level problem (3.24)–(3.33) describes the system response against the

worst-case contingency identified by the middle-level. The objective function (3.24)

represents the system power imbalance, which corresponds to the summation of

nodal power violations (in absolute value), ∆D+
bt (generation curtailment) and ∆D−bt

(demand curtailment), across all buses. Expressions (3.25)–(3.30) represent post-

contingency network constraints. Constraints (3.31) impose the limits to generation

redispatch actions according to the levels of power and reserves scheduled by the

upper-level. Constraints (3.32) limit phase-shifting actions. Finally, constraints

(3.33) ensure that ∆D+
bt and ∆D−bt are positive.

In summary, the model presented in this Section is a 5-level optimization problem.

The first level optimizes variables vl and f C
l , which are related to the transmission

expansion plan. The second level identifies the generation expansion scenario (rep-

resented by W its) that leads to the maximum regret given the decided transmission

plan. Once first and second level decisions are taken, vl, f C
l , and Wits arrive as

parameters for the trilevel model composed by third, fourth, and fifth levels. The

purpose of this trilevel model is to assess the minimum operation cost of the system
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under a predefined deterministic security criterion given a transmission expansion

(represented by vl and f C
l ) and a generation expansion (represented by Wits). To

do so, a system dispatch (represented by θbt, ψlt, flt, pit, rd
it, and ru

it) is decided in

the third level so that any contingency (represented by aG
it and aL

lt) contained in the

feasible region of the fourth level can be circumvented in the redispatch (represented

by θwc
bt , ψwc

lt , f wc
lt , and pwc

it ) of the fifth level.

3.4 Solution Methodology

The formulation shown through (3.1) and (3.3) corresponds to a MILP with five

levels, where the first-level problem determines the transmission expansion plan,

the second level problem identifies the scenario associated with the maximum regret,

and the inner tri-level optimization model determines the system operation and its

corresponding costs under each scenario of future installed generation capacity. In

this section, we propose a procedure that iteratively identifies (for each snapshot

of each scenario of generation expansion) the umbrella set of contingencies [73] and

recasts the inner tri-level formulation (that determines system operation in each

snapshot) to a linear program which is convex with respect to the main first-level

decision. Due to the aforementioned convexity property, the operation cost can

be approximated via cutting planes in a Benders-type outer algorithm. Next, we

present in detail the proposed solution methodology.

3.4.1 Obtaining Operation Costs

Once a transmission expansion plan (defined by the vectors v(j) and f C(j)) is pro-

posed in iteration j of the outer algorithm, power and reserves in each period t ∈ T

and s ∈ Ω are scheduled in order to obtain CO(j)
ts , ∀t ∈ T, s ∈ Ω, i.e., the trilevel



58 Chapter 3. A Five-Level MILP Model for TEP

formulation (3.4)–(3.33) must be solved for all snapshots and scenarios. Hence we

propose to solve the problem (3.4)–(3.33) through the solution methodology presen-

ted in [17], which presents the two following steps. Firstly, we develop a MILP

associated with the middle- and lower-level operation models, hereinafter referred

to as the oracle, to identify the worst-case contingency for a given set of power

outputs and reserves scheduled. To do so, we replace the middle-level objective

function by the dual representation of the lower-level objective function subject to

the middle-level constraints and dual representation of the lower-level constraints,

while linearizing some bilinear products. The formulation of the oracle is provided

in the Appendix C. Secondly, we formulate the following operation master problem.

CO(j)
ts = Minimize

αt,∆Dc+
bt ,∆Dc−

bt ,
θbt,θc

bt,ψlt,ψc
lt,

flt, f c
lt,pit,pc

it,r
d
it,r

u
it

∑
i∈Iw

CS(W its − pit) + ∑
i∈Ic

CP
i pit + ∑

i∈Ic

CU
i ru

it

+ ∑
i∈Ic

CD
i rd

it + CIαt (3.34)

subject to:

Constraints (3.5)–(3.19) (3.35)

∑
i∈Ib

pc
it + ∑

l∈L|to(l)=b
f c
lt − ∑

l∈L| f r(l)=b
f c
lt − ∆Dc+

bt + ∆Dc−
bt = Dbt; ∀b ∈ N,

c ∈ C (j) (3.36)

f c
lt =

aL(c)
lt
xl

(
θc

f r(l),t − θc
to(l),t

)
; ∀l ∈ LF, c ∈ C (j) (3.37)

f c
lt =

aL(c)
lt
xl

(
θc

f r(l),t − θc
to(l),t + ψc

lt
)
; ∀l ∈ LPS, c ∈ C (j) (3.38)

−Ml
(
1− v(j)

l

)
≤ f c

lt −
aL(c)

lt
xl

(
θc

f r(l),t − θc
to(l),t

)
≤ Ml

(
1− v(j)

l

)
:(

ρ
c+(j)
lts , ρ

c−(j)
lts

)
; ∀l ∈ LC, c ∈ C (j) (3.39)

− Fl ≤ f c
lt ≤ Fl; ∀l ∈

(
LF ∪ LPS), c ∈ C (j) (3.40)

− f C(j)
l ≤ f c

lt ≤ f C(j)
l :

(
ξ

c+(j)
lts , ξ

c−(j)
lts

)
; ∀l ∈ LC, c ∈ C (j) (3.41)
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aG(c)
it

(
pit − rd

it
)
≤ pc

it ≤ aG(c)
it (pit + ru

it
)
; ∀i ∈ I, c ∈ C (j) (3.42)

− v(j)
l ψ ≤ ψc

lt ≤ v(j)
l ψ : (φ

c+(j)
lts , φ

c−(j)
lts ); ∀l ∈ LPS, c ∈ C (j) (3.43)

αt ≥ ∑
b∈N

[
∆Dc+

bt + ∆Dc−
bt

]
; c ∈ C (j) (3.44)

∆Dc+
bt , ∆Dc−

bt ≥ 0; ∀b ∈ N, c ∈ C (j). (3.45)

The formulation (3.34)–(3.45) is a relaxation of (3.4)–(3.33) since it only comprises

a subset of the contingency set associated with the security criterion imposed in

(3.21). Nevertheless, (3.34)–(3.45) and (3.4)–(3.33) provide equivalent results of

operation cost as well as power and reserves schedule when C (j) includes the umbrella

contingency set, which is the set with the smallest number of contingencies capable

to preserve the feasible region.

Figure 3.2: Procedure to obtain operation cost for each snapshot.

As depicted in Fig. 3.2, in the first iteration of the algorithm to obtain the oper-

ation cost, we solve model (3.34)–(3.35) since the set of contingencies C (j) begins

empty. Once the worst-contingency for the proposed schedule of power and reserves

is identified, a convergence test is performed. If convergence is not achieved, the
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contingency c identified is included in C (j). Therefore, in the next iteration of the

algorithm to obtain the operation cost, new variables ∆Dc+
bt , ∆Dc−

bt , θc
bt, ψc

lt, f c
lt,

and pc
it are included. The inclusion of these new variables generates new columns

in (3.34)–(3.45). In addition, in order to describe the feasible region for the newly

added variables, a new block of expressions (3.36)–(3.45) is included and this inclu-

sion generates new constraints. The model (3.34)–(3.45) is then solved again and

new contingencies c are iteratively included in set C (j) (therefore new columns and

constraints are included) until convergence is achieved. While no formal convergence

analysis is provided to investigate circumstances that may incur in slow execution

of the proposed algorithm, convergence in test cases is always achieved.

Within this context, the solution algorithm associated with the operation model is

the following:

(i) Solve the optimization model (3.34)–(3.45) with C (j) = ∅, store pt as well as

rt, and calculate LBOp = ∑i∈Iw CS(Wits − pit) + ∑i∈Ic CP
i pit + ∑i∈Ic CU

i ru
it +

∑i∈Ic CD
i rd

it.

(ii) Identify the worst case contingency for stored pt and rt by running the or-

acle and calculate UBOp = ∑i∈Iw CS(W its− pit) + ∑i∈Ic CP
i pit + ∑i∈Ic CU

i ru
it +

∑i∈Ic CD
i rd

it + CI∆Dwc
t , where ∆Dwc

t is the worst case system power imbalance

determined by the oracle.

(iii) If
(
UBOp − LBOp)/UBOp ≤ ϵOp, then STOP and return CO

ts ; else, CON-

TINUE.

(iv) Include the worst-case contingency identified by the oracle in C (j) (this gen-

erates new columns and constraints in the master problem).

(v) Solve the optimization model (3.34)–(3.45), store pt as well as rt, calculate

LBOp = ∑i∈Iw CS(Wits− pit)+∑i∈Ic CP
i pit +∑i∈Ic CU

i ru
it +∑i∈Ic CD

i rd
it +CIαt,
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and go to step 2.

3.4.2 Obtaining Transmission Expansion Plan

The formulation (3.34)–(3.45) is a linear program where the right hand side is para-

meterized through vectors f C(j) and v(j), and therefore the operation cost CO(j)
ts is a

convex function of the transmission expansion plan which and can be approximated

via cutting planes at each iteration j. Hence we propose a Benders-type solution

algorithm that iteratively calculates lower and upper bounds for the minimum max-

imum regret and finitely converges to the optimal solution.

A lower bound can be calculated for the minimum maximum regret at iteration j

by solving the following model:

LBReg(j) = Minimize
δts,

(
v, f C

)
∈X ,MaxRegret

MaxRegret (3.46)

subject to:

MaxRegret ≥ I(v, f C) + ∑
t∈T

dtδts − c∗s ; ∀s ∈ Ω (3.47)

δts ≥ CO(m)
ts + ∑

l∈LC

(vl − v(m)
l )Ml

[
ρ
+(m)
lts + ρ

−(m)
lts + ∑

c∈C (m)

(
ρ

c+(m)
lts + ρ

c−(m)
lts

)]
+ ∑

l∈LPS

(vl − v(m)
l )ψ

[
−φ

+(m)
lts − φ

−(m)
lts − ∑

c∈C (m)

(
φ

c+(m)
lts + φ

c−(m)
lts

)]
+ ∑

l∈LC

( f C
l − f C(m)

l )

[
−ξ

+(m)
lts − ξ

−(m)
lts − ∑

c∈C (m)

(
ξ

c+(m)
lts + ξ

c−(m)
lts

)]
;

∀t ∈ T, s ∈ Ω, m = 1, . . . , j− 1 (3.48)

δts ≥ 0; ∀t ∈ T, s ∈ Ω, (3.49)

where the objective function (3.46) is identical to (3.1), constraints (3.47) correspond

to (3.3) where δts is the approximation of the operation costs per snapshot and

scenario via cutting planes shown in (3.48) in terms of the dual variables obtained
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from (3.34)–(3.45). Finally, constraints (3.49) ensure that δts is non-negative. On

the other hand, an upper bound to the minimum maximum regret can be obtained

as follows:

UBReg(j) = max
s∈Ω

{
I(v(j), f C(j)) + ∑

t∈T
dtC

O(j)
ts − c∗s

}
. (3.50)

Figure 3.3: Solution algorithm to determine the optimal transmission plan.

The steps of the proposed solution algorithm, as depicted in Fig. 3.3, can be sum-

marized as follows:

(i) Initialization: Set the iteration counter: j← 0.

(ii) Solve the optimization model defined by (3.46), (3.47), and (3.49), store v(j),

f C(j), and LBReg(j).

(iii) Obtain CO(j)
ts ∀t ∈ T, s ∈ Ω by running the procedure described in Section

3.4.1. Calculate UBReg(j) through (3.50) and store it.
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(iv) If
(
UBReg(j) − LBReg(j))/UBReg(j) ≤ ϵReg, then STOP and return the trans-

mission plan; else, CONTINUE.

(v) Update the iteration counter: j← j + 1.

(vi) Solve the optimization model defined by (3.46)–(3.49), store v(j), f C(j), and

LBReg(j). Go to step 3.

It should be emphasized that not only the so-called worst contingency is comprised

but all credible contingencies (in the case of n− 1 security, all single outages) are

taken into account. As illustrated in Fig. 3.3, once a transmission plan is proposed

by the master problem, the operation cost under each scenario of generation ex-

pansion is evaluated in order to compute the upper-bound for the maximum regret.

This operation cost, as customary in power systems operation, comprises the cost

to provide security of supply under contingencies of system elements. In order to

efficiently comprise these contingencies, instead of explicitly and exhaustively rep-

resenting all of them by means of constraints in the operation problem, we just

represent a subset of contingencies that includes the umbrella set of contingencies

(which is the set of contingencies that needs to have null imbalance imposed so that

all the other considered contingencies will also lead to null imbalance). This subset

of contingencies is built by identifying the worst case contingency for each proposed

power and reserves dispatch at each iteration of the algorithm that minimizes the

operation cost (see Fig. 3.2). Clearly, each dispatch may have a different worst-case

contingency. Within this framework, since the goal at this point is to identify the

least expensive dispatch and system power imbalance is highly penalized, the sys-

tem power imbalance will be minimized as much as possible. If it is not possible

to avoid system power imbalance for a particular scenario, the operation cost of

such scenario will be very high as well as its corresponding regret. Therefore, in

the next iteration of the algorithm that determines the expansion plan, given the
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additional dual information, the master problem will naturally select a transmission

plan that provides the system with necessary leeway to circumvent the system power

imbalance recognized in the previous iteration. Finally deliverability of reserves is

guaranteed since post-contingency constraints are imposed in the fifth level of the

formulation.

3.5 Case Studies

In this section, the key objectives of the studies carried out are: (i) validate the

model, (ii) analyze the results and the main features of transmission plans against

various sources of uncertainty, and finally (iii) examine the computational perform-

ance and scalability of the proposed solution algorithm. In order to achieve this,

we use a tailor-made 6-bus system and the standard IEEE 118-bus system whose

data can be found in [74]. In the presented case studies, we use a linear investment

cost function of the form I(v, f C) = ∑l∈
(
LC∪LPS

) C f ix
l vl + ∑l∈LC CCap

l f C
l , where

C f ix
l and CCap

l are annual fixed investment cost to install a candidate transmission

asset l and annual investment cost of transmission capacity of a candidate trans-

mission line l, respectively. The proposed methodology has been implemented in a

computer with two Intel R⃝ Xeon R⃝ E5–2697 v2 processors (2.7 GHz) and 512 GB of

RAM, using Xpress-MP 7.8 [47].

3.5.1 6-Bus System

As shown in Fig. 3.4, this system is composed of four existing buses and two poten-

tial new buses where wind generation might be connected in the future. In addition,

there are three existing lines and six candidate lines. We also consider two candidate

phase shifters (in lines L2 and L3) that can be installed to provide flexibility to net-
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work investment options and thus deal with uncertainty from generation expansion

and outages more efficiently.

There are four scenarios (S1, S2, S3, and S4) under consideration to represent un-

certainty in future wind generation capacity. In S1, no generator is built/realized.

In S2, generator G5 is built. In S3, generator G6 is built. Finally, in S4, generation

expansion includes realization of both G5 and G6. Each scenario consists of three

snapshots (each of 2920 hours) which represent combinations of demand and wind

power outputs that may occur during a year.

In order to analyze the effects of security of supply, we obtain transmission expan-

sion plans with and without n − 1 security criterion. We also study the savings

achieved when phase-shifters are applied. In addition, we compare the min-max re-

gret solution against plans that assume perfect information about future generation

installed capacity. For this case study, we have set convergence tolerance paramet-

ers ϵOp and ϵReg equal to 10−3. The branch and bound relative gap to solve MILP

problems at each iteration was set equal to 10−4. For the case without security

Figure 3.4: Generation, network, and demand data of 6-Bus system, where con-
tinuous lines refer to existing infrastructure and dashed lines refer to candidate in-
frastructure. Normal brackets refer to generation and network capacities and peak
demand conditions, while square brackets refer to reactances.
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Figure 3.5: Solution under perfect information for scenario 1 with and without n− 1
security criterion.

Figure 3.6: Solution under perfect information for scenario 2 with and without n− 1
security criterion.

Figure 3.7: Solution under perfect information for scenario 3 with and without n− 1
security criterion.
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Figure 3.8: Solution under perfect information for scenario 4 with and without n− 1
security criterion.

Figure 3.9: Min-max regret solution under generation expansion uncertainty with
and without n− 1 security criterion.

criterion, 12 iterations of the algorithm (illustrated in Fig. 3.3) were required. In

each iteration (except the last one when convergence is achieved) the number of

cutting planes added to the transmission investment master problem is equal to the

number of snapshots multiplied by the number of scenarios. Therefore, 132 cutting

planes were included in the block of constraints (3.48) in this case. For the case

with n− 1 security criterion and with candidate phase-shifters, 21 iterations were

needed. Consequently, 240 cutting planes were added to the master in this case. Fi-

nally, for the case with n− 1 security criterion and without candidate phase-shifters,

26 iterations were required, resulting in the inclusion of 300 cutting planes.
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Table 3.2: 6-Bus System – New infrastructure of alternative expansion plans. De-
cisions under perfect information (S1,S2,S3,S4) and under uncertainty (MMR).

Assumption Case Decision
S1 L4(48MW)

n − 0 S2 L7(30MW)
with S3 L8(20MW), L9(40MW)

candidate PS S4 L7(30MW), L9(20MW)
MMR L6(35MW), L7(43MW), L9(15MW)
S1 L3(PS), L4(42MW), L5(90MW)
S2 L3(PS), L4(32MW), L5(70MW), L7(30MW)

n − 1 S3 L4(50MW), L5(62MW), L9(20MW)
with S4 L4(41MW), L5(41MW), L7(30MW),

candidate PS L9(20MW)

MMR L2(PS), L3(PS), L6(96MW), L7(96MW),
L8(36MW), L9(36MW)

S1 L4(48MW), L5(61MW), L8(24MW),
L9(24MW)

S2 L5(51MW), L6(13MW), L7(40MW),
n − 1 L8(40MW), L9(40MW)

without S3 L4(50MW), L5(62MW), L9(20MW)
candidate PS S4 L4(41MW), L5(41MW), L7(30MW),

L9(20MW)

MMR L4(47MW), L5(59MW), L6(17MW),
L8(24MW), L9(24MW)

3.5.2 Solutions under perfect information and MMR solution

Table 3.1 presents the cost associated with the solution under perfect information

for each scenario. In addition, also for each scenario, this table displays the regret

associated with the min-max regret (MMR) solution, which is obtained when facing

uncertainty in the forthcoming generation expansion. Moreover, Table 3.2 provides

the details of expansion plans obtained (i) without security criterion, (ii) with n− 1

security criterion and no candidate phase-shifters, and (iii) with both n− 1 criterion

and candidate phase-shifters.

Figs. 3.5, 3.6, 3.7, and 3.8 illustrate expansion plans under perfect information

with and without security criterion for scenarios S1, S2, S3, and S4, respectively,

whereas Fig.3.9 depicts the expansion plans also with and without security criterion
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obtained under generation expansion uncertainty via the proposed min-max regret

approach. We can observe that, when the security requirement is imposed, more

transmission assets are built. In addition, note that, when the n− 1 security cri-

terion is imposed, expansion plans are more prone to install phase-shifters (see L3

in S1 and S2) and this is exacerbated in the min-max regret solution under un-

certainty when two phase-shifters are installed (see Fig.3.9). This demonstrates

that increased levels of flexibility are needed to deal with high levels of uncertainty.

Furthermore, holding levels of spinning reserves needed to deal with security provi-

sion against single outages is reduced in the case where phase-shifters are installed.

On the contrary, preventing installation of flexible devices drives more transmission

redundancy for the provision of security, increasing investment costs. Therefore,

overall costs (investment plus operation) and regrets can be reduced by allowing in-

vestments in phase-shifters that can efficiently provide flexibility to deal with short-

and long-term uncertainties.

3.5.3 Role played by the phase shifter under perfect inform-

ation of generation expansion

In order to understand the importance of the role played by the phase-shifter in-

stalled in line L3 in scenario S1 under perfect information of future generation ex-

pansion, we provide a comparison between the operation costs under n− 1 security

criterion with and without the phase-shifter in L3 while supposing that scenario S1

has realized. Table 3.3 displays power and spinning reserves scheduling with and

without the phase shifter to comply with the n− 1 security criterion, whereas Table

3.4 reports the optimal system redispatch under eventual failures in generators G1

and G2 and line L1. Figs. 3.10, 3.11, 3.12, and 3.13 present the power flow with

and without the phase for the pre-contingency scheduling, redispatch under outage
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of generator G1, redispatch under outage of generator G2, and redispatch under

outage of transmission line L1, respectively.

Table 3.3: Scheduling with and without PS1 under realization of S1

Generator
Without PS1 With PS1

p(MW) ru(MW) rd(MW) p(MW) ru(MW) rd(MW)
G1 100 048 0 100 082 0
G2 048 100 0 082 100 0
G3 030 000 0 000 000 0
G4 004 000 0 000 000 0

Table 3.4: Redispatch (in MW) under the considered outages of G1, G2, and L1
with and without PS1

Without PS1 With PS1

Generator Outage Outage Outage Outage Outage Outage
of G1 of G2 of L1 of G1 of G2 of L1

G1 Out 148 100 Out 182 100
G2 148 Out 048 182 Out 082
G3 030 030 030 000 000 000
G4 004 004 004 000 000 000

Figure 3.10: Power flow with and without PS1 under the realization of S1 considering
n− 1 security criterion.

As can be seen in Table 3.3, without the installation of the phase shifter, generators

G3 and G4, which are the most expensive units, are required to provide power to

supply demand while complying with the n − 1 security criterion. The need to

schedule power from all generators instead of only requiring two units to generate is
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Figure 3.11: Power flow with and without PS1 under the realization of S1 considering
a failure in G1.

Figure 3.12: Power flow with and without PS1 under the realization of S1 considering
a failure in G2.

Figure 3.13: Power flow with and without PS1 under the realization of S1 considering
a failure in L1.
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significantly reflected in the operation costs. While the cost to operate the system

with the phase shifter installed is equal to $2396.00, the operation cost without the

phase shifter is equal to $5218.00, which represents 118% of increase.

The reason behind the savings in operation costs achieved in consequence of the in-

stallation of the phase shifter relies on the flexibility in terms of power flow provided

by such device. As shown in Fig. 3.10, the installation of the phase shifter in L3

allows a significant increase from 36% to 49% in the overall utilization of the trans-

mission network in the pre-contingency schedule. In some lines, namely L1, L3, and

L4, the power flow rose by at least 25% in terms of the capacity of each line. The

same pattern can be identified when outages of generators G1 and G2 and of line L1

arise. As depicted in Figs. 3.11 and 3.12, the power flow keeps the same if a failure

occurs in either generator G1 or G2. Nevertheless, if line L1 becomes out of service,

as illustrated in Fig. 3.13, the power flow is rearranged both with and without the

phase shifter to keep supply-demand balance. As in the pre-contingency case, under

contingency states, the installed phase shifter plays a fundamental role in ensuring

deliverability for the power generated by units G1 and G2, therefore preventing the

undesirable use of the most expensive generators G3 and G4.

3.5.4 Role played by the phase shifter under uncertainty of

generation expansion

The installation of the two candidate phase shifters proposed by the min-max regret

solution can be interpreted as counter-intuitive since such an investment does not

appear in any of the solutions under perfect information of generation expansion.

In order to investigate this particular decision, in Table 3.5, we compare costs and

regrets associated with the min-max regret solution under the realization of each

comprised scenario considering (i) the installation of both proposed phase shifters,
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(ii) the installation of the proposed phase shifter in L3 only, (iii) the installation of

the proposed phase shifter in L2 only, and (iv) the non-installation of both phase

shifters proposed by the min-max regret solution.

Table 3.5: 6-Bus System – Overall costs and regrets per scenario (in MM$/year) of
implementing the min-max regret solution (i) with its two proposed phase shifters,
(ii) with only one of its proposed phase shifters, and (iii) without any of its pro-
posed phase shifters. Costs and regrets are indicated without and within brackets,
respectively.

Realization
MMR Decision S1 S2 S3 S4

With 2 phase shifters 17.97 16.00 16.65 14.67
(0.72) (0.21) (0.56) (0.04)

With PS1 (L3) only 23.22 19.11 21.89 17.78
(5.97) (3.32) (5.80) (3.15)

With PS2 (L2) only 23.22 19.11 21.89 17.78
(5.97) (3.32) (5.80) (3.15)

Without phase shifters 35.60 28.92 34.27 27.60
(18.35) (13.13) (18.18) (12.96)

As can be seen in Table 3.5, costs and regrets significantly increase without the

installation of one or both of the phase shifters proposed by the min-max regret

solution. To be more precise, if just one of the proposed phase shifters is installed,

overall costs (investment plus operation) would rise by 29.20%, 19.43%, 31.53%,

and 21.20% under the realization of S1, S2, S3, and S4, respectively, whereas regrets

would increase by 724.95%, 1489.01%, 944.37%, and 7650.65%. In case the min-max

regret solution is implemented without any of its proposed phase shifters, overall

costs would jump by 98.08%, 80.77%, 105.91%, and 88.09%, whereas regrets would

dramatically rise by 2435.13%, 6188.46%, 3172.13%, 31795.91%. Therefore, in light

of the aforementioned figures, once uncertainty of generation expansion is recognized

and explicitly modeled in this case, the installation of both candidate phase shifters

is required regardless the fact that at most only one of them is placed under perfect

information.



3.5. Case Studies 75

3.5.5 Comparison with industry practice

Table 3.6: 6-Bus System – Overall costs and regrets per scenario (in MM$/year)
of implementing decisions under perfect information (S1, S2, S3 and S4) and under
uncertainty (MMR). Costs and regrets are indicated without and within brackets,
respectively.

Realization
Decision S1 S2 S3 S4

S1 17.25 17.40 17.35 17.50
(0.00) (1.61) (1.26) (2.87)

S2 25.04 15.79 25.14 15.89
(7.79) (0.00) (9.05) (1.26)

S3 22.35 22.50 16.09 16.24
(5.10) (6.71) (0.00) (1.61)

S4 34.90 22.02 27.01 14.63
(17.65) (6.23) (10.92) (0.00)

MMR 17.97 16.00 16.65 14.67
(0.72) (0.21) (0.56) (0.04)

Table 3.6 shows a comparison between the proposed methodology and a heuristic

procedure typically applied in the power industry. This heuristic method identifies

the transmission plan that minimizes the maximum regret among the investment

options found under perfect information [75]. As Table 3.6 shows, both costs and

regrets associated with this method are significantly larger than those obtained by

the proposed model, since the latter appropriately captures the uncertainties under

consideration when determining the transmission investment. Clearly, when uncer-

tainty is formally considered, a different solution to any of those obtained under

perfect information may emerge. This demonstrates that flexible investment solu-

tions against uncertainty include investment options that are not possible to observe

in the solutions obtained under perfect information, which ultimately underestimate

the value of flexibility and robustness. In contrast, investment options determined

by the min-max regret problem adequately value flexibility levels that are needed

to hedge against various potential future scenarios of generation expansion and out-

ages. Hence it is important to recognize that current planning approach adopted in
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Table 3.7: 118-Bus System – New infrastructure of alternative expansion plans (no
security) and the associated computing time. Decisions under perfect information
(S1, S2,...,S7) and under uncertainty (MMR).

Case Decision Computing
Time(s)

S1 32-113(100MW) 09.86
S2 114-115(50MW) 09.52
S3 109-110(100MW) 12.55
S4 100-101(100MW) 12.26
S5 17-113(100MW), 114-115(50MW) 12.35
S6 108-109(100MW), 101-102(100MW) 13.66

S7 17-113(100MW), 114-115(50MW), 14.75109-110(100MW), 100-101(100MW)

MMR 32-113(100MW), 114-115(50MW), 74.08108-109(100MW), 100-101(100MW)

the power industry may neglect network investments that are only valuable to deal

with uncertainty and may underestimate the value of technologies such as FACTS

to efficiently provide flexibility and robustness to transmission plans and this is crit-

ical in the light of increasing uncertainty levels that characterize future generation

deployments.

3.5.6 IEEE 118-Bus System

This case study illustrates the scalability of the proposed methodology to a larger

network based on the IEEE 118-Bus System, which comprises 118 buses, 181 exist-

ing transmission lines, 23 candidate transmission assets (7 candidate phase-shifters

and 16 candidate lines), 54 conventional generators, and 4 potential new renewable

units to be located in buses 101, 109, 113, and 115. We consider 7 scenarios of

future generation capacity expansion. S1, S2, S3, and S4 involve the construction

of new generating units in bus 113, 115, 109, and 101, respectively. In S5, gener-

ators in buses 113 and 115 are built, while in S6, generators in buses 109 and 101

are built. In S7, all new generating units are built. For this case study, we have

set convergence tolerance parameters ϵOp and ϵReg equal to 5 × 10−3 and 10−2,
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Table 3.9: 118-Bus System – New infrastructure of alternative expansion plans
(with n− 1 security) and the associated computing time. Decisions under perfect
information (S1, S2,...,S7) and under uncertainty (MMR).

Case Decision Computing
Time(s)

S1 31-32(PS), 11-117(13MW), 09948.0517-113(100MW), 27-114(50MW)
S2 11-117(11MW), 114-115(50MW) 03880.77

S3 31-32(PS), 11-117(14MW), 10499.8027-114(50MW), 109-110(100MW)

S4 31-32(PS), 11-117(12MW), 11295.5027-114(50MW), 100-101(100MW)

S5 11-117(18MW), 17-113(141MW), 03832.68114-115(50MW)

S6
31-32(PS), 11-117(30MW),

09607.1727-114(50MW), 109-110(100MW),
101-102(100MW)

S7
11-117(17MW), 17-113(100MW),

06361.07114-115(50MW), 108-109(100MW),
100-101(100MW)

MMR

31-32(PS), 11-117(21MW),

45314.7032-113(98MW), 27-115(50MW),
114-115(100MW), 108-109(94MW),
101-102(100MW)

respectively. The branch and bound relative gap to solve MILP problems at each

iteration was set equal to 10−4. For the case without security criterion, convergence

of the algorithm (illustrated in Fig. 3.3) was achieved in 9 iterations. Therefore, 168

cutting planes were included in the transmission investment master. For the case

with n− 1 security criterion, 45 iterations were required. Consequently, 924 cutting

planes were added to the master in this case.

Tables 3.7, 3.8, and 3.9 present the results that demonstrate the need for further

transmission assets to provide security of supply and the need for further investment

options to deal with uncertainty (which are not revealed in the solutions under

perfect information). For the sake of comparison, we developed an equivalent single-

level MILP that explicitly enumerates all scenarios and contingencies to obtain the
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same min-max regret solutions reported in Table 3.8. Although this model could be

used to obtain investment plans without security criterion, no feasible solution was

found (after a week) when n− 1 criterion is imposed. The proposed methodology,

instead, can effectively find the min-max regret solution under n− 1 criterion for

all tested cases as reported in Table 3.9.

Table 3.10: Results of the contingency analysis for the MMR transmission plan
without security criterion.

Scenario
Probability Exp. Value CVaR
of Imbalance of Imbalance of Imbalance

(%) (% of demand) (% of demand)
S1 8.08% 1.19% 21.96%
S2 7.84% 1.26% 23.62%
S3 7.30% 1.13% 21.20%
S4 7.20% 1.10% 20.82%
S5 8.61% 1.16% 21.48%
S6 8.30% 1.14% 20.83%
S7 9.81% 1.10% 18.51%

Table 3.11: Results of the contingency analysis for the MMR transmission plan with
n− 1 security criterion.

Scenario
Probability Exp. Value CVaR
of Imbalance of Imbalance of Imbalance

(%) (% of demand) (% of demand)
S1 0.45% 0.03% 0.68%
S2 0.47% 0.03% 0.60%
S3 0.33% 0.02% 0.46%
S4 0.35% 0.03% 0.63%
S5 0.42% 0.03% 0.51%
S6 0.42% 0.03% 0.60%
S7 0.46% 0.03% 0.53%

Finally, we performed an out of sample contingency analysis in order to compare

the performance of the solutions with and without security criterion (n− 1). This

comparison is in terms of reliability. Thus, we generated via Monte Carlo simulation

10,000 contingency states for each snapshot of each possible scenario of future gen-

eration capacity. Each contingency state was generated by simulating independent

Bernoulli trials for the availability of each line and generator state (1 for available
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and 0 for unavailable state). As in [53], we set to 0.1% and 1% the probability of

outage for lines and generators, respectively. For each simulated contingency state,

we assessed the system imbalance for (i) the min-max regret transmission plan that

was obtained without imposing security criterion and for (ii) the min-max regret

transmission plan that was obtained while imposing the n − 1 security criterion.

Tables 3.10 and 3.11 summarize the results of this experiment. As can be seen from

these results, by considering a security criterion while planning the system expan-

sion, we are able to dramatically decrease levels of probability of system imbalance,

expected value of system imbalance, and CVaR (with 95% confidence) of system

imbalance.



CHAPTER 4

An Ambiguity Averse Approach for

Transmission Expansion Planning

The levels of renewable penetration recently established by most countries around

the globe will permanently change the way that power systems are planned, op-

erated and controlled [76]. Every year, the share of energy consumption supplied

by renewable energy sources (RES) increases rapidly. It is estimated that close to

20% of total worldwide consumption are currently addressed by renewables. Addi-

tionally, several countries have already committed to cover 50% of demand through

renewable sources in the near future [77]. However, the environmental and finan-

cial benefits of a cleaner and cheaper power matrix come with a critical technical

challenge of how to deal in day-by-day operation with the increasing variability in

energy production due to a high penetration of RES.

81
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To start tackling this issue, it is of utmost importance to adequately plan and

redesign the transmission system network to cope with this new uncertain environ-

ment [78]. It is well recognized that transmission systems are costly infrastructures.

Hence, it is critically important to be assertive in both technical and economical

terms while planning a network extension. From a methodological point-of-view,

the transmission expansion planning (TEP) problem has been broadly studied in

technical literature from many different angles [79], with its uncertain decision pro-

cess usually based on either stochastic [80] or robust [81] optimization. On the one

hand, within the stochastic TEP models, the uncertainty factors are assumed to be

precisely characterized via a known underlying stochastic process, usually repres-

ented by a set of exogenous scenarios. For instance, in [82], the expansion plan is

devised so that the system can have leeway to circumvent deliberate attacks against

its transmission lines, which are represented via a set of scenarios of potential attack

plans. In [62], a stochastic model is used to evaluate the benefits of incorporating

flexible assets into the power system. In [83], the authors proposed a three-level

filter to reduce the number of considered contingencies of transmission lines in a

two-stage stochastic TEP model. The objective in [83] is to identify the transmis-

sion plan that minimizes the expected value of system operation cost under wind

and load uncertainty. Moreover, in [84], the TEP problem is tackled via a Benders-

decomposition approach, in which both wind and load uncertainties are described

by a set of scenarios chosen by an improved forward selection algorithm. From a

robust TEP perspective, on the other hand, the underlying stochastic process is

assumed to be unknown, and the dynamics of the uncertain factors are endogen-

ously characterized by an a priori specified uncertainty set along with a worst-case

metric. In [43], a robust model is proposed to address the TEP problem, modeling

RES output and load uncertainties with a box uncertainty set. In [44], a two-stage

robust formulation is developed to determine a transmission expansion plan that

complies with deterministic n− K security criterion. In [23], the authors present a
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methodology to devise the expansion plan under variation of available generation

capacity and load in different regions. In [24], the TEP problem is addressed under

uncertainty in retirement of coal plants as well as in future investments in generation

capacity.

Following industry and academic guidelines, system outages and RES output uncer-

tainties are two critical concerns while expanding the transmission system. In this

work, both uncertainties are comprised within a hybrid stochastic and robust op-

timization framework. More precisely, on the one hand, failures of system elements

(conventional power units and/or transmission lines) are addressed by imposing de-

terministic security standards in an adjustable robust optimization fashion. On

the other hand, uncertainty in RES output is represented via a scenario-based ap-

proach. Essentially, the methodology proposed in this chapter aims at determining

the optimal transmission expansion plan while limiting the system imbalance to a

maximum allowed level. Due to its uncertain nature, a risk-constrained formulation,

based on the conditional value-at-risk (CVaR) [85], is adapted aiming at ensuring

system reliability.

The adequate characterization of the forthcoming renewable production dynamics is

a critical aspect to properly accommodate and utilize RES potentials. In this matter,

a determinant factor on the uncertainty characterization associated with RES output

is the identification of a stochastic process that accurately represents its future

behaviour. Several methodologies have been proposed over the last years [86, 87],

but still no unanimous solution has been devised. This issue is of particular relevance

in the TEP context, since the expansion plan is made ahead enough (usually, 5 to

10 years) so that a non-negligible portion of uncertainty is of difficult modeling. As

a consequence, the expansion decision under uncertainty on RES output is made

under ambiguity. To cope with this modeling issue, the proposed methodology

places at disposal the possibility of simultaneously taking into account different RES
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probability distributions, thus being, simultaneously, risk- and ambiguity-averse. It

is worth mentioning that, within the context of the TEP problem, [88] has considered

ambiguity in the probability distribution of loads. However, despite of its relevant

contribution, [88] does not take into account the occurrence of system outages, which

increases the modeling and computational challenges.

Another key challenge in daily power systems operation is the allocation of system’s

resources at least cost in order to meet the constantly growing demand for electricity,

thus continually keeping the system balanced [89]. To overcome this challenge, an

adequate design of the transmission network plays a crucial role since it allows the

operator to efficiently and cost-effectively flow energy through the network, therefore

making better use of available resources. Such well-designed networks become even

more relevant in the presence of significant renewable energy sources (RES) in the

system for two main reasons. Firstly, areas with potential RES are usually located

in remote regions (consequently distant from the bulk power system) and therefore

transmission lines are required to access this potential [90]. Secondly, as discussed in

technical literature [91–93], the production variability inherent to RES impose the

scheduling and utilization of higher levels of spinning and eventually non-spinning

reserves. Hence, in this chapter, the scheduling of spinning reserves is also taken

into account while planning the system expansion.

In light of the aforementioned observations, this chapter proposes a novel transmis-

sion expansion planning methodology capable of determining a renewable-oriented

network expansion aiming to properly accommodate the extensive forthcoming re-

newable penetration while meeting security standards in daily operation. Structur-

ally, the proposed TEP formulation is a particular instance of the risk-constrained

adjustable robust optimization (R-ARO) framework, modelled as a (hierarchical)

three-level system of optimization problems. To solve the multi-level problem, an

algorithm based on column-and-constraint generation (CCG) [94] is proposed.



4.1. Nomenclature 85

The chapter is laid out as follows. Section 4.1 specifies the nomenclature associated

with this chapter. Section 4.2 presents the proposed three-level ambiguity averse

formulation for the TEP problem, whereas Section 4.3 provides a solution methodo-

logy. Finally, in Section 4.4, the effectiveness of the proposed model is demonstrated

through an illustrative example and a case study based on the IEEE 118-bus test

system.

4.1 Nomenclature
The mathematical symbols used throughout this chapter are classified below as

follows.

Sets

L Set of indexes of all transmission lines.

LC Set of indexes of candidate transmission lines.

LE Set of indexes of existing transmission lines.

LPS Set of indexes of existing transmission lines where phase shifters can be installed

(subset of LE).

N Set of bus indexes.

I Set of conventional generator indexes.

Functions

Ci(·) Energy cost function offered by generator i.

Parameters

ψl Capacity limit of phase shifter in line l.
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cL
l Construction cost of a candidate line l.

cPS
l Installment cost of a phase shifter in line l.

bl Susceptance of line l.

dn Demand at bus n.

Fl Power flow capacity of line l.

f r(l) Sending or origin bus of line l.

ĝn Expected or best estimation for renewable production at bus n.

Pi Capacity of conventional generator i.

Pi Minimum power output of conventional generator i.

RD
i Upper bound for the down-spinning reserve contribution of conventional gener-

ator i.

RU
i Upper bound for the up-spinning reserve contribution of conventional generator

i.

to(l) Receiving or destination bus of line l.

Decision Variables

ψl Phase-shifting angle in line l.

θb Phase angle at bus b in the pre-contingency state.

aG
i Binary variable that is equal to 0 if generator i is unavailable, being 1 otherwise.

aL
l Binary variable that is equal to 0 if line l is unavailable, being 1 otherwise.

fl Power flow of line l in the pre-contingency state.
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pi Power output of generator i in the pre-contingency state.

rD
i Down-spinning reserve provided by generator i.

rU
i Up-spinning reserve provided by generator i.

vl Binary variable that is equal to 1 if candidate transmission line l is constructed,

being 0 otherwise.

wl Binary variable that is equal to 1 if a phase shifter is installed in line l, being 0

otherwise.

4.2 Mathematical Formulation

Figure 4.1: Model scheme.

In a centralized network expansion, a transmission planner aims at identifying a set

of candidate assets to be built so that both expansion and daily operation costs are

jointly minimized. As depicted in 4.1, on the one hand, we are particularly interested

in a least-cost transmission expansion with optimal placement of phase shifters in
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the system. On the other hand, given the expansion planning, the daily operation

seeks for a dispatch of power and up-/down-spinning reserves from conventional

sources – referred to as an operating point – to meet system’s demand at lowest cost

under uncertainty in equipment failure and ambiguity on RES output.

Mathematically, let LC be the set of candidate lines and v = {vl}l∈LC a binary

vector indicating if line l ∈ LC has been chosen to be built. Analogously, let

LPS ⊂ LE be the subset of existing lines (LE) where phase shifters can be placed

and w = {wl}l∈LPS the respective binary vector indicating if a phase shifter has

been placed in line l ∈ LPS. From the system operation perspective, let
(

p, rU, rD)
denote an operating point with p = {pi}i∈I being the power dispatch of each

conventional generator i ∈ I , and rU = {rU
i }i∈I and rD = {rD

i }i∈I the respective

up and down reserves. Before presenting the proposed expansion model, we discuss

the characterization of uncertainty considered in this work.

4.2.1 RES Output and Equipment Availability Uncertainties

Two sources of uncertainty mostly impact the daily operation of power systems:

unplanned equipment halt and RES output. To address the former, we follow

current industry practices and consider a deterministic approach [95, 96]. More

specifically, let aG = {aG
i }i∈I and aL = {aL

l }l∈L be two binary vectors whose

components indicate the availability of each conventional generating unit i ∈ I

and each existing/candidate transmission line l ∈ L = LE ∪ LC, respectively. A

set of possible outages (aG, aL) ∈ A is thus assumed given and a worst-case ana-

lysis is performed over A. For generality purposes, we assume A is a binary set

(A ⊆ {0, 1}|I| × {0, 1}|L|).

With respect to RES output uncertainty, the standard scenario-based representa-

tion is considered in this chapter. However, despite the significant effort devoted
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to appropriately characterize the future behavior of renewable production, still no

consensus has been reached. Therefore, the usual method based on sampling from a

unique probability distribution may not be sufficient due to the difficulty to precisely

identify the probability distribution which properly characterizes the behaviour of

the renewable output [97]. Therefore, in this chapter, we extend the standard ap-

proach and consider an ambiguity set of credible RES output probability distribu-

tions to account for ambiguity in renewable production probabilistic characteriza-

tion. More precisely, let (Ω, Σ, P) be a probability space with a finite sample space Ω

as usual in standard scenario-based uncertainty representations [80], g̃ = {g̃n}n∈N

be the uncertain power injection from renewable sources in node n ∈ N and F

a set of probability distribution functions Fg̃ of the uncertain RES output g̃. For

presentation purposes, we identify the ambiguity set F to a set of random vec-

tors G representing the uncertain power injection from renewable sources using the

probability measure P.

We make the following modeling assumption over G.

Assumption 1. The set of random vectors G is assumed finite with dimension J,

i.e. G =
{

g̃1, · · · , g̃ j, · · · , g̃|J|
}

and we associate to each g̃ j ∈ G the index set

J = {1, · · · , J}.

4.2.2 Transmission Expansion Planning Model

The objective of this chapter is to present an ambiguity averse transmission expan-

sion formulation, which models the decision on investing in new transmission lines

and/or phase shifters. The full mathematical formulation is presented in equations

(4.1)–(4.29).

min
θ,ψ, f ,

p,rD,rU ,
v,w

∑
l∈LC

cL
l vl + ∑

l∈LPS

cPS
l wl + ∑

i∈I
Ci
(

p, rU, rD) (4.1)
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subject to:

∑
i∈In

pi + ∑
l∈L|to(l)=n

fl − ∑
l∈L| f r(l)=n

fl = dn − ĝn; ∀ n ∈ N (4.2)

fl = bl
(
θ f r(l) − θto(l)

)
; ∀ l ∈ LE \ LPS (4.3)

fl = bl
(
θ f r(l) − θto(l) + ψl

)
; ∀ l ∈ LPS (4.4)

− wlψl ≤ ψl ≤ wlψl; ∀ l ∈ LPS (4.5)

− Fl ≤ fl ≤ Fl; ∀ l ∈ LE (4.6)

fl ≥ bl
(
θ f r(l) − θto(l)

)
−M(1− vl); ∀ l ∈ LC (4.7)

fl ≤ bl
(
θ f r(l) − θto(l)

)
+ M(1− vl); ∀ l ∈ LC (4.8)

− vl Fl ≤ fl ≤ vl Fl; ∀ l ∈ LC (4.9)

Pi ≤ pi ≤ Pi; ∀ i ∈ I (4.10)

0 ≤ rU
i ≤ RU

i ; ∀ i ∈ I (4.11)

0 ≤ rD
i ≤ RD

i ; ∀ i ∈ I (4.12)

pi + rU
i ≤ Pi; ∀ i ∈ I (4.13)

pi − rD
i ≥ Pi; ∀ i ∈ I (4.14)

vl ∈ {0, 1}; ∀ l ∈ LC (4.15)

wl ∈ {0, 1}; ∀ l ∈ LPS (4.16)

CVaRα

(
L

(
p, rU, rD, v, w, g̃ j

))
≤ L ; ∀ j ∈ J (4.17)

L
(

p, rU, rD, v, w, g j,ω
)
= max

(aG
j,ω ,aL

j,ω)∈A

{
min

δ+
j,ω ,δ−j,ω ,θc

j,ω ,
ψc

j,ω , f c
j,ω ,pc

j,ω

∑
n∈N

(
δ+n,j,ω + δ−n,j,ω

)
(4.18)

subject to:

∑
i∈In

pc
i,j,ω + ∑

l∈L|to(l)=n
f c
l,j,ω − ∑

l∈L| f r(l)=b
f c
l,j,ω = dn − gn,j,ω + δ+n,j,ω

− δ−n,j,ω : (βn,j,ω); ∀ n ∈ N (4.19)

f c
l,j,ω = aL

l,j,ωbl
(
θc

f r(l),j,ω − θc
to(l),j,ω

)
: (γl,j,ω); ∀ l ∈ LE \ LPS (4.20)



4.2. Mathematical Formulation 91

f c
l,j,ω = aL

l,j,ωbl
(
θc

f r(l),j,ω − θc
to(l),j,ω + ψc

l,j,ω
)

: (ζl,j,ω); ∀ l ∈ LPS (4.21)

− wlψl ≤ ψc
l,j,ω ≤ wlψl : (η−l,j,ω, η+

l,j,ω); ∀ l ∈ LPS (4.22)

− Fl ≤ f c
l,j,ω ≤ Fl : (π−l,j,ω, π+

l,j,ω); ∀ l ∈ LE (4.23)

f c
l,j,ω ≥ bl

(
θc

f r(l),j,ω − θc
to(l),j,ω

)
−M(1− aL

l,j,ωvl) : (ϕ−l,j,ω); ∀ l ∈ LC (4.24)

f c
l,j,ω ≤ bl

(
θc

f r(l),j,ω − θc
to(l),j,ω

)
+ M(1− aL

l,j,ωvl) : (ϕ+
l,j,ω); ∀ l ∈ LC (4.25)

− FlvlaL
l,j,ω ≤ f c

l,j,ω ≤ FlvlaL
l,j,ω : (χ−l,j,ω, χ+

l,j,ω); ∀ l ∈ LC (4.26)

pc
i,j,ω ≥ aG

i,j,ω
(

pi − rD
i
)

: (σ−i,j,ω); ∀ i ∈ I (4.27)

pc
i,j,ω ≤ aG

i,j,ω
(

pi + rU
i
)

: (σ+
i,j,ω); ∀ i ∈ I (4.28)

δ+n,j,ω, δ−n,j,ω ≥ 0; ∀ n ∈ N
}

, ∀ j ∈ J , ω ∈ Ω. (4.29)

The idea of (4.1)–(4.29) is to identify a least-cost expansion plan such that the

CVaRα of the system imbalance satisfies the maximum level requirement (L ) for

each “credible” renewable distribution j ∈ J with a minimum operation cost. More

specifically, equation (4.1) jointly minimizes the expansion and daily operation costs,

with cL = {cL
l }l∈LC representing the construction cost of a candidate line l ∈ LC,

cPS = {cPS
l }l∈LPS the installment cost of a phase shifter in line l ∈ LPS and Ci(·) the

cost function of a conventional energy producer i ∈ I . For each node n ∈ N , con-

straint (4.2) assures power balance considering an inelastic demand d = {dn}n∈N

and a RES output estimative ĝ = {ĝn}n∈N . The set of equations (4.3)–(4.9) define

a DC approximation of the Kirchhoff voltage law and bounds for each line in the

system (both existing and candidate) with b = {bl}l∈L denoting the susceptance

of transmission lines and F = {Fl}l∈L the respective flow capacities. Note that in

equation (4.4), the phase shifting (ψ = {ψl}l∈LPS) is considered and bounded by

ψ = {ψl}l∈LPS in (4.5). Constraints (4.10)–(4.12) establish bounds for the operating

point, with P = {Pi}i∈I and P = {Pi}i∈I representing the minimum and maximum

power production of each conventional generator i ∈ I , and RU
= {RU

i }i∈I and
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RD
= {RD

i }i∈I the maximum up-/down-spinning reserve limit. Moreover, con-

straints (4.13) ensure that the up-spinning reserve do not exceed the capacity left

in each conventional generating unit and equation (4.14) assures that the down-

spinning reserve is less than the scheduled power. Equations (4.15) and (4.16)

ensures the binary nature of line investment and phase shifter placement variables.

Finally, (4.17) establishes that, for each renewable production distribution function

j ∈ J , the system imbalance CVaRα is lower than a maximum level (L ). The

system imbalance function (L (·)) is defined by equations (4.18)–(4.29) as a two-

level system of optimization problems. Given an expansion planning (v, w), an

operating point (p, rU, rD) and a scenario ω ∈ Ω of nodal injection from renewable

sources g j,ω, the idea of (4.18)–(4.29) is to identify a feasible redispatch with the

lowest power imbalance under the worst possible contingency state within A. More

precisely, equations (4.19) define the power balance for each node n ∈ N and (4.20)–

(4.26) represent the DC approximation of the Kirchhoff voltage law and power flow

bounds, similar to (4.2)–(4.9). Equations (4.27) and (4.28) guarantee that the power

redispatch is bounded by the scheduled power and up/down reserves. It is worth to

point out that the proposed expansion model (4.1)–(4.29) is a particular instance of

the R-ARO framework, thus not suitable for direct implementation on commercial

solvers. Nevertheless, in the next section, a solution methodology is devised based

on column-and-constraint generation (CCG) techniques [94].

4.3 Solution Methodology

The proposed expansion model (4.1)–(4.29) is a three-level system of optimization

problems which cannot be directly solved using commercial solvers. In this sec-

tion, we devise a solution methodology based on column-and-constraint genera-

tion. To ease the presentation, let y = (v, w) be the expansion binary vectors,

x = (p, rU, rD) be an operating point, aj,ω = (aG
j,ω, aL

j,ω) the vector of contingen-
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cies, and zj,ω = (δ+
j,ω, δ−j,ω, θc

j,ω, ψc
j,ω, f c

j,ω, pc
j,ω) a vector of redispatch variables. The

expansion model (4.1)–(4.29) can be compactly written as follows.

min
θ,ψ, f ,

x,y

c⊤y + ∑
i∈I

Ci(x) (4.30)

subject to:

(θ, ψ, f , x, y) ∈ X (4.31)

CVaRα

(
L

(
x, y, g̃ j

))
≤ L ; ∀ j ∈ J (4.32)

L
(
x, y, g j,ω

)
= max

aj,ω∈A

{
min

zj,ω∈Z(x,y,g j,ω ,aj,ω)
h⊤zj,ω

}
; ∀ j ∈ J , ω ∈ Ω. (4.33)

In (4.30)–(4.33), c = (cL, cPS). In addition, the sets X and Z(x, y, g j,ω, aj,ω) com-

prise the feasible region of first and third-level problems, respectively, and h recov-

ers the third-level objective function. For a given (x, y) and renewable distribution

function j ∈ J , the CVaRα

(
L (x, y, g̃ j)

)
can be written using its dual form.

CVaRα

(
L

(
x, y, g̃ j

))
= max

qj∈Q

{
∑

ω∈Ω
qj,ω L

(
x, y, g j,ω

)}
, (4.34)

with

Q =

q ∈ R|Ω|

∣∣∣∣∣∣∣
∑ω∈Ωqω = 1;

0 ≤ qω ≤ ρω/(1− α), ω ∈ Ω;

 , (4.35)

where ρω = P({ω}) is the probability of scenario ω ∈ Ω. Therefore, using (4.34)–

(4.35), the proposed trilevel model can be written as the following single-level op-

timization problem,

min
θ,ψ, f ,

x,y,zj,ω

c⊤y + ∑
i∈I

Ci(x) (4.36)

subject to:
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(θ, ψ, f , x, y) ∈ X (4.37)

∑
ω∈Ω

qj,ω h⊤zj,ω ≤ L ; ∀ qj ∈ Q, j ∈ J (4.38)

zj,ω ∈ Z
(
x, y, g j,ω, aj,ω

)
; ∀ aj,ω ∈ A, ω ∈ Ω, j ∈ J . (4.39)

Problem (4.36)–(4.39) is suitable for column-and-constraint generation. Roughly

speaking, the solution proposal aims at iteratively recovering a subset of constraints

necessary to represent their counterpart (4.38)–(4.39). In other words, identify a set

of vectors
{
{q(k)j,ω, a(k)

j,ω}ω∈Ω,j∈J
}m

k=1 sufficient to represent constraints (4.38)–(4.39).

The proposed CCG algorithm is described next.

Algorithm 1 Column-and-Constraint Generation Algorithm

Initialization:

Set m← 1;

Solve (4.36)–(4.37) and store its optimal solution (x(m), y(m));

Iteration m ≥ 1

Step 1: For each ω ∈ Ω and j ∈ J , compute L
(
x(m), y(m), g j,ω

)
solving

(4.33). Store {a(m)
j,ω }ω∈Ω,j∈J ;

Step 2: For each j ∈ J , compute CVaRα

(
L

(
x(m), y(m), g̃ j

))
solving

(4.34)–(4.35). Store {q(m)
j,ω }ω∈Ω,j∈J ;

Step 3: If CVaRα

(
L

(
x(m), y(m), g̃ j

))
≤ L , ∀ j ∈ J , then stop and

return (x(m), y(m)). Otherwise, go to Step 4;

Step 4: Solve (4.36)–(4.39) with the smaller set
{
{q(k)j,ω, a(k)

j,ω}ω∈Ω,j∈J
}m

k=1

fixed in (4.38)–(4.39). Set m ← m + 1 and store its optimal solution

(x(m), y(m)).
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Two key points are important to mention. Firstly, note that (4.34)–(4.35) can be

viewed as a constrained knapsack problem. Thus, the solution vector q usually is

composed by several null values. The idea is that the CVaRα can be interpreted

as the average of the (1 − α) worst-valued scenarios and the vector q represents

precisely the conditional probability to compute such average [85]. Therefore, a

significant portion of q is set at zero at the optimal solution which represents those

scenarios that are not involved in the computation of the conditional average. As

a consequence, in order to enhance the computational capability of the proposed

methodology, in Step 2–Step 3 of every iteration m of the CCG algorithm, we

only need to store the variables {q(m)
j,ω , a(m)

j,ω }ω∈Ω,j∈J associated with scenarios such

that q(m)
j,ω > 0, thus significantly reducing the size of the problem to be solved in

Step 4.

Secondly, in Step 1, we need to solve the two-level system of optimization problems

(4.18)–(4.29) (concisely written as (4.33) for presentation purposes) at each iteration

m in order to obtain the contingency vector a(m)
j,ω . However, this problem cannot be

directly solved using commercial solvers. Nevertheless, we can rewrite the bilevel

optimization problem into a single-level counterpart with the following three steps.

(i) Derive the dual problem of the inner (minimization) problem (4.18)–(4.29).

(ii) Consolidate both maximization problems into a single one.

(iii) Linearize the bilinear terms of continuous and binary variables using disjunct-

ive constraints.

4.4 Case Studies

In this section, the effectiveness of the proposed methodology is illustrated through

two test systems: (i) an illustrative 5-bus case and (ii) a 128-bus network derived
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from the standard IEEE 118-bus test system. In both cases, we set the confidence

level to α = 0.95 and we assume that generators offer linear cost functions of the

form Ci
(

p, rU, rD) = cp
i pi + cU

i rU
i + cD

i rD
i . Furthermore, we consider a widely-used

n− K security criteria [95] to define the contingency set:

A =

{(
aG, aL) ∈ {0, 1}|I| × {0, 1}|L|

∣∣∣∣∣ ∑
i∈I

aG
i + ∑

l∈L
aL

l ≥ |I|+ |L| − K

}
. (4.40)

The proposed solution approach was implemented on a Dell Precision R⃝ T7600

Xeon R⃝ E5-2687W 3.10 GHz with 128 GB of RAM, using Xpress-MP 8.2 under

MOSEL [47]. The data used in the following case studies can be found in [98].

4.4.1 5-Bus System: Illustrative Example

The illustrative system considered in this section consists of five buses with three

(existing) transmission lines, four conventional generators and four demand sites.

Eight candidate lines are considered for construction, four of which connecting a

disconnected bus with a wind farm1. We also consider that each existing trans-

mission line is qualified for the placement of a phase shifter. The illustrative 5-bus

system is depicted in Figure 4.2, where solid and dotted lines represent, respectively,

existing and candidate transmission lines.

Table 4.1: 5-bus system – Data of conventional generators.

Generator Capacity Generation Up/Down Reserve
(MW) Cost ($/MWh) Cost ($/MWh)

G1 200 10 05
G2 200 10 05
G3 140 50 40
G4 140 50 40

1A situation commonly observed in most power systems nowadays since new renewable plants
have been constructed at remote sites and must be connected to the main grid.



4.4. Case Studies 97

Figure 4.2: 5-bus illustrative system.

Table 4.2: 5-bus system – data of transmission lines.

Line from to Capacity Reactance Construction
(bus) (bus) (MW) (pu) Cost (MM$/year)

L1 1 3 050 0.7 -
L2 3 4 040 0.7 -
L3 3 2 060 0.7 -
L4 1 4 050 0.7 17.52
L5 1 5 100 0.7 35.04
L6 5 2 100 0.7 35.04
L7 3 2 030 0.7 18.40
L8 3 4 060 0.7 18.40
L9 1 3 050 0.7 35.04

L10 1 5 080 0.7 13.14
L11 5 2 080 0.7 13.14

Generation costs and limits, and relevant specifications of transmission lines are

presented in Tables 4.1 and 4.2, respectively. Furthermore, we assume that each

phase shifter has an annualized installment cost of 4.38 MM$ and a maximum shift-

ing of 45 degrees.
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In this case study, the expansion plan must enable the system to be operated under

a K = 1 security criterion. For expository purposes, we assume that the probabil-

istic description of the wind farm R1 follows a Normal distribution with standard

deviation equals to 0.08, but with an uncertain mean. Both g̃1 ∼ N(0.72, 0.082)

and g̃2 ∼ N(0.60, 0.082) may be credible representations for the wind power output.

Hence, in this case, the most likely RES output belongs to the interval ĝ ∈ [60, 72]

MW. We set ĝ to 66 MW in (4.2) for bus B5 (center of the interval). In order to

represent both distributions, a set of 100 scenarios from each distribution is sampled,

i.e. Ω =
{

ω1, . . . , ω100
}
, using the standard Monte Carlo procedure. Finally, the

CVaR0.95 of the system power imbalance is limited to 0.41% of the total system

demand (i.e., L = 0.91 MW).

The objective of this case study is to compare the expansion plan obtained when we

consider: (i) only the probability distribution N(0.72, 0.082), henceforth referred to

as “Distribution 1”, (ii) only the probability distribution N(0.60, 0.082), henceforth

referred to as “Distribution 2”, and (iii) both aforementioned distributions simultan-

eously, henceforth referred to as “Ambiguity”. Table 4.3 reports the expansion plans

(column 2) and corresponding investment (column 3) and operational (column 4)

costs for each case analyzed. Note a non-negligible effect the modeling choice has on

the optimal expansion plan. The simultaneous consideration of both distributions

(case “Ambiguity”) results in a combination of new transmission assets different in

comparison to the case when either distributions are considered individually. In fact,

only lines L10 and L11 are simultaneously chosen for all three cases. In summary,

under “Distribution 2”, no phase shifter is placed in the system, whereas in case

“Distribution 1” PS1 and PS3 are chosen, and in “Ambiguity” only PS3 is placed. It

also should be noted that the investment cost for the ambiguity-averse solution is

higher (as expected) compared to both single-distribution cases. Nevertheless, the

resulting operation cost is significantly lower and the dispatch is robust against both

distributions.
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Table 4.3: 5-bus system – expansion plan and resulting investment and operation
costs.

Case Expansion Plan Investment Cost Operation Cost
(MM$/year) (MM$/year)

Distribution 1 PS1, PS3, L6, L7, L10, L11 088.48 38.54
Distribution 2 L9, L10, L11 061.32 46.05

Ambiguity PS3, L6, L9, L10, L11 100.74 30.72

Table 4.4: 5-bus system – operation costs considering different probability distribu-
tions (MM$/year).

Decision Realization
Distribution 1 (g̃1) Distribution 2 (g̃2)

Distribution 1 38.54 42.98
Distribution 2 Infeasible 46.05

Ambiguity 29.56 30.09

Lastly, Table 4.4 presents the operation cost induced by the expansion plan obtained

for each one of the three cases analyzed under both g̃1 and g̃2 distributions. In line

with the previous analysis, on the one hand, note that the operation cost for the

expansion plan obtained under case “Distribution 1” is roughly 42% higher than the

“Ambiguity” case assuming g̃2 (“Distribution 2”). Furthermore, on the other hand,

under case “Distribution 2”, the system operation is not feasible if g̃1 (“Distribution

1”) realizes, since there is no operating point that meets the maximum allowed

system imbalance (L ) under the security criterion K = 1. We thus highlight that

the simultaneous consideration of both distributions in the expansion evaluation is

key to guarantee not only feasibility, but also it may imply in lower operation costs.

4.4.2 128-Bus System: Case Study

To illustrate the scalability of the proposed TEP methodology, a 128-bus system

designed from the standard IEEE 118-bus test system is considered. It comprises

198 existing branches with 54 thermal units, 10 wind farms, and 91 loads that

result in a total demand of 3286 MW. A total of 12 corridors are candidates for
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the construction of up to two transmission lines, each of which with an (annualized)

investment cost of 3504 k$. Additionally, 26 existing lines are considered suitable

for installing a phase shifter with an individual (annualized) placement cost of 876

[k$] and shifting limit of 45 degrees.

Within the daily operation stage, wind production uncertainty can be suitably char-

acterized by a Normal distribution around its best output estimative. However, due

to the time length required for construction of new network infrastructure, the ex-

pansion plan is made ahead enough to induce a high degree of uncertainty in the best

wind production output estimation. As a consequence, even though the probability

distribution format of the day-ahead wind production can be suitably defined, the

TEP is still made under ambiguity due to the uncertainty in its parameters. That

being said, in this case study, we follow the standard procedure adopted by prac-

titioners and make use of historical data to point-estimate the Normal distribution

parameters for each wind farm2. Nevertheless, regardless of the (point-)estimation

procedure, a confidence interval (CI) around this estimative can be constructed such

that the decision-maker preference relation between the induced Normal distribu-

tions with parameters within such interval is not evident. Therefore, in this case

study, the ambiguity set comprises Normal distributions with mean equal to the

point-estimative, and the upper- and lower-limits of the CI (hereinafter referred to

g̃(PE), g̃(UL), and g̃(LL), respectively). For simplicity, the variance are considered

certain and equal to the point-estimated value.

The goal of this section is thus to analyze the expansion plan under two cases:

(i) the Nominal Case, in which only the point-estimated distribution is considered

(G = {g̃(PE)}); and (ii) the Ambiguity Case, in which the expansion plan is assessed

considering concomitantly all three distributions (G = {g̃(PE), g̃(UL), g̃(LL)}). We

2For expository purposes, we assume pairwise independence between the wind farm production
random variables.
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highlight that the Nominal Case stands for the standard practice adopted in most

decision under uncertainty frameworks since point-estimators are typically chosen

by practitioners to characterize the distribution parameters due to their strong stat-

istical properties [80]. Therefore, seeking for consistency, in both Nominal and

Ambiguity Cases, we set ĝ = E[g̃(PE)]. Additionally, to represent the wind power

variability, we make use of standard Monte Carlo procedure to sample a set of 100

“scenarios” (Ω =
{

ω1, . . . , ω100
}
) for each Normal Distribution. We also consider

a security criterion of K = 1 and assume a maximum system imbalance of 0.5% of

total demand, i.e., L = 16.43 MW.

Table 4.5: 128-bus system – expansion profiles for both Nominal and Ambiguity
Cases.

Corridor Nominal Ambiguity
Case Case

15–120 0 0
15–120 1 1
19–120 0 0
19–120 1 1
54–122 0 0
54–122 1 1
55–122 0 0
55–122 1 1
55–124 0 0
55–124 1 1
59–124 0 0
59–124 1 1
60–125 0 1
60–125 0 1
61–125 1 0
61–125 1 0
80–127 0 0
80–127 1 1
90–128 0 1
90–128 0 0
91–128 1 0
91–128 1 1
96–127 0 0
96–127 1 1
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Table 4.5 outlines the expansion profile for both Nominal and Ambiguity cases

(columns two and three, respectively). Table 4.6 presents the operational and ex-

pansion costs (columns two and three, respectively) resulting from each modeling

approach (Nominal and Ambiguity Cases) along with the respective computational

time and number of iterations required to solve each instance (columns four and five,

respectively). Firstly, we highlight that the expansion plan is different between the

two cases. Basically, in the Nominal Case, a double line is indicated for construc-

tion in corridor 61–125, whereas in the Ambiguity Case, the chosen corridor was

between nodes 60 and 125. Additionally, the Nominal Case signals the construction

of a double line between nodes 91 and 128. In the Ambiguity Case, however, only

a single line is indicated to be constructed in this corridor, but a single line should

be constructed in 90–128. With respect to phase shifters, both cases indicated the

instalment of a single device in the existing corridor 55–59.

Effectively, although the expansion plan differs between cases, the total number of

lines and phase shifters indicated for construction is the same. Thus, as shown

in Table 4.6, the expansion cost is equal both in Nominal and Ambiguity Cases.

Furthermore, as expected, the operational cost of the Ambiguity Case is higher than

the Nominal one due to the requirement in the former to meet the maximum desired

imbalance level for each one of the three distributions, concomitantly. Nevertheless,

we highlight that such increase is less than 5%.

Table 4.6: 128-bus system – operational and expansion costs [MM$/year] from each
Nominal and Ambiguity Cases, along with the computational time [s] and number
of iterations required to solve each instance.

Case Operation Investment Computing Number of
Cost (MM$/year) Cost (MM$/year) Time (s) iterations

Nominal 211.93 42.92 670067 175
Ambiguity 223.49 42.92 093124 030

Next, we evaluate the impact of performing an ambiguity-averse TEP on the system

operation. For consistency, a new set of 2000 scenarios (i.e., Ω = {ω1, · · · , ω2000})
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Figure 4.3: Out-of-sample inverse cumulative distributions of the system imbalance
under the realization of the lower limit distribution.
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Figure 4.4: Out-of-sample inverse cumulative distributions of the system imbalance
under the realization of the point estimative distribution.
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Figure 4.5: Out-of-sample inverse cumulative distributions of the system imbalance
under the realization of the upper limit distribution.

were sampled for each distribution {g̃(PE), g̃(UL), g̃(LL)} and an “out-of-sample” ana-

lysis is performed. In Figs. 4.3, 4.4, and 4.5, the distributions of the system im-

balance, given the expansion plans for Nominal and Ambiguity Cases, are depicted

under the new set of scenarios. Such figures present the inverse cumulative distri-

butions under the realization of lower limit (Fig. 4.3), point estimative (Fig. 4.4)

and upper limit (Fig. 4.5) distributions. We firstly highlight that, as expected,

both Nominal and Ambiguity expansion plans induce an stable system operation

under the PE distribution since a low CVaR of system imbalance is observed (see

Fig. 4.4). Nevertheless, under the LL and UL distributions, it is likely that the

ambiguity-neutral expansion plan can cause an unstable operation. We argue that,

since the system was not prepared to comply with the uncertainty dynamics driven

by these two distributions, the resource allocation planned is not sufficient to en-

able the system operator to satisfy the maximum allowed imbalance in most of the

scenarios (78% and 82% for the LL and UL distributions, respectively).

Finally, from a financial point of view, we quantify the impact of the aforementioned

power imbalances also using the out-of-sample set of scenarios. For completeness,
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Table 4.7: Out-of-sample probability distribution of load shedding cost.

Interval of Load Nominal Case Amiguity Case
Shed Cost(k$/hour) LL PE UL LL PE UL

[0, 5)000 00.20% 17.20% 18.10% 96.40% 100.00% 99.80%
[5, 10)00 00.00% 02.90% 72.70% 00.00% 000.00% 00.20%
[10, 30)0 33.20% 78.80% 09.20% 03.20% 000.00% 00.00%
[30, 50)0 20.80% 00.70% 00.00% 00.30% 000.00% 00.00%
[50, 100) 34.90% 00.40% 00.00% 00.10% 000.00% 00.00%
[100, ∞) 10.90% 00.00% 00.00% 00.00% 000.00% 00.00%

Table 4.8: Out-of-sample probability distribution of wind spillage cost.

Interval of Wind Nominal Case Amiguity Case
Spillage Cost(k$/hour) LL PE UL LL PE UL

[0, 0.5) 99.90% 97.10% 68.60% 99.70% 99.50% 95.20%
[0.5, 1) 00.00% 00.10% 00.90% 00.00% 00.00% 00.00%
[1, 3).0 00.10% 02.20% 07.70% 00.30% 00.50% 04.50%
[3, 5).0 00.00% 00.60% 09.10% 00.00% 00.00% 00.30%
[5, 10). 00.00% 00.00% 12.40% 00.00% 00.00% 00.00%
[10, ∞) 00.00% 00.00% 01.30% 00.00% 00.00% 00.00%

we split the imbalance in load shedding (loss of load) and wind spillage. The former

has a cost of 1000 $/MWh and the latter a cost of 100 $/MWh [92]. Tables 4.7 and

4.8 present the distribution of, respectively, load shedding and wind spillage costs.

Note that, under the Nominal expansion plan, the probability of a load shedding

higher than 30 k$ is approximately 67% for the LL distribution. We can interpret

this result by noting that, for this distribution, the level of wind production is lower

than the estimated. Therefore, the system operator should increase conventional

generation using up reserves. Since the system was not planned to accommodate

this operation, a load shed is induced is most scenarios. Analogously, a probability

of a wind spillage cost higher than 3 k$ (10% of total expansion plus operation costs)

is roughly larger than 23% for the UL distribution. A similar argument summarizes

this result.
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Conclusions

It is well-known that the TEP problem is a complex task. In the technical literature,

a great deal of effort has been devoted to deal with various aspects related to this

problem [99, 100]. In this thesis, we have addressed three circumstances that a

planner may face while devising the expansion of a transmission infrastructure.

Following we present a summary of the methodologies proposed in this work and

comment possible future directions of research.

5.1 Summary

In chapter 2, we proposed a RG-TEP model to support the efficient achievement of

RES share targets while considering the reliability of the system. In this case, the

system planner needs to plan the generation and transmission expansion to meet

a predefined percentage (or target) of the system demand by means of renewable

106
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sources. In addition, we consider the existence of potential renewable sites that

can be connected to the system in order to achieve such targets. Moreover, besides

achieving RES targets, the expansion plan should be secure enough to provide the

system with necessary flexibility to endure outages and uncertainty in RES genera-

tion.

In order to tackle the problem stated in chapter 2, we formulated a two-stage min-

max-min optimization model. The first level of this model aims to determine the

generation and transmission expansion plan by selecting the most appropriate can-

didate lines to be built and the best renewable sites to be developed and connected

to the system. Also the first level determines a pre-contingency scheduling of power

and reserves. The second level identifies worst-case combination of outage and real-

ization of nodal injection uncertainty. Finally, the third level reacts against the

worst-case situation by redispatching the system with the resources planned in the

first level. An interesting feature of this model is the possibility to combine multiple

security criteria simultaneously with different levels of stringency. For instance, the

planner has the flexibility to plan the expansion while imposing a maximum system

imbalance equal to 0% of the demand for single and double outages while allowing

up to 2.5% if three elements of the system fail. Another important feature of the

model is the consideration of reserve deliverability.

In order to solve the model proposed in chapter 2, we developed a column and

constraint generation algorithm. The simulation results presented for the Chilean

case study corroborate the effectiveness of the proposed methodology to find robust

solutions and its capability to provide system planners with a flexible tool to measure

the trade-off between reliability and cost under reasonable computational effort.

The methodology is also tested with the standard IEEE 118-bus system in order to

demonstrate its scalability.
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In chapter 3, we propose a novel methodology to determine optimal transmission ex-

pansion plans through a min-max regret approach. In this case, the system planner

has to determine the expansion of the transmission infrastructure under uncertainty

in the forthcoming generation expansion. More specifically, the planner does not

have a precise picture of where the new generators will be located and how much

capacity they will provide to the system. Instead, scenarios of possible future gen-

erations expansions are given.

We address the problem faced by planner in chapter 3 by formulating a 5-level

model to determine the transmission plan that leads to the minimum maximum

regret under uncertainty in future generation expansion. The proposed formulation

also considers occurrence of system outages, securing operation through a determ-

inistic n− 1 criterion. Candidate infrastructure includes flexible and conventional

transmission assets and hence the model can determine optimal portfolios of phase-

shifters and transmission lines to deal with both long- and short-term uncertainties.

To solve the optimization problem, we developed an algorithm based on column

and constraint generation and Benders decomposition techniques to determine the

optimal solution of the proposed 5-level model in a finite number of iterations.

Numerical studies in chapter 3 demonstrated that the value of flexible network

technologies increases with explicit recognition of uncertainty, and that flexible net-

work portfolios can effectively reduce the regret of investment decisions and improve

economic efficiency and security of supply provision. Furthermore, we also demon-

strated that there are specific investment decisions which are revealed only when

uncertainty is explicitly modeled and that flexible transmission investment options

may remain unseen when network infrastructure is planned through considering de-

terministic scenarios. Decisions that are only taken when uncertainty is properly

characterized help to hedge the investment plan against a range of possible uncer-

tainty realizations.
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In chapter 4, we propose a novel methodology to address the TEP problem under

ambiguity in the probability distribution of RES generation. In this case, the planner

needs to take a decision on transmission expansion with limited knowledge of the

underlying process behind the realization of the RES output.

To deal with the situation presented in chapter 4, we propose a three-level for-

mulation to determine the optimal transmission expansion plan under ambiguity

in renewable probability distribution while considering outages of system elements.

Within the set of candidate assets, we consider phase shifters along with trans-

mission lines to provide the system with more flexibility. Contingencies of system

elements are addressed via adjustable robust optimization and renewable variab-

ility is modeled by means of a scenario-based approach. In order to circumvent

the difficulties in the characterization of the uncertainty associated with RES out-

put, the model proposed in this chapter is general enough to accommodate multiple

RES probability distributions. To solve the proposed TEP problem, a column and

constraint generation algorithm was designed. Numerical studies corroborate and

endorse the importance of considering ambiguity in RES probability distribution

while planning the expansion of the grid.

5.2 Future Work

Formulations presented in chapters 2 and 4 were devised in a single period fash-

ion. Within this context, extensions of these formulations to the multiperiod setting

would be beneficial in order to provide the planner with possibility to consider dif-

ferent load and wind profiles while determining the expansion plan. In addition,

in chapter 3, although different snapshots of wind and load are considered, we do

not enforce time-coupling in the proposed methodology. The incorporation of such

time coupling in the formulation would allow the inclusion of storage devices in the
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modeling. Therefore, it would be possible to evaluate the benefits of storage devices

while minimizing regret under uncertainty in generation expansion. It should be

noted that the main steps used in the proposed solution approaches are readily

applicable to the multiperiod instance with time-coupling constraints and some ad-

ditional notation to properly index variables and parameters over the time periods.

However, the computational burdening associated with the multperiod setting needs

to be properly addressed. In this context, parallel computing can be a good starting

point.

In chapter 3, we have used a discrete set of scenarios to represent generation ex-

pansion uncertainty following industry practices. It is a plausible and reasonable

alternative for this kind of uncertainty since it provides industry players, regulators,

planners and further stakeholders with the possibility to express their views about

uncertainty in generation expansion. This uncertainty is mainly driven by gener-

ation companies’ investment decisions and thereby significantly affected by policy,

political and further macroeconomic conditions that are difficult to model in a real

context. Our proposed methodology is therefore highly dependent on the quality

of the provided scenarios, which require significant time and effort to be generated

since they must properly characterize the set of economic and political structures of

possible futures. Within this context, we recognize that it would be interesting to

consider, within the proposed framework, stress-test scenarios as those generated by

the combinations of up/down deviations within a constrained uncertainty budget.

In addition, it would be important to examine more refined regret concepts that

attach a greater weight to most probable scenarios (e. g., “expected regret”). These

considerations can open up interesting opportunities for future research.

Finally, as customary in TEP models, we simplified the power flow by adopting a DC

load fashion. Further research will consider including AC transmission constraints.
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APPENDIX A

Detailed formulation of the model presented

in Chapter 2

In this appendix we provide the complete formulation for the three-level model

(2.7)–(2.9). In the following sections, the decision variables, objective function, and

constraints of each of the three optimization levels are described in detail.

A.1 First-level problem: minimization of investment

and operative costs

In the first level problem of the trilevel model (2.7)–(2.9), investment decisions in

the transmission lines, given by vector x, comprise the binary decision variables vl

125
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and continuous decision variables FC
l for all l ∈ LC, which is the set of candidate

lines. Each decision variable vl assumes value equal to one if there is investment

in the candidate line l or is set to zero otherwise, while FC
l defines the maximum

capacity (MW) of each candidate line l. The component yb of the binary vector y is

determined as one if there is an investment in renewable generation on bus b, being

zero otherwise. Finally, vector q aggregates all the operation variables: pi – energy

scheduled in the pre-contingency state for the generating unit i; ru
i and rd

i – up- and

down-spinning reserves scheduled in the pre-contingency state for the generating

unit i; fl – power flow passing through line l in the pre-contingency schedule; θb –

phase angle of bus b in the pre-contingency state. The complete first-level problem

is formulated as follows.

min
∆DK,Σ,θb,FC

l ,
fl ,pi,rd

i ,ru
i ,vl ,yl

∑
i∈I

CP
i pi + ∑

i∈I
Cd

i rd
i + ∑

i∈I
Cu

i ru
i + ∑

l∈LC

(
Clvl + CCap

l FC
l
)

+ ∑
b∈NRE

CRE
b yb + ∑

K∈K
CI

K∆DK,Σ(x, y, q) (A.1)

subject to:

∑
i∈Ib

pi + ∑
l∈L|to(l)=b

fl − ∑
l∈L| f r(l)=b

fl = D̂b − Ŵb; ∀b ∈ NE (A.2)

∑
i∈Ib

pi + ∑
l∈L|to(l)=b

fl − ∑
l∈L| f r(l)=b

fl = −ybŴb; ∀b ∈ NRE (A.3)

∑
b∈NRE

ybŴb + ∑
b∈NE

Ŵb ≥ Target ∑
b∈NE

D̂b (A.4)

fl =
1
xl

(
θ f r(l) − θto(l)

)
; ∀l ∈ LE (A.5)

−Ml
(
1− vl

)
≤ fl −

1
xl

(
θ f r(l) − θto(l)

)
≤ Ml

(
1− vl

)
; ∀l ∈ LC (A.6)

− Fl ≤ fl ≤ Fl; ∀l ∈ LE (A.7)

− FC
l ≤ fl ≤ FC

l ; ∀l ∈ LC (A.8)
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vl F
Min
l ≤ FC

l ≤ vl F
Max
l ; ∀l ∈ LC (A.9)

∑
l∈LC|to(l)=b

vl + ∑
l∈LC| f r(l)=b

vl ≤ ybMo
b; ∀b ∈ NRE (A.10)

0 ≤ pi ≤ Pi; ∀i ∈ I (A.11)

pi + ru
i ≤ Pi; ∀i ∈ I (A.12)

pi − rd
i ≥ 0; ∀i ∈ I (A.13)

0 ≤ ru
i ≤ RU

i ; ∀i ∈ I (A.14)

0 ≤ rd
i ≤ RD

i ; ∀i ∈ I (A.15)

vl ∈ {0, 1}; ∀l ∈ LC (A.16)

yb ∈ {0, 1}; ∀b ∈ NRE (A.17)

∆DK,Σ(x, y, q) ≤ ∆DK,Σ, ∀K ∈ K (A.18)

∆DK,Σ(x, y, q) = solution of (A.20)-(A.34) (A.19)

The objective function (A.1) minimizes the following cost-related terms: genera-

tion (pi), up- and down-reserves (rup
i , rdw

i ), line investment (vl, FC
l ), RES-related

expansion (yb), and system power imbalance costs. Generation costs are calculated

via linear cost functions. Up and down reserves costs are associated with reserves

scheduled in order to ensure that the system will be able to meet demand under the

outage of any combination of up to K elements, any demand scenario, and any RES

generation realization within a pre-defined uncertainty set. Investment in transmis-

sion lines has two terms. The first one is related to the fixed cost of building the

line (Cl) and the second one refers to the line capacity (CCap). RES-related costs

are associated with the incentives that are diminished from society as subsides for

RES investments. The last term is the worst-case system power imbalance (RES

spillage, power surplus, and loss of load) cost associated with the security criterion

adopted by the transmission planner.
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Constraints (A.2) and (A.3) represent the nodal power balance of existing buses and

new candidate RES nodes, respectively. Note that demand and RES generation are

fixed to their nominal values for this pre-contingency problem. Constraint (A.4)

imposes a minimum amount of RES participation in the demand supply defined by

the parameter Target, which can be set to a value between 0 and 1. Constraints

(A.5) and (A.6) model the DC power flow approach to describe the line flows in

terms of nodal voltage angles for existing and candidates lines, respectively. For

each candidate line l, the binary decision variable vl assumes value equal to 1 if the

line is built or equal to 0 otherwise. The parameter Ml is a large-enough constant.

Constraints (A.7) and (A.8) establish power flow capacity limits for existing and

candidate lines, respectively. Constraints (A.9) enforce the line capacity of a can-

didate line to be 0 if the line is not constructed or to be between predefined minimum

and maximum line capacity bounds, otherwise. To avoid network loops where new

RES nodes are built without RES investment, we have included the logic constraints

(A.10). Thus, it is not possible to invest in lines that connect a new RES node to

the existing system if there is no RES investment in such node. In addition, the

power generation of each unit is limited in (A.11). The scheduled up-spinning re-

serves are constrained by the power capacity left in each generating unit in (A.12).

Down-spinning reserves cannot exceed the scheduled power generation in (A.13).

Moreover, maximum up and down spinning reserves are limited for each generat-

ing unit based on their technological constraints in (A.14) and (A.15). The binary

nature of line and RES investment variables is ensured in (A.16) and (A.17). In

(A.18), the system power imbalance for the worst-case scenario is limited to be less

than or equal to a certain user-defined threshold. Finally, the worst-case imbalance

is an outcome of the middle-level problem solution as represented in (A.19).
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A.2 Middle-level: worst-case demand, RES supply

and contingency scenario

The middle-level problem (2.9) identifies the contingency vector a and demand and

renewable generation realization d and w, respectively, that lead to the highest

level of system power imbalance. The binary availability vector a is written as

a = [aGT
, aLT

]T, where each component aG
i of vector aG corresponds to the status

(1 for on service and 0 for out of service) of a generating unit i. Analogously,

each component aL
l of aL is associated with the availability of a transmission line

l. Vector d is composed of elements Db that represent the demand of each bus b.

Similarly, elements Wb of vector w are related to the renewable generation provided

by each bus b. Auxiliary variables eD(+)
b and eD(−)

b , respectively, represent positive

and negative errors comprised in vector ed used in (2.6). Likewise, vector ew is

composed of variables eW(+)
b and eW(−)

b . Within this context, for a given security

parameter K and pair of covariance matrices Σ = (Σd, Σw), the second-level problem

(2.9) is formulated as follows:

∆DK,Σ(x, y, q) = max
δ,aG

i ,aL
l ,Db,eD(+)

b ,eD(−)
b ,

eW(+)
b ,eW(−)

b ,Wb

δ(x, y, q, a, d, w) (A.20)

subject to:

∑
i∈I

aG
i + ∑

l∈L
aL

l ≥ n− K (A.21)

aG
i ∈ {0, 1}; ∀i ∈ I (A.22)

aL
l ∈ {0, 1}; ∀l ∈ L (A.23)

Db = D̂b + sd ∑
b′∈NE|b′≤b

LD
b,b′

(
eD(+)

b′ − eD(−)
b′

)
; ∀b ∈ NE (A.24)

Wb = Ŵb + sw ∑
b′∈N|b′≤b

LW
b,b′

(
eW(+)

b′ − eW(−)
b′

)
; ∀b ∈ N (A.25)
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0 ≤ eD(+)
b ≤ 1; ∀b ∈ NE (A.26)

0 ≤ eD(−)
b ≤ 1; ∀b ∈ NE (A.27)

0 ≤ eW(+)
b ≤ 1; ∀b ∈ N (A.28)

0 ≤ eW(−)
b ≤ 1; ∀b ∈ N (A.29)

∑
b∈NE

(
eD(+)

b + eD(−)
b

)
≤ ΓD (A.30)

∑
b∈N

(
eW(+)

b + eW(−)
b

)
≤ ΓW (A.31)

Db ≤ Db ≤ Db; ∀b ∈ NE (A.32)

Wb ≤Wb ≤Wb; ∀b ∈ N (A.33)

δ(x, y, q, a, d, w) = solution of (A.35)–(A.44) (A.34)

The objective function (A.20) determines the maximum system power imbalance,

which is also minimized in the lower-level problem as a reaction of the system oper-

ator against the worst-case scenario identified by the middle-level problem (A.34).

Constraint (A.21) imposes the joint generation and transmission security criteria.

According to (A.21), the feasible region of the middle-level considers up to K failures

of elements of the system. The binary nature of the variables associated with outages

of generators and lines is enforced by constraints (A.22) and (A.23), respectively.

Uncertainties in demand and RES supply are represented by constraints (A.24)–

(A.33). Cholesky decompositions [101] of the nodal-demand covariance matrix and

of the RES-nodal supply covariance matrix are used to capture the correlations

among nodes in (A.24) and (A.25). The parameters sd and sw are used to control

the amplitude of the deviations of demand and RES supply, respectively. Nominal

demand and RES supply are represented by D̂b and Ŵb in each node, respect-

ively. Perturbation parameters (eD(+)
b′ , eD(−)

b′ , eW(+)
b′ , eW(−)

b′ ) are constrained within

the interval between 0 and 1 in constraints (A.26)–(A.29). Constraints (A.30) and
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(A.31), respectively, limit the number of demand and RES generation deviations

among buses to given user-defined uncertainty budgets ΓD and ΓW . These uncer-

tainty budgets control the conservativeness of the solution. Minimum and max-

imum nodal deviations for demand and RES generation are constrained in (A.32)

and (A.33), respectively.

A.3 Lower-level: system corrective actions

The lower-level problem comprises the reaction of the system operator against the

worst-case combination of post-contingency state and realization (scenario) of de-

mands and renewable generation identified by the second-level problem. In (2.9),

the third-level decision vector z is composed of variables related to a new operat-

ing point: pwc
i – energy scheduled in the worst-case post-contingency state for the

generating unit i; f wc
l – power flow transferred through line l in the worst-case post-

contingency schedule; θwc
b – phase angle of bus b in the worst-case post-contingency

state. Given the investment decisions and pre-contingency schedule defined by x,

y, and q, the linear program that models the system operator redispatch under the

worst-case state, represented by (a, d, w), is the following:

δ(x, y, q, a, d, w) = min
∆D+wc

b ,∆D−wc
b ,

θwc
b , f wc

l ,pwc
i

∑
b∈N

∆D−wc
b + ∑

b∈N/NW

∆D+wc
b

+ γSpil ∑
b∈NW

∆D+wc
b (A.35)

subject to:

∑
i∈Ib

pwc
i + ∑

l∈L|to(l)=b
f wc
l − ∑

l∈L| f r(l)=b
f wc
l − ∆D+wc

b

+ ∆D−wc
b = Db −Wb :

(
βb
)
; ∀b ∈ NE (A.36)

∑
i∈Ib

pwc
i + ∑

l∈L|to(l)=b
f wc
l − ∑

l∈L| f r(l)=b
f wc
l − ∆D+wc

b
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+ ∆D−wc
b = −ybWb :

(
βb
)
; ∀b ∈ NRE (A.37)

−Ml
(
1− aL

l
)
≤ f wc

l −
1
xl

(
θwc

f r(l) − θwc
to(l)

)
≤ Ml

(
1− aL

l
)

:
(
ωl, ψl

)
; ∀l ∈ LE (A.38)

−Ml
(
1− vlaL

l
)
≤ f wc

l −
1
xl

(
θwc

f r(l) − θwc
to(l)

)
≤ Ml

(
1− vlaL

l
)

:
(
πl, σl

)
; ∀l ∈ LC (A.39)

− aL
l Fl ≤ f wc

l ≤ aL
l Fl :

(
ξl, ϕl

)
; ∀l ∈ LE (A.40)

− aL
l FC

l ≤ f wc
l ≤ aL

l FC
l :

(
γl, χl

)
; ∀l ∈ LC (A.41)

aG
i
(

pi − rd
i
)
≤ pwc

i ≤ aG
i
(

pi + ru
i
)

:
(
ζi, λi

)
; ∀i ∈ I (A.42)

0 ≤ pwc
i ≤ Pi :

(
µi
)
; ∀i ∈ I (A.43)

∆D+wc
b , ∆D−wc

b ≥ 0; ∀b ∈ N. (A.44)

The objective function (A.35) minimizes the total system power imbalance, which

is defined here as the weighted sum of load shedding, power surplus, and wind

spillage. RES spillage is weighted by a factor γSpil in order to make spillage costs

comparable with load shedding costs. Note that NW is the set of buses containing

wind generation, which can be composed of both existing and candidate buses. It

is worth mentioning that minimizing total imbalance cost at the lower level is an

equivalent problem (objective function is multiplied by a factor CI
K). Constraints

(A.36) and (A.37) are associated with nodal power balance considering positive and

negative imbalance for existing nodes and new RES candidate nodes, respectively.

Power flows are described via constraints (A.38) for the existing lines and (A.39)

for the candidate lines. Power flow limits for the contingency states are imposed in

(A.40) and (A.41) for existing and candidates lines, respectively. Constraints (A.42)

set power generation limits based on pre-contingency scheduled energy and reserve.

Generation limits are set in (A.43). Finally, non-negativity is enforced in (A.44) for

nodal power imbalance variables.



APPENDIX B

Detailed solution methodology for the

problem of Chapter 2

The proposed reliable RG-TEP problem formulation (A.1)–(A.44) belongs to the

class of trilevel optimization models with multiple recourse functions [45], which

can be solved by a column-and-constraint generation algorithm. Here, we describe

our column-and-constraint generation approach that comprises the iterative solu-

tion of a master problem and a group of subproblems (as many as the number of

simultaneously considered security criteria).

133
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B.1 Master Problem

The master problem is an approximation of the original trilevel problem where,

in each iteration, primal polyhedral constraints are added to locally characterize

∆DK,Σ for each security criterion. The formulation of the master problem is written

as follows.

Minimize
α,θb,FC

l ,
fl ,pi,rd

i ,ru
i ,vl ,yl

∑
i∈I

CP
i (pi) + ∑

i∈I
Cd

i (r
d
i ) + ∑

i∈I
Cu

i (r
u
i ) + ∑

l∈LC

(
Clvl + CCap

l FC
l
)

+ ∑
b∈NRE

CRE
b yb + ∑

k∈{1,..,K}
CI

kαk (B.1)

subject to:

Pre-contingency constraints (A.2)–(A.17) (B.2)

∑
i∈Ib

pm
k,i + ∑

l∈(L∪LC)|to(l)=b

f m
k,l − ∑

l∈(L∪LC)| f r(l)=b

f m
k,l − ∆D+m

k,b + ∆D−m
k,b = D(m)

k,b

−W(m)
k,b ; ∀b ∈ NE, ∀k = 0, . . . , K, ∀m = 1, . . . , j− 1 (B.3)

∑
i∈Ib

pm
k,i + ∑

l∈(L∪LC)|to(l)=b

f m
k,l − ∑

l∈(L∪LC)| f r(l)=b

f m
k,l − ∆D+m

k,b + ∆D−m
k,b =

− ybW(m)
k,b ; ∀b ∈ NRE, ∀k = 0, . . . , K, ∀m = 1, . . . , j− 1 (B.4)

f m
k,l −

1
xl

(
θm

k, f r(l) − θm
k,to(l)

)
≥ −Ml(1− aL(m)

k,l );

∀l ∈ LE, m = 1, ∀k = 0, . . . , K, ∀m = 1, . . . , j− 1 (B.5)

f m
k,l −

1
xl

(
θm

k, f r(l) − θm
k,to(l)

)
≤ Ml(1− aL(m)

k,l );

∀l ∈ LE, m = 1, ∀k = 0, . . . , K, ∀m = 1, . . . , j− 1 (B.6)

f m
k,l −

1
xl

(
θm

k, f r(l) − θm
k,to(l)

)
≥ −Ml(1− (aL(m)

k,l vl));

∀l ∈ LC, m = 1, ∀k = 0, . . . , K, ∀m = 1, . . . , j− 1 (B.7)

f m
k,l −

1
xl

(
θm

k, f r(l) − θm
k,to(l)

)
≤ Ml(1− (aL(m)

k,l vl));

∀l ∈ LC, m = 1, ∀k = 0, . . . , K, ∀m = 1, . . . , j− 1 (B.8)
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− aL(m)
k,l Fl ≤ f m

k,l ≤ Fla
L(m)
k,l ; ∀l ∈ LE, ∀k = 0, . . . , K, ∀m = 1, . . . , j− 1 (B.9)

− aL(m)
k,l FC

l ≤ f m
k,l ≤ FC

l aL(m)
k,l ; ∀l ∈ LC, ∀k = 0, . . . , K, ∀m = 1, . . . , j− 1 (B.10)

aG(m)
k,i

(
pi − rD

i
)
≤ pm

k,i ≤
(

pi + rU
i
)
aG(m)

k,i ; ∀i ∈ I, ∀k = 0, . . . , K,

∀m = 1, . . . , j− 1 (B.11)

0 ≤ pm
k,i ≤ Pi; ∀i ∈ I, ∀k = 0, . . . , K, ∀m = 1, . . . , j− 1 (B.12)

∆D+m
k,b , ∆D−m

k,b ≥ 0; ∀b ∈ N, ∀k = 0, . . . , K, ∀m = 1, . . . , j− 1 (B.13)

αk ≥ ∑
b∈N

(
∆D+m

k,b + ∆D−m
k,b

)
; , ∀k = 0, . . . , K, ∀m = 1, . . . , j− 1 (B.14)

αk ≤ ∆Dk; ∀k = 0, . . . , K (B.15)

B.2 Subproblem

At each iteration and for each security criteria, the subproblem determines the

worst-case contingency for the pre-contingency scheduling of power and reserves

identified by the master problem. Mathematically, the subproblem is a mixed-integer

linear max-min problem that comprises the two lowermost optimization levels. This

particular instance of bilevel programming (A.35)–(A.44) can be conveniently recast

as an equivalent single-level program. To carry out this transformation, we take the

following steps: 1) the original second-level objective function (A.20) is rewritten

to maximize the third-level dual-objective function; 2) the new objective function is

subjected to constraints of the original second level problem and to dual feasibility

constraints associated with the third-level problem; 3) bilinear terms associated with

products between binary variables of the second-level problem (line and generation

contingency variables, aG
i and aL

l ) and dual variables of the third-level problem are

linearized by means of disjunctive constraints; and 4) bilinear terms associated with

products between third-level dual variables and second-level continuous variables
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(related to renewable injection and load scenarios) are linearized by means of the

binary expansion approach.1

In light of the aforementioned steps, the MILP subproblem is defined in (B.16)-

(B.56).

∆DK,Σ = Maximize
Φb,Ψb,βb,γl ,ζi,

ϑjb,λi,µi,ξl ,
πl ,ϖjb,ϱjb,σl ,

ς jb,ϕl ,χl ,ψl ,ωl

aG
i ,aL

l ,cl ,Db,

dl ,e
D(+)
b ,eD(−)

b ,

eW(+)
b ,eW(−)

b ,gi,hl ,
ml ,ql ,ol ,sl ,ui,Wb,zl

∑
b∈NE

(
Φb −Ψb

)
− ∑

b∈NRE

ybΨb − ∑
l∈LE

Ml
(
ωl − ql

)

− ∑
l∈LE

Ml
(
ψl − cl

)
− ∑

l∈LC

Ml
(
πl − vlzl

)
− ∑

l∈LC

Ml
(
σl − vlhl

)
− ∑

l∈LE

Flsl

− ∑
l∈LE

Flml − ∑
l∈LC

FC
l dl − ∑

l∈LC

FC
l ol + ∑

i∈I

(
pi − rd

i
)
ui −∑

i∈I

(
pi + ru

i
)

gi

−∑
i∈I

Piµi (B.16)

subject to:

Constraints (A.21)–(A.23) (B.17)

βb + ζi − λi − µi ≤ 0 :
(

pwc
i
)
; ∀b ∈ N, ∀i ∈ Ib (B.18)

βto(l) − β f r(l) + ωl − ψl + ξl − ϕl = 0 :
(

f wc
l

)
; ∀l ∈ LE (B.19)

βto(l) − β f r(l) + πl − σl + γl − χl = 0 :
(

f wc
l

)
; ∀l ∈ LC (B.20)

∑
l∈LE|to(l)=b

1
xl

(
ωl − ψl

)
+ ∑

l∈LE| f r(l)=b

1
xl

(
ψl −ωl

)
+ ∑

l∈LC|to(l)=b

1
xl

(
πl − σl

)
+ ∑

l∈LC| f r(l)=b

1
xl

(
σl − πl

)
= 0 :

(
θwc

b
)
; ∀b ∈ N (B.21)

− 1 ≤ βb ≤ 1 :
(
∆D+wc

b , ∆D−wc
b

)
; ∀b ∈ N/NW (B.22)

− γSpil ≤ βb ≤ 1 :
(
∆D+wc

b , ∆D−wc
b

)
; ∀b ∈ NW (B.23)

1It is relevant to say that the uncorrelated case, extensively explored in the literature ( [41,
43, 102], just to mention a few), fits in the proposed model by considering Σd and Σw as identity
matrices.
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ωl, ψl, ξl, ϕl ≥ 0; ∀l ∈ LE (B.24)

πl, σl, γl, χl ≥ 0; ∀l ∈ LC (B.25)

ζi, λi, µi ≥ 0; ∀i ∈ I (B.26)

Db = Db + κ
Jb

∑
j=1

2j−1ς jb; ∀b ∈ NE (B.27)

Wb = Wb + κ
Jb

∑
j=1

2j−1ϑjb; ∀b ∈ N (B.28)

Φb = Dbβb + κ
Jb

∑
j=1

2j−1ϖjb; ∀b ∈ NE (B.29)

Ψb = Wbβb + κ
Jb

∑
j=1

2j−1ϱjb; ∀b ∈ N (B.30)

−Mβ
(
1− ς jb

)
≤ ϖjb − βb ≤ Mβ

(
1− ς jb

)
; ∀b ∈ NE, ∀j = 1, . . . , Jb (B.31)

−Mβς jb ≤ ϖjb ≤ Mβς jb; ∀b ∈ NE, ∀j = 1, . . . , Jb (B.32)

−Mβ
(
1− ϑjb

)
≤ ϱjb − βb ≤ Mβ

(
1− ϑjb

)
; ∀b ∈ N, ∀j = 1, . . . , Jb (B.33)

−Mβϑjb ≤ ϱjb ≤ Mβϑjb; ∀b ∈ N, ∀j = 1, . . . , Jb (B.34)

−Mω
(
1− aL

l
)
≤ ql −ωl ≤ Mω

(
1− aL

l
)
; ∀l ∈ LE (B.35)

0 ≤ ql ≤ MωaL
l ; ∀l ∈ LE (B.36)

−Mψ
(
1− aL

l
)
≤ cl − ψl ≤ Mψ

(
1− aL

l
)
; ∀l ∈ LE (B.37)

0 ≤ cl ≤ MψaL
l ; ∀l ∈ LE (B.38)

−Mπ
(
1− aL

l
)
≤ zl − πl ≤ Mπ

(
1− aL

l
)
; ∀l ∈ LC (B.39)

0 ≤ zl ≤ MπaL
l ; ∀l ∈ LC (B.40)

−Mσ
(
1− aL

l
)
≤ hl − σl ≤ Mσ

(
1− aL

l
)
; ∀l ∈ LC (B.41)

0 ≤ hl ≤ MσaL
l ; ∀l ∈ LC (B.42)

−Mξ
(
1− aL

l
)
≤ sl − ξl ≤ Mξ

(
1− aL

l
)
; ∀l ∈ LE (B.43)

0 ≤ sl ≤ Mξ aL
l ; ∀l ∈ LE (B.44)

−Mϕ
(
1− aL

l
)
≤ ml − ϕl ≤ Mϕ

(
1− aL

l
)
; ∀l ∈ LE (B.45)
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0 ≤ ml ≤ MϕaL
l ; ∀l ∈ LE (B.46)

−Mγ
(
1− aL

l
)
≤ dl − γl ≤ Mγ

(
1− aL

l
)
; ∀l ∈ LC (B.47)

0 ≤ dl ≤ MγaL
l ; ∀l ∈ LC (B.48)

−Mχ
(
1− aL

l
)
≤ ol − χl ≤ Mχ

(
1− aL

l
)
; ∀l ∈ LC (B.49)

0 ≤ ol ≤ MχaL
l ; ∀l ∈ LC (B.50)

−Mζ
(
1− aG

i
)
≤ ui − ζi ≤ Mζ

(
1− aG

i
)
; ∀i ∈ I (B.51)

0 ≤ ui ≤ Mζ aG
i ; ∀i ∈ I (B.52)

−Mλ
(
1− aG

i
)
≤ gi − λi ≤ Mλ

(
1− aG

i
)
; ∀i ∈ I (B.53)

0 ≤ gi ≤ MλaG
i ; ∀i ∈ I (B.54)

ς jb ∈ {0, 1}; ∀b ∈ NE, ∀j = 1, . . . , Jb (B.55)

ϑjb ∈ {0, 1}; ∀b ∈ N, ∀j = 1, . . . , Jb. (B.56)

B.3 Solution Algorithm

The iterative algorithm proposed to solve the problem under consideration is based

on column and constraint generation algorithm. At each iteration, the solution of

the master problem provides a lower bound for the original trilevel problem as well as

an expansion plan and a pre-contigency scheduling of power and reserves. For each

considered security criterion, the subproblem identifies the worst case system power

imbalance and provides an upper bound for the original trilevel problem. Relevant

information from the subproblem is sent to the master problem, which is updated

with new columns and constraints to accommodate such information. The master

problem is then solved again to generate a new lower bound that will be compared

to the new upper bound provided by the subproblem. This procedure is repeated

until lower and upper bounds are sufficiently close.
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The solution algorithm is described in detail as follows.

Iterative Algorithm

(i) Initialization.

• Initialize the iteration counter: j← 1;

• Solve the master problem (B.1)-(B.2) without cuts. This step provides

α(1), FC(1)
l , p(1)i , rd(1)

i , ru(1)
i , v(1)l , y(1)b , and the same lower bound for

the optimal cost of all the multiple security criteria accounted for, which

is described by the expression LBk = ∑i∈I CP
i (p(1)i ) + ∑i∈I Cd

i (r
d(1)
i ) +

∑i∈I Cu
i (r

u(1)
i ) + ∑l∈LC

(
Clv

(1)
l + CCap

l FC(1)
l

)
+ ∑b∈NRE CRE

b y(1)b .

(ii) Subproblem solution. Solve a subproblem (B.16)-(B.56) for each imposed se-

curity criteria, given FC(j)
l , p(j)

i , rd(j)
i , ru(j)

i , v(j)
l , and y(j)

b . This step provides

aG(j)
k,i , aL(j)

k,l , D(j)
k,b, W(j)

k,b , and ∆D(j)
k , and an upper bound for the optimal cost

of each single security criterion considered in the model as UBk = CP
i (p(j)

i ) +

∑i∈I Cd
i (r

d(j)
i )+∑i∈I Cu

i (r
u(j)
i )+∑l∈LC

(
Clv

(j)
l +CCap

l FC(j)
l

)
+∑b∈NRE CRE

b y(j)
b +

CI
k∆D(j)

k .

(iii) Stopping criterion. If UBk−LBk
UBk

≤ ϵk; ∀k = 0, . . . , K, then stop the algorithm;

otherwise go to step 4.

(iv) Iteration counter updating. Increase the iteration counter: j← j + 1.

(v) Master problem solution. Solve the full master problem (B.1)-(B.15). This

step provides α(k), FC(j)
l , p(j)

i , rd(j)
i , ru(j)

i , v(j)
l , y(j)

b , and an lower bound for

the optimal cost of each single security criterion considered in the model as

LBk = CP
i (p(j)

i )+∑i∈I Cd
i (r

d(j)
i )+∑i∈I Cu

i (r
u(j)
i )+∑l∈LC

(
Clv

(j)
l +CCap

l FC(j)
l

)
+∑b∈NRE CRE

b y(j)
b + CI

kα
(j)
k . Go to step 2.
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Oracle formulation for methodology

presented in Chapter 3

The oracle mentioned in Section 3.4.1 is formulated as follows:

∆Dwc
t = Maximize

βbt,γ
+
it ,γ−it ,

η+
lt ,η−lt ,π+

lt ,π−lt ,
σ+

lt ,σ−lt ,χ+
lt ,χ−lt ,ωlt

∑
b∈N

Dbtβbt − ∑
l∈LC

(
1− aL

ltvl
)

Mlσ
+
lt

− ∑
l∈LC

(
1− aL

ltvl
)

Mlσ
−
lt − ∑

l∈
(
LF∪LPS

) Flπ
+
lt − ∑

l∈
(
LF∪LPS

) Flπ
−
lt − ∑

l∈LC

aL
lt f C

l χ+
lt

− ∑
l∈LC

aL
lt f C

l χ−lt + ∑
l∈I

aG
it
(

pit − rd
it
)
γ+

it −∑
l∈I

aG
it
(

pit + ru
it
)
γ−it − ∑

l∈LPS

vlψη+
lt

− ∑
l∈LPS

vlψη−lt (C.1)

subject to:
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Constraints (3.21)-(3.23) (C.2)

βbt + γ+
it − γ−it ≤ 0 :

(
pwc

it
)
; ∀b ∈ N, i ∈ Ib (C.3)

βto(l),t − β f r(l),t + ωlt + π+
lt − π−lt = 0 :

(
f wc
lt

)
; ∀l ∈

(
LF ∪ LPS) (C.4)

βto(l),t − β f r(l),t + σ+
lt − σ−lt + χ+

lt − χ−lt = 0 :
(

f wc
lt

)
; ∀l ∈ LC (C.5)

− 1 ≤ β f r(l),t ≤ 1 :
(
∆D+

bt, ∆D−bt
)
; ∀b ∈ N (C.6)

∑
l∈
(
LF∪LPS

)
|to(l)=b

aL
lt

xl
ωlt − ∑

l∈
(
LF∪LPS

)
| f r(l)=b

aL
lt

xl
ωlt + ∑

l∈LC|to(l)=b

σ+
lt

xl

− ∑
l∈LC| f r(l)=b

σ+
lt

xl
+ ∑

l∈LC| f r(l)=b

σ−lt
xl
− ∑

l∈LC|to(l)=b

σ−lt
xl

= 0 :
(
θwc

lt
)
; ∀b ∈ N (C.7)

−
aL

lt
xl

ωl + η+
lt − η−lt = 0 :

(
ψwc

lt
)
; ∀l ∈ LPS (C.8)

σ+
lt , σ−lt , χ+

lt , χ−lt ≥ 0; ∀l ∈ LC (C.9)

π+
lt , π−lt ≥ 0; ∀l ∈

(
LF ∪ LPS) (C.10)

γ+
it , γ−it ≥ 0; ∀i ∈ I (C.11)

η+
lt , η−lt ≥ 0; ∀l ∈ LPS. (C.12)

Formulation (C.1)-(C.12) is a mixed-integer nonlinear programming problem. Fol-

lowing well-known algebra results [103], the bilinear product aL
ltσ

+
lt for instance can

be linearized in two steps. Firstly the auxiliary variable e+lt is created to replace

aL
ltσ

+
lt in (C.1). Secondly, the following constraints are included in the oracle to

represent the linearization of the aforementioned bilinear product.

0 ≤ σ+
lt − e+lt ≤

(
1− aL

lt
)

Ml (C.13)

0 ≤ e+lt ≤ aL
ltMl (C.14)

The same rationale is used to linearize the other bilinear products, namely aL
ltσ
−
lt ,

aL
ltχ

+
lt , aL

ltχ
−
lt , aL

ltωlt, aG
it γ+

it , and aG
it γ−it . Once such linearizations are performed, the

oracle is recast into a MILP problem.



Regarding the big-M values used in the aforementioned linearizations, it is worth

mentioning that, as discussed in [17], if any of constraints (3.26)–(3.28) and (3.30)

is modified in the right hand side by an infinitesimal value, the largest change in

the objective function of the fifth-level (3.24) will be limited to the aforementioned

infinitesimal value multiplied by 2. This effect is because every variable f wc
lt is present

in two nodal power balance constraints since each f wc
lt has a sending and a receiving

bus. Therefore, big-M values associated with the linearizations of products aL
ltσ

+
lt ,

aL
ltσ
−
lt , aL

ltχ
+
lt , aL

ltχ
−
lt , and aL

ltωlt can be set equal to 2. Likewise, any perturbation in

the right hand side of (3.31) would lead to a change in the value of the objective

function (3.24) limited to the magnitude of such perturbation. Consequently, the

big-M values related to the linearizations of aG
it γ+

it , and aG
it γ−it can be set equal to

1.
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