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Introduction
The automotive industry is currently facing a moment of radical change. According to 
the 2018 edition of the future automotive industry structure (FAST) study,1 conducted 
by Oliver Wyman and the German Automotive Association, there are seven main factors 
that will drive this sector over the next decade (until 2030), thanks to the exploitation of 
digitization, artificial intelligence (AI), and machine learning (ML). These identified fac-
tors are: (i) connected vehicles, (ii) autonomous vehicles, (iii) electric mobility, (iv) digital 
industry, (v) new distribution channel pay-per-use, (vi) changes in customer structure, 
and (vii) new concepts for Human–Machine Interface.

In this emerging context, the Internet of Things paradigm can be exploited, taking 
advantage of interconnected sensors, which are more and more accurate, smaller, and 
powerful [1]. Accordingly, vehicles are increasingly being equipped with a variety of 
sensors, provided with integrated connectivity, that can monitor different components 
and situations, such as the engine, the driving style or the environmental conditions. 
Indeed, these sensors lead to the generation of large volumes of data about the vehicle, 
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that can be analyzed to reveal patterns and trends, referring to the so-called big data [2, 
3]. In fact, the relevant impact of big data also applies to the automotive context, where 
data gathered from the vehicle can be exploited in different ways, ranging over predic-
tive maintenance and advanced real-time analytics [4]. These emerging technologies 
and paradigms are particularly interesting with regard to the electric vehicles segment, 
the spread of which is constantly growing thanks to several factors, such as a reduced 
impact on the environment [5], a faster and more accurate motor torque generation [6], 
and lower long-term costs of ownership [7]. In this context, the streams of data, col-
lected by exploiting interconnected sensors, could be a unique chance to mitigate the 
so-called “range anxiety”, defined as the fear of fully depleting a battery electric vehicles 
(BEVs) battery in the middle of a trip, leaving the driver stranded [8]. In fact, despite the 
several advantages described above, the use of electric vehicles still presents some limi-
tations, including:

• Limited traveling distance: currently the distance that can be covered by electric cars 
is limited.

• Lack of recharge points: electric vehicles require charging stations, but there is a sig-
nificant lack of infrastructures. While this problem is mitigated in an urban context, 
it becomes critical in long distance travels, since they require a network of charging 
stations strategically located.

• Long recharge time: unlike gasoline-powered cars, electric ones take hours to get 
fully charged.

Considering these open issues, it is clear the need for optimizing energy consumption 
in electric vehicles. With this purpose in mind, we focused on different driving styles, 
evaluating which one leads to the efficient use of the battery charge. From an empirical 
analysis, and according to the current literature [9], we found out that the regenerative 
brake has a significant impact in this sense. In fact, electric vehicles are equipped with 
two different brakes: the regenerative and the friction ones. In particular, the activation 
of the regenerative brake implies recharging the battery, on the contrary of the activation 
of the friction one. Hence, a more aware use of the brake can significantly change the 
battery level. Starting from these considerations, our aim is to provide drivers with an 
integrated solution that fosters eco-driving behaviours, and in particular, that enhances 
an optimized use of the regenerative brake.

This study was conducted within the TIME project2 (which stands for “Tecnologie 
Integrate per la Mobilitá Elettrica” in Italian language, meaning “integrated technologies 
for electric mobility”). The whole TIME project is focused on the development of com-
plete technological systems (powertrains) with integrated solutions for electric vehicles. 
The main purpose is to identify a methodology to build the integrated components of 
an efficient electric vehicle, obtained by converting a petrol car (retrofit) or by directly 
being installed in a new vehicle. While the TIME project involves several research areas, 
in this paper we are mainly investigating how to combine big data and machine learn-
ing in order to predict the activation of the friction brake. This aims to optimize energy 
consumption in electric vehicles, improving drivers’ consciousness, and then let them 

2 https ://site.unibo .it/time/en.

https://site.unibo.it/time/en
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better deal with the “range anxiety”. Then, the in-vehicle Human–Machine Interface 
can take advantage of such a real-time prediction, equipping the driver with more accu-
rate and complete information about his/her braking styles, thus enhancing eco-driving 
behaviours.

Hence, here we present the design and implementation of a prototype system, inte-
grated in a real electric vehicle. Such a prototype exploits: (i) vehicles data collection, 
(ii) a machine learning algorithm, and (iii) the Human–Machine Interface (i.e., the car 
dashboard). In this scenario, we have taken advantage of the use of the most adequate 
machine learning algorithm so as to predict the friction brake activation. Such an algo-
rithm has been evaluated on simulated and real datasets of driving cycles.

Summarizing, the main contributions of our study are: (i) the design and implemen-
tation of a system that uses big data gathered by in-vehicle sensors and components 
to provide drivers with real-time visual feedback to optimize the battery energy con-
sumption; (ii) the identification of the machine learning algorithm that best suits our 
need to predict the friction brake activation. Moreover, we assessed the feasibility of our 
approach by using both simulated and real data (collected from the field, integrating the 
system in a real electric vehicle).

The remainder of the paper is structured as follows. "Background and related work" 
section briefly presents studies conducted in the field, which analyze and exploit top-
ics and research projects similar to the ones of interest in our work. "Problem state-
ment" section details the context and the research questions that motivated our study, 
then, "Methods" section presents our approach, detailing the dataset used, the system 
overview, and describing the machine learning module. "Results and discussion" sec-
tion illustrates the results obtained with the consequent discussion. Finally, "Conclusion 
and future work" section concludes this paper, presenting some final remarks and future 
work.

Background and related work
In this Section, we present some projects and studies related to our approach, introduc-
ing some cases based on sensed data and machine learning techniques and on increasing 
the user awareness about driving styles and eco-driving behaviours in the automotive 
context. Finally, some works that exploit gamification strategies to support drivers and 
users on the move are briefly introduced.

The growing number of sensors integrated in vehicles, in addition to the possibility 
of having a complete view of the vehicle status, thanks to the messages exchanged on 
the controller area network (CAN) bus, made possible exploiting big data to obtain use-
ful explanation and/or insights behind different phenomena. The data gathered from 
in-vehicle sensors can be variegated, ranging from the speed of the vehicle to the per-
centage of the battery charge. In this context, it emerges the opportunity to feed machine 
learning algorithms with these data, in order to extract new knowledge, as witnessed by 
recent studies. For instance, the authors of [10] developed ML_EMO_HEV, a framework 
that uses big data about motor torque, power, and vehicle speed, together with machine 
learning algorithms with the aim of predicting roadway types, traffic congestion levels, 
and driving trends. Then, starting from this prediction, it exploits another algorithm so 
as to learn optimal energy settings. This way, a real-time quasi-optimal control of energy 



Page 4 of 15Delnevo et al. J Big Data            (2019) 6:64 

flow in a hybrid electric vehicle (HEV) can be obtained. With the same aim in mind 
(optimizing the engine performance), [11] tried to determine optimal biodiesel ratio 
using advanced machine learning methods, exploiting a dataset composed by engine 
torque and fuel blends. The authors of this work compared different techniques to create 
engine models based on experimental data, in particular: Extreme Learning Machine, 
Least-Squares Support Vector Machine, and Radial-Basis Function Neural Network.

Different aspects were analyzed by [12, 13] in their studies. In particular, [12] exploited 
machine learning to model human recognition of vehicle-driving situations. The pur-
pose of such research is to provide physical context to mitigate unnecessary distractions, 
allowing the driver to maintain focus during periods that require high concentration. 
While [13], proposed a system to detect early onset of fatigue in drivers using heart 
rate variability, since fatigue can acutely impair driver’s alertness and performance. In 
particular, the detection was performed by a neural network, trained and tested on a 
set of electrocardiogram (ECG) data recorded under laboratory conditions. Finally, 
Ezzini et al. [14] addressed the problem of driver identification using in-vehicle sensors 
measurements. They investigated both the minimum learning and classification times 
required, exploiting several algorithms like Extra Tree, Random Forest, KNN, and SVM. 
Monitoring heart rate is also at the basis of [15], where the authors have assessed the 
correlation of driving behaviour with heart rate changes. The authors considered that 
there are situations where the emotional conditions of drivers vary due to different 
reasons (beyond their control or not). With the aim of controlling such variations, the 
authors designed and developed an Android application to real-time monitoring both 
physiological data from the driver and diagnostic data from the vehicle, so as to inves-
tigate their correlation. In particular, an OBD-II connector has been used to obtain the 
vehicle diagnostic data, while non-invasive biomedical sensors packaged in belts and 
smart watches have been used to gather data about the drivers’ heart rate, focusing on 
the connection between driving aggressiveness and heart rate.

The study and the identification of driving styles are at the basis of [16] and of [17]. 
The authors integrated both data mining techniques and neural networks with the aim 
of generating a classification of driving styles by analyzing the driver’s behavior along 
specific routes. The authors implemented a neural network-based algorithm, that can 
characterize the type of road on which the vehicle is moving, as well as drivers’ styles, 
taking into account parameters such as speed, acceleration, and revolutions per minute 
of the engine (rpm). The final aim of this work is to assist the driver, so as to avoid or at 
least to limit bad habits in their driving behavior, while supporting useful tips to improve 
fuel economy, by exploiting the evolution of mobile terminals and the availability of a 
standard interface to access car data. The results presented in these papers show that 
neural networks were able to achieve a high degree of exactitude at classifying both road 
and driver types based on user traces.

The prediction of consumption in vehicles while supporting drivers in optimiz-
ing vehicles consumption are the purpose of [18–20]. In particular, [18] proposes a 
methodology to real-time calculate the consumption and the environmental impact 
of spark ignition and diesel vehicles from a set of variables, such as engine fuel rage, 
speed, mass air flow, absolute load, and manifold absolute pressure. All these data 
can be collected from the vehicle’s Electronic Control Unit (ECU). The methodology 
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has been defined with the aim of supporting eco-driving behaviors in drivers, by 
improving fuel economy. This work shows, through data mining, how much the driv-
ing style really affects (both negatively or positively) the fuel consumption, as well 
as the improvement or the reduction of greenhouse gas emissions generated by 
vehicles. While predicting the consumption of electric vehicles and their electric-
ity demand are at the basis of [20]. In fact, it proposes an approach based on hav-
ing specific knowledge about information on the number of vehicles that are going to 
recharge their batteries at a particular point and instant and on the available charging 
points. Obtained results report that the proposed approach can predict the electricity 
requirements of the electric vehicles that are expected to recharge their batteries up 
to 180 minutes in advance [20].

Both in the industrial and academic world, there are a lot of examples of the adoption 
of Gamification strategies with different purposes, such as fostering eco-driving behav-
iours. Different car manufacturers developed several Gamification mechanisms and 
embedded them in their models. Diewald et al. [21] provided a comprehensive review of 
such applications. From Volkswagen’s BlueMotion Roulette to Ford’s SmartGauge with 
EcoGuide, passing through the Kia’s ECOdynamics and Fiat’s eco:Drive. With regard to 
academic research, there are plenty of works on this subject, even if with different aims 
[22]. Corcoba Magaña and Munoz-Organero [23] developed a mobile application to pro-
vide a vocal eco-driving assistant. The application employs two types of feedback, one 
real-time (while the user is driving) and the other one at the end of the trip. The first one 
is activated when a driver does not comply with predefined eco-driving rules. In this 
case, the system tries to identify a group of drivers in a similar situation, exploiting infor-
mation about weather, traffic, time, and vehicle location. Then, using fuzzy logic, each 
attribute of the user telemetry is compared with the ones of the best driver of the cluster. 
If the difference exceeds a threshold, the relative eco-advice will be provided. The sec-
ond type of feedback, instead, is provided at the end of every trip, and generally reports 
about his/her driving style. In particular, it consists in the unlocking of achievements, 
that are one of the most common Gamification mechanisms. In this study, achievements 
have to encourage drivers to save fuel and motivate them to continually use the eco-driv-
ing assistant. Vaezipour et al. [24], through a user-centered design approach, evaluated 
a series of conceptual designs of in-vehicle gamified interfaces. A particular focus has 
been paid to the ability to increase drivers’ acceptance of feedback from such interfaces 
in order to improve fuel efficiency and promote safe driving.

An example exploiting real-time analysis of data gathered by in-vehicle sensors is 
the study presented by Steinberg [25], that proposed a game concept to encourage 
safer driving behaviours, in particular avoiding tailgating, the practice of driving too 
close to a frontward vehicle. They defined an area around cars and they implemented 
a real-time data analysis with a zombie narrative as theme [26], so that crossing the 
area results in the infection of the car.

All these studies differ from the approach we propose and the objectives which are 
at the basis of our study. In fact, our approach seeks to take advantage of sensed big 
data and machine learning strategies to understand the user’s driving style. Then, 
real-time feedback through graphical elements is prompted to induce a more efficient 
driving style and management of the electric vehicle.
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Problem statement
Electric vehicles are equipped with two different brakes. Figure 1 presents how the acti-
vation of the two brakes impact the battery in terms of energy consumption optimiza-
tion. In particular, the case a in Fig. 1 represents the activation of the friction brake, that 
consists of a pad pushing on a disc to create friction, resulting in a neutral effect on the 
battery; while case b shows the positive impact on the battery of the activation of the 
regenerative brake, where the vehicle’s momentum is used to turn the motor into a gen-
erator and to recover energy in the battery that would be, otherwise, lost as heat.

Figure 2 describes the behavior of the vehicle. While running, the vehicle simply con-
sumes the electricity stored in the batteries (case a). They can be recharged in two ways. 
The first one is through the engine brake when the vehicle is downhill (case b). The 
second is during a brake. In the TIME prototype, as in many electric vehicles, light or 
moderate braking takes advantage of the regenerative brake (case c) while heavy braking 
will also engage the friction braking system (case d). In the latter situation, the energy 
is not fully recovered but it is partially lost as heat. Hence, the braking style that allows 
maximizing the recovered energy consists of using only and exclusively the regenerative 
brake (i.e., reducing the red area of Fig. 2, and increasing, consequently, the green one). 
Since a threshold (e.g., brake pedal position), that defines the friction brake activation, 
does not exist, we want to predict its activation exploiting in-vehicle sensors and com-
ponents data, and machine learning techniques. Starting from these predictions, the sys-
tem should provide real-time suggestions and indications with the aim of improving the 
driver’s braking style, taking advantage only of the regenerative brake, with a consequent 
increase of the recovered energy.

Given these premises, with this study, we intend to prove that it is possible to effec-
tively exploit big data gathered from in-vehicle sensors and components to provide driv-
ers with real-time feedback aimed to optimize their braking style, and, accordingly, the 
energy consumption.

Fig. 1 Brakes in electric vehicles: a friction and b regenerative

Fig. 2 Representation of the braking system behaviour: a electricity consumption, b recharging downhill, 
c recharging due to regenerative brake, d not recharging due to friction brake
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In more detail, the research questions that drove our study are the following ones:

1. What is the machine learning algorithm that best allows to extract meaningful infor-
mation from our dataset and address our objective to predict the friction brake acti-
vation, keeping into account the need of continuously train the model and the lim-
ited computational power?

2. Is the identified algorithm able to predict the friction brake activation with good per-
formances?

3. Are the performance of the selected algorithm comparable to the ones of other com-
mon machine learning algorithms?

4. Is the algorithm, trained on simulated data, able to predict the friction brake activa-
tion using sensed real data?

Methods
In this section, as a main contribution of the paper, we describe our approach, detailing 
the dataset, the system architecture, and the machine learning algorithm.

Dataset description

The dataset is composed of (i) simulated data, used for the training, and (ii) real data, 
used as a  further validation set. The simulated data were derived from Matlab Sim-
ulink simulator of the TIME’s vehicle. The simulations were conducted on six hetero-
geneous driving cycles: urban (ECE-15, ARTEMIS urban, Bologna urban, Rome urban), 
rural (ARTEMIS rural road) and motorway (ARTEMIS motorway). The Urban Driv-
ing Cycle ECE-15 was introduced first in 1970 as part of ECE vehicle regulations. The 
cycle has been designed to represent typical driving conditions of busy European cities 
and is characterized by low engine load, low exhaust gas temperature, and a maximum 
speed of 50 km/h. The ARTEMIS cycles were defined within the ARTEMIS research 
project, supported by the European Commission to set-up and improve the European 
methods for estimating and inventorying the pollutant emissions from the transports. 
In particular, we used the driving cycles (urban, rural and motorway ones) developed by 
[27]. Finally, Bologna and Rome urban are both driving cycles created within the TIME 
project, starting from a set of GPS data in Bologna and Rome. The first one consists in 
Bologna avenues, the latter one is mainly an urban cycle, but it also includes a part of the 
"Grande Raccordo Anulare" (orbital motorway that encircles Rome). With regards to the 
real data, since the vehicle has not been yet type-approved, it was not possible to collect 
a large amount of data. For this reason, we were able to collect real data related to a cycle 
of 1.2 km performed on a private road.

The features collected are: (i) gas pedal position (expressed in degrees), (ii) percentage 
of use of the electric brake, (iii) percentage of use of the mechanic brake, (iv) speed of 
the vehicle (expressed in km/h), (v) percentage of the battery charge. While the first four 
features are closely related to the activation of the friction brake, the last one is not. We 
choose to include it since it may be useful in view of a possible future integration with a 
different approach based on the prediction of the future state of charge of the battery, as 
described in [28]. All the features are sampled at a rate of 0.1 s (100 ms).
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We aggregated the data according to two main parameters: the input temporal win-
dow width (i.e., how many samples are used as input) and the time offset (i.e., the future 
instant of the prediction). We evaluated different temporal-window widths (from 0.1 to 
2.3  s) and different time offsets (from 0.1 to 2.3  s). More details about the motivation 
behind these intervals value are provided in the “Prediction of the friction brake activa-
tion” subsection. Only temporal windows included within a braking are considered (i.e., 
the driver is braking). The datasets contain from 1500 to  6000 sample windows, with an 
average of  4300.

System overview

Figure  3 presents an overview of the proposed system. All the data about the vehicle 
state are transmitted on the CAN (Controlled Area Network) bus, including the input 
features of the machine learning module. The vehicle has two tangible-car-infotainment-
systems (TCIS). One of them is the car dashboard, and it is directly ahead of a vehicle’s 
driver (named car dashboard), displaying instrumentation and controls for the vehicle’s 
operation. The other one is the control panel that delivers entertainment and informa-
tion content (named infotainment system). It allows calling someone, playing music, etc. 
Each TCIS has its own controller, that consists of a single-board computer. The dash-
board controller can only read from the CAN bus and visualizes the correspondent 
information on the display. Instead, the infotainment controller can both read and write 
on the can bus. Thus, its display is touch-screen, since it has to manage also the driver’s 
input. 

Essentially, considering our approach, the primary information to display drivers, in 
order to affect their driving style, is the real-time prediction of the imminent activation 
of the friction brake. This visual information can be displayed in both the car dashboard 
and the infotainment system since the machine learning (ML) module can interact with 
both the interfaces. Even if the car dashboard has strong constraints imposed by various 
regulations [29], we decided to display the prediction in the car dashboard, since such 
information has to be provided real-time to the driver. In this way, the information is 
immediately visible to the driver, in a clear and not distracting way.

Fig. 3 System overview
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Machine learning module

The main purpose of the ML module is to predict how likely (calculating a value between 
0 and 1) the friction brake will be active in a future instant. To address this objective, 
answering to the first research question, we evaluated the use of different machine learn-
ing algorithms. Two main factors drove our final choice.

First of all, the module should be able to continuously train the model with the new 
data generated while the vehicle is running, without starting from scratch (i.e., without 
employing all the data used for training until then). This is a crucial aspect since the dif-
ferent components developed within the TIME project are designed to be suitable not 
only for installation on new vehicles but also on existing vehicles produced by differ-
ent car manufacturers. So the model, designed to address this constraint, must adapt 
itself to different vehicles. Thus, each driver has his/her own driving styles, that can also 
change during time, so the model must also adapt itself to different driving styles. For 
this reason, we excluded the use of traditional approaches such as linear regression, gra-
dient boosting, etc.. that do not support incremental learning.

The second factor to take into account when selecting the more suitable algorithm is 
the available computational power. The Dashboard controller (Fig. 3) runs on a single-
board computer, like a Raspberry PI 3 Model B, that has a Quad Core 1.2GHz Broadcom 
BCM2837 64bit CPU with 1GB RAM. Thus, the sample rate is 0.1 s. Since our system 
aims to be as real-time as possible, the model has to predict the activation of the friction 
brake with the lowest sample time (i.e., 0.1 s). These constraints exclude deep learning 
approaches like Recurrent Neural Networks, that are the best option when working with 
sequential data [30]. Hence, we decided to employ a multilayer perceptron (MLP) with 
one hidden layer composed of 20 neurons. Such a neural network can be trained on new 
samples, adapting itself to different cars and drivers, even if it runs on a single-board 
computer, and it is able to compute the result every 0.1 s.

Then, we focused on how to visualize the feedback about the activation of the friction 
brake in the car dashboard. An important aspect, that we took into consideration, is the 
cognitive load. It is particularly relevant since driving is one of the most complex activity. 
Different studies [31, 32] investigated the impact of car interfaces in terms of the distrac-
tion of the driver. Based on the findings of past studies, we decided to use an icon with a 
battery that appears only during braking, and its color changes with respect to the neu-
ral network prediction. In particular, it can be:

• green (low probability of activation, range [0, 0.33])
• yellow (medium probability of activation, range [0.33, 0.67]
• red (high probability of activation, range [0.67, 1]).

The whole car dashboard was developed using QT,3 standard “de facto” of automotive 
HMI. A screenshot of the car dashboard is visible in Fig. 4, where braking is simulated. It 
is possible to notice the yellow icon of the battery, which indicates a medium probability 
of activation of the friction brake.

3 https ://www.qt.io/qt-autom otive -suite /.

https://www.qt.io/qt-automotive-suite/
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Results and discussion
In this section we evaluate and compare our method to predict the friction brake acti-
vation. Finally, we validate our approach using both simulated and real data, collected 
in the field.

Prediction of the friction brake activation

To answer the second research question, we focused on the simulation data. We eval-
uated the performances of the model varying both the time-width and the time-offset 
from 0.1 to 2.3 s. The tests have been performed in cross-validation on the data of the 
six simulated driving cycles. In the simulations, we employed the same vehicle char-
acteristics and the same driving style. A crucial aspect of our approach is how far in 
advance the activation of the friction brake can be predicted, so that, through the car 
dashboard battery icon, the driver can be advised far in advance.

In Table  1 we reported the average AUC on the six driving cycles. As shown, the 
neural network has the best performances with larger time-width and lower time-
offset. However, the neural network has good prediction capabilities (0.85 and 0.82) 
also when the time-offset is large (e.g., 2.1  s and 2.3  s). It is possible to notice that 
already with time-width equal to 2.3  s, results get worse compared to the previous 
time-width in many cases. Since the driver’s reaction time is on the average 2 s [33, 
34] we decided to fix the time-offset to 2.1 s. With such time-offset, the best model is 
the one with a temporal width equal to 2.3 s. 

Performance comparison

Subsequently, to answer the third research question, we checked if the performances 
of the selected algorithm were comparable to the ones of other common machine 

Fig. 4 Car dashboard prototype
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learning algorithms. It is worth to notice that we already discussed the reasons behind 
our choice in "Machine learning module" section. However, we want to compare the 
performances of the MLP to be sure that other algorithms do not outperform it.

In particular, we evaluated the performances of the following ones:

• Linear regression (LR)
• K-nearest neighbors (KNN)
• Classification and regression tree (CART)
• Support vector regression (SVR)
• Adaptive boosting (AB)
• Gradient boosting (GB)
• Random forest (RF)

We fixed the time-width and the time-offset respectively to 2.3 s and 2.1 s, as explained 
in the previous section. The tests have always been performed in cross-validation on the 
data of the six simulated driving cycles. The results are shown in Fig. 5, in which the box 
plot for each algorithm is reported, and in Table 2, where the performances on the test 
path are reported for each algorithm. As shown, our MLP has generally better perfor-
mances than the other approaches. In particular, it works better than almost all the oth-
ers except for the adaptive boosting and the gradient boosting which are slightly more 
accurate on average. 

In conclusion, the MLP has proved to be the right choice, since it works better than 
many of the presented approaches, in addition to presenting all the advantages described 
in "Machine learning module" section.

Evaluation on real data

To answer the fourth and final question, we also considered the prediction capabilities of 
the model using real data related to the test cycle directly sampled from the first proto-
type of the TIME vehicle (i.e. not Simulink samples). Figure 6 shows the ROC curve on 
the six simulating driving cycles (continuous lines) and on real data sampled from the 

Table 1 Average AUC varying width and offset

Width/offset 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3

0.1 0.978 0.932 0.894 0.871 0.843 0.830 0.828 0.809 0.810 0.798 0.759 0.774

0.3 0.985 0.943 0.909 0.885 0.859 0.841 0.834 0.835 0.806 0.797 0.799 0.787

0.5 0.986 0.952 0.918 0.886 0.870 0.849 0.822 0.832 0.813 0.794 0.812 0.751

0.7 0.987 0.955 0.922 0.897 0.884 0.853 0.834 0.825 0.815 0.823 0.785 0.776

0.9 0.990 0.959 0.931 0.916 0.897 0.876 0.844 0.839 0.823 0.812 0.786 0.775

1.1 0.994 0.973 0.950 0.924 0.909 0.886 0.850 0.843 0.829 0.824 0.795 0.801

1.3 0.994 0.974 0.947 0.929 0.908 0.854 0.869 0.847 0.830 0.800 0.814 0.797

1.5 0.994 0.974 0.948 0.932 0.908 0.858 0.849 0.848 0.829 0.815 0.819 0.816

1.7 0.993 0.974 0.950 0.933 0.888 0.867 0.860 0.844 0.830 0.800 0.828 0.827

1.9 0.994 0.973 0.948 0.930 0.908 0.873 0.854 0.877 0.808 0.814 0.835 0.801

2.1 0.992 0.969 0.950 0.933 0.913 0.878 0.883 0.833 0.856 0.826 0.841 0.812

2.3 0.993 0.971 0.948 0.925 0.897 0.870 0.878 0.835 0.856 0.801 0.855 0.822
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TIME vehicle, named TIME test cycle (dashed line), for temporal-window of 2.3 s and 
time-offset of 2.1 s. As shown, the prediction performances of the neural network model 
are also good when applied to real data, with an AUC equal to 0.82. Although our real 
test case is quite limited (as explained in "Dataset description" section), this confirms 
that the implemented neural network model can predict the activation of the friction 
brake with good performances also when fed with real data. 

As shown in Fig.  6, the prediction capabilities are overall good on all driving cycles 
with lower performances on the rural and motorway cycles. Since these two driving 
cycles are the two more under-represented in our training set, we can aspect better pre-
diction results with larger datasets including more data in these driving conditions.

Conclusion and future work
This paper describes a prototype we have designed and deployed on a real electric vehi-
cle, with the aim of optimizing the consumption of energy battery in electric vehicles, 
exploiting big data gathered from in-vehicle sensors and components. A neural network 
is employed to predict the activation of the friction brake in order to visualize this infor-
mation in the HMI, and foster eco-driving behaviours. The tests, conducted using both 
simulated and real data, highlighted how it is possible to predict the activation of the 

Fig. 5 Comparison among algorithms performances

Table 2 Comparison among algorithms performances on the six driving cycles

Path MLP LR KNN CART SVR AB GBM RF

1 0.944 0.960 0.774 0.639 0.982 0.991 0.980 0.911

2 0.889 0.841 0.718 0.668 0.782 0.861 0.868 0.802

3 0.764 0.746 0.690 0.635 0.756 0.779 0.797 0.741

4 0.719 0.760 0.628 0.499 0.796 0.834 0.805 0.596

5 0.923 0.904 0.790 0.640 0.864 0.932 0.935 0.859

6 0.891 0.830 0.733 0.711 0.840 0.875 0.899 0.847

avg 0.855 0.840 0.722 0.632 0.837 0.879 0.881 0.793



Page 13 of 15Delnevo et al. J Big Data            (2019) 6:64 

friction brake with a good accuracy, in time to allow the driver to correct his/her driving 
style, avoiding wasting energy and optimizing the battery charge.

Even if the results obtained are quite promising, it is worth mentioning some limita-
tions of this study. The main one is surely the use of a limited set of real data. Another 
one is the type of driving cycles, since there were only one rural and one motorway, con-
trasted with four urbans. Such limitations can be overcome once the vehicle will be type-
approved, simply conducting extensive tests sessions.

Finally, we plan to combine our approach with some elements and aspects typical of 
the gamification strategy, to improve the driver’s involvement. In fact, we plan to take 
advantage of the gamification paradigm, that has already proved to be useful and effec-
tive applied to the automotive context, to present the information about the energy con-
sumption in a more engaging way.
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