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Abstract

Reliability is a cumbersome problem in High Per-
formance Computing Systems and Data Centers
evolution. During operation, several types of fault
conditions or anomalies can arise, ranging from
malfunctioning hardware to improper configura-
tions or imperfect software. Currently, system
administrator and final users have to discover it
manually. Clearly this approach does not scale
to large scale supercomputers and facilities: au-
tomated methods to detect faults and unhealthy
conditions is needed. Our method uses a type of
neural network called autoncoder trained to learn
the normal behavior of a real, in-production HPC
system and it is deployed on the edge of each com-
puting node. We obtain a very good accuracy (val-
ues ranging between 90% and 95%) and we also
demonstrate that the approach can be deployed on
the supercomputer nodes without negatively affect-
ing the computing units performance.

1 Introduction

Nowadays, supercomputers and large data centers
are increasing in scale and number of components,
with systems composed of thousands / millions of
computing units [FLYeA16,DMS94a] and represent
an increasingly complex industrial plan. Therefore,
there is a huge number of sources of possible faults,
heterogeneous in their nature, ranging from hard-
ware malfunctions or misconfigurations, to software
unwanted behaviours or bugs. For system adminis-
trators who strive to guarantee systems operating
in optimal conditions, identifying faulty situations
and anomalous behaviours is a daunting task.

An automated online anomaly detection system

capable to satisfy real time requirements would be
a boon for facility managers. Currently, most of
the state-of-the-art anomaly detection systems are
based on the analysis of system logs or log messages
generated by dedicated software tools, often at OS
level [OS07, Bar08, XHJ10]. In this way there is
not a general and uniform detection system and,
moreover, deploying a set of different tools with
different requirements still requires a lot of effort
by the system administrators. This fact curbs the
number and types of identifiable fault conditions
with log-based tools.

However, today’s supercomputers and data cen-
ters have hardware components with sensors to
monitor physical and architectural parameters
[BBCB17, BBL+18, ABBeA14, BCCeA14]. The
integrated monitoring infrastructure periodically
reads a set of metrics and collects them into a single
gathering point. The authors of [BBCB17] show
that these sensors can easily reach 1.5KSa/s per
compute node, and propose Examon, a scalable in-
frastructure based on local monitoring agents push-
ing data through the MQTT protocol. Clearly, lo-
cal software-based monitoring agents compete for
the same computational resources of users’ appli-
cations. The authors of [LBB18,BBL+18] propose
out-of-band monitoring through edge computing
devices, thus without impacting users-dedicated
computing resources. In this approach, an exter-
nal embedded device is inserted in the node, and
it monitors the architectural and physical sensors
through a dedicated interface [Ros15].

It seems a sensible idea to use the collected data
to look for possible unhealthy situations. For ex-
ample, a possible approach relies in supervised Ma-
chine Learning (ML) techniques, where a classi-
fier is trained to distinguish between healthy and
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abnormal behaviours. In recent years, some ap-
proaches went in this direction, showing promising
results but with a somewhat limited scope. For
instance, supervised methods need a carefully pre-
pared initial phase where the supercomputer is in-
jected with all the kinds of faults to be detected
later. This is clearly a strong drawbacks because it
does not encompass the occurrence of new, unseen
anomalies.

In this paper we propose a novel automated
method for anomaly detection in HPC systems and
data centers, based on a technique derived from
the Machine Learning (ML) area, namely a type
of neural network called autoencoder. The method
we propose has a very good accuracy (around 90%-
95% of detection accuracy) and can be directly ex-
ecuted in the edge, exploiting monitoring devices
embedded inside each computing node, guarantee-
ing real time performance and no overhead. We
demonstrate this approach on a real tier-1 super-
computer in production.

2 Related Works

Tuncer et al. [TAZ+17] tackles the issue of diagnos-
ing performance variations in HPC systems. They
collect several measurements through a monitoring
infrastructure; a group of statistical features model-
ing the state of the supercomputer is obtained from
these features. The authors then train different ML
algorithms to classify the behaviour of the super-
computer using the statistical features. The results
are promising, outperforming previous state-of-the
art [BGF+10, LZL10]. Baseman et al. [BBD+16]
propose a similar technique for anomaly detection
in HPC systems. They apply a general statisti-
cal technique called classifier-adjusted density es-
timation (CADE) in order to help the training of
a supervised Random Forest classifier. The classi-
fier decides the class (normal, anomaly, etc) of each
data point (set of physical measurements).

These methods both belong to the supervised
area: the training set must contain examples of all
classes to be detected, e.g. examples of normal and
abnormal states, and must be unbiased (equal num-
ber of examples for each class). This fact has a con-
sequence: a first phase is required in order to create
a labeled data set and the supercomputer must be
injected with faults. Furthermore, supervised clas-

sifiers only learn to identify the classes already seen
at training time; unseen anomalies encountered at
run time cannot be properly detected by this meth-
ods. Our approach, thanks to the semi-supervised
learning, resolves both these issues.

Dani et al. [DDA17] describe instead an unsu-
pervised technique for anomaly detection in HPC.
Their work is very different from our approach
since they consider only the console logs gener-
ated by computing nodes (no monitoring infras-
tructure). Their purpose is to distinguish logs
relative to faulty conditions from logs created by
healthy nodes; the proposed approach uses the K-
means clustering algorithm. Their work targets
faults that can be recognized by a node itself and
stored in log messages; this bounds the number and
the types of detectable anomalies. Conversely, in
our approach we detect anomalies using the data
gathered via a collection framework, without need
for anomaly detection systems already deployed on
computing nodes.

3 A Methodology for Auto-
mated Anomaly Detection

In this paper we propose a system-oriented method-
ology to automatically detect anomaly based on a
ML model and relying on the data collected by a
monitoring infrastructure. The proposed scheme is
depicted in Figure 1. The supercomputer/data cen-
ter nodes are endowed with embedded boards that
measure a set of fine-grained metrics describing the
system behaviour. Thanks to these measurements
it is possible to distinguish between anomalous and
normal conditions.

Data collected with the monitoring framework is
fed to a ML model in order to train it to detect
anomalies. During the training phase the model is
going to encounter only examples describing a sys-
tem under normal conditions. After the training
phase, the ML models are loaded on the embed-
ded monitoring boards (EMB in the figure); when
new measurements arrive, the trained ML model
takes them as input and can identify anomalies,
triggering an alarm for system admins. Since the
embedded boards do not possess great computing
capability, the ML model must be lightweight and
generate low overhead.
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Figure 1: Methodology Architecture

The benefits of edge computing (placing the
anomaly detection module in the embedded
boards) is twofold: 1) the board can directly read
the out-of-band sensors measurements, reducing
the access time (furthermore, in-band monitoring
is not allowed on many systems since it could af-
fect stability); 2) online inference could not be eas-
ily performed on the computing nodes of a HPC
system since it would subtract resources from users
and complicate the scheduling process.

3.1 Target Supercomputer & Moni-
toring Framework

As a test bed for our approach we used a super-
computer [ABB+17]. which was ranked in the late
hundreds of the TOP500 [DMS94b] and among the
twenty first positions of the GREEN500 [FC07] in
the November 2017 list. It is a supercomputer
based on OpenPOWER platform and this allowed
us the out-of-band monitoring employed by our ap-
proach. The system comprises 45 nodes connected
with Infiniband EDR 100 GB/s network, with a to-
tal peak performance of 990 TFlops and an esti-
mated power consumption of less than 2 kW per
node. Each node is a 2 Open Unit (OU) Open Com-
pute Project (OCP) form factor and hosts two IBM
POWER8 Processors with NVIDIA NVLink and
four Tesla P100 data center GPUs, with the intra-
node communication layout optimized for best per-
formance.

On the target supercomputer we developed
and deployed a lightweight and scalable monitor-

ing infrastructure, namely DiG (Dwarf in a Gi-
ant) [LBB18, BBL+18]. Data coming from hetero-
geneous sources is gathered with a high sampling
rate and placed in common storage area; this al-
low to easily retrieve historical data to be used for
training purposes. The collected data is stored in a
distributed time series database (KairosDB [kai]),
built on top of a NoSQL database Apache Cas-
sandra [Cas15] The framework comprises a set of
agents running on the edge of computing nodes,
using embedded measuring boards. These agents
monitor the power consumption of each node at the
plug as well as performance and utilization metrics,
using both software commands and hardware sen-
sors. The measured values are sent to a data man-
agement backbone (namely ExaMon [BBCB17]),
through a communication layer based on the open-
source MQTT (MQ Telemetry Transport) proto-
col [Sta14], which is designed for low bandwidth,
high latency networks and minimal resource de-
mands.

To measure the power consumption with high
resolution, the monitoring agents exploit a power
sensing module and an embedded monitoring board
(Beaglebone Black - BBB [Col13]), one for each
node. The BBBs are based on an Arm Cortex-A8,
and include a 12-bit ADC which allows sampling
rates up to 50k samples per second and synchro-
nization of the measurements within one microsec-
ond, thanks to the hardware support of the Pre-
cision Time Protocol (PTP) [LBMB16, LBCB04].
For an out-of-band monitoring of the nodes per-
formance we use the IBM Amester commands,
which exploit the IPMI interface [Sla03] to the
OpenPOWER POWER8 on-chip controller [Ros15]
(OCC), to get OCC sensor readings. The IPMI
Amester commands are sent to the OCC, through
the Board Management Controller (BMC), using a
python script. The python script executes on the
embedded monitoring board. The granularity of
the data is 5s and 10s, respectively for IPMI met-
rics and OCC metrics.

4 Experimental Evaluation

As ML model to detect anomalies, we propose an
approach based on a particular type of neural net-
work called autoencoder [GBCB16]. We exploit
the series of measurements (features) describing the
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state of the HPC system or data center and col-
lected with the ad-hoc monitoring infrastructure.
Under “healthy” operating conditions these fea-
tures are connected by specific relationships (i.e.
the power consumption directly depends on the
workload, temperature is related to the clock fre-
quency, etc.). These correlations are no longer valid
when the system enters an anomalous state. The
main idea of our method relies on the autoencoder
capability to learn the typical (normal) correlation
between the measures and then consequently iden-
tify changes in this correlation that indicate an ab-
normal situation. This research avenue has been
partially explored in recent years, although not in
the HPC field [LWBL16, LCK17, CAG15, IKE+16,
GSBB12]. We teach the autoencoder the normal
behaviour of the computing nodes; after the train-
ing phase the autoencoder will be able to detect
anomalous situations.

How can an autoencoder detect abnormal condi-
tions? An autoencoder is a neural network trained
to copy its input I to its output O. It has one or
more internal layers H that try to the represent
the data taken as input. An autoencoder is split
in two subparts: an encoding function H = enc(I)
and a decoding function that reconstructs the in-
put O = dec(H). Typically, autoencoders do not
just learn the identity function dec(enc(I)) = I but
are designed not to create perfect copies, e.g. the
dimension of the hidden layer can be smaller than
the dimension of the input. Thus, the output of
an autoencoder is generally different from its in-
put and the difference between input and output is
called reconstruction error.

We take advantage of the reconstruction error in
order to detect anomalies. We train the autoen-
coder with data corresponding to the normal state
and minimize the reconstruction error; this error
is called training error. In this way it learns the
normal correlations between the features from the
monitoring infrastructure. After this first training
phase, we feed the autoencoder with new data un-
seen before – this is generally called inference in
ML terminology – and we then observe the recon-
struction error. If the new data is similar to the
data used as input (if it respects the normal corre-
lations) then the error will be small and comparable
to the training error. If the new data correspond to
an anomalous situation, the autoencoder will strug-
gle to perform the reconstruction, since the learned

correlations do not hold. Hence we identify anoma-
lies by observing large reconstruction errors (w.r.t.
to the training error) during the inference phase.

4.1 Autoencoders Training

We create an autoencoder for each node in the su-
percomputer since, as we will describe in Sec. 4.3,
dedicated models for each node outperform a single,
generic model to be applied to all nodes. Each net-
work is trained using node related data collected
by the monitoring infrastructure. In the training
phase, we use only data corresponding to the nor-
mal state. The data set is a collection of a couple
of hundreds of metrics, ranging from core load, fre-
quency and temperature, to node power consump-
tion, room temperature, GPUs usage, cooling fans
speed, etc. The metrics (also referred to as fea-
tures) form the input set for the neural networks.

For each node we have a training set correspond-
ing to 2 months of normal behaviour (obtained in
collaboration with system admins). Due to stor-
age reason, the fine-grained monitoring data is not
preserved for more than a week, hence for the train-
ing we use coarse-grained data, where the measure-
ments are aggregated in five minute intervals. Af-
ter collecting the raw data, we pre-process it (for
example we removed data corresponding to peri-
ods where the monitoring system was not working
properly) and normalize it. This preparation takes
about 30s. The final number of features is 166.

We adopted the same network topology for each
node. After an empirical evaluation we chose a
sparse autoencoder model [BC+08], that proved
to be the better option in terms of accuracy
and computational demands, especially for train-
ing/inference times. The network is composed of
three fully connected layers, an input layer, an out-
put layer and one hidden layer. As activation func-
tion for the neurons we use Rectified Linear Units
[NH10] (ReLU); as regularization term (needed in
sparse networks) we employ the L1-norm loss func-
tion [AB14, GBCB16]. The input and the output
layers have as many neurons as the number of the
features (166) while the hidden-layer has ten times
the number of features (thus 1660 in total).

Each autoencoder is trained with data from its
corresponding node; for the training we use the
Tesla P100 GPUs available in the supercomputer
nodes (each node trains its own autoencoder). For
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the training phase we use use Adam algorithm
[KB14], with mean absolute error as target loss.
After some preliminary experiments we opted for a
batch size equal to 32 and 100 epochs. The training
takes around 20 seconds for each autoencoder. The
training times and overhead are not a critical con-
cern since the training phase takes place only once
or with a very low rate (once every few months),
and can be scheduled during maintenance periods.
The framework used for the design and the training
of the autoencoders is Keras [C+15] with Tensor-
Flow for GPU [AABea15] as a back-end.

4.2 Online Inference

After training the autoencoders, we leverage the
out-of-band monitoring system and the embedded
monitoring boards (BBB) to execute the inference
online and detect anomalies thanks to edge com-
puting. We installed TensorFlow on the BBB and
took advantage of the NEON accelerator (SIMD
architecture). On each BBB we load the trained
autoencoder of the corresponding node, then we
feed it with new data coming from the monitoring
framework. The results of the detection are pre-
sented in the following section. Here we want to
point out that we process a batch of input data
(the set of 166 features) in just 11ms, which is a
negligible overhead considering the sampling rate
of several seconds.

4.3 Results

We injected two different anomalies in the super-
computer used as test case: we changed the fre-
quency governor configuration of the computing
nodes (see [BG13] for details). Changing the fre-
quency governor disrupts the relationships between
core load and core frequency (and other related
features, such as power consumption, etc.). This
is a misconfiguration anomaly and should be de-
tectable with our approach. The normal configu-
ration is default ; we changed it to powersave and
performance, in different periods of time1. To eval-
uate the trained autoencoders we consider the re-
construction error. As described in Sec. 3 we ex-

1default : the frequency of a core directly depends on its
load; powersave/performance: frequencies are forced to the
lowest/highest possible value

Figure 2: Reconstruction error for node node45

pect to observe greater reconstruction errors during
anomalous periods w.r.t. normal ones.

Our hypothesis is confirmed by quantitative and
visual analysis of the reconstruction error. Fig-
ure 2 plots the reconstruction error (y-axis) ob-
tained in a roughly two months period (x-axis),
for a specific node. The reconstruction error trend
is plotted with a light blue line; the gaps in the
line represent periods when the node was idle and
that have been removed from the data set (thus
we exclude them from the reconstruction error).
We have 6 anomalous periods, identified by col-
ored highlights along the x-axis: during the first 5
(red lines) the frequency governor was set to pow-
ersave, while during the last one (blue) the gover-
nor was set to performance. It is possible to see
that, on average, the reconstruction error is defi-
nitely larger during anomalous periods compared to
the normal ones. This observation is confirmed by
a quantitative analysis performed on all nodes: the
average normalized reconstruction error computed
during normal periods (excluding the training set)
is equal to 1.08, while the average error obtained
during anomalies (grouping both types) is equal to
14.54. If we use a generic autoencoder for all nodes
(instead of a series of dedicated ones), the error for
the anomalous periods decreases to 6.29 while the
error for normal periods remains similar (1.01). To
detect anomalies we prefer reconstruction errors as
large as possible with anomalous data, hence the
set of dedicated models is better than the generic
one.

Accuracy Evaluation. We use a threshold-
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Node
95-th perc. 97-th perc. 99-th perc.
N A N A N A

node17 0.97 0.89 0.98 0.93 0.99 0.97
node19 0.97 0.90 0.98 0.94 0.99 0.97
node45 0.97 0.92 0.98 0.95 0.99 0.98
node29 0.97 0.75 0.98 0.82 0.99 0.85

Average 0.96 0.87 0.98 0.91 0.97 0.89

Table 1: Classification Results

based method to distinguish anomalies from normal
states. Suppose we have a data point i that con-
tains features collected by the monitoring infras-
tructure. To classify it we feed it to the trained au-
toencoder: if the reconstruction error Ei is greater
than a threshold θ, then the point is “abnor-
mal”; otherwise the data point is considered nor-
mal. As threshold we choose the n-th percentile
of the errors distribution of the normal data set,
where n is a value that depends on the specific au-
toencoder/node. To find the best n for each au-
toencoder we employed a simple generate-and-test
search strategy, that is we performed experiments
with a finite number of values (after a preliminary
empirical evaluation) and then chose those guaran-
teeing the best results in term of classification ac-
curacy. The fact that the best results are obtained
by using a different n for each node validates the
choice of having multiple dedicated autoencoders
rather than a generic one.

The classification accuracy is measured by the
F-score [VR79] for each class, normal (N) and
anomaly (A). F-score ranges between 0 and 1, with
higher values indicating higher accuracy. In Ta-
ble 1 we see the results. In the first column there is
the node name (we show the values for a subgroup
of nodes). The remaining columns report the F-
score values for 3 different n-th percentiles; there
are two F-score values for each n-th percentile, one
for the normal class (N ) and one for the anomaly
class (A). We can see that the F-score values are
very good, highlighting the good accuracy of our
approach, with an accuracy between 0.87 and 0.98.

5 Conclusion

In this manuscript we have presented an approach
for automated anomaly detection for large scale

HPC environments and data centers. Our approach
leverages Machine Learning and edge computing
for real-time anomaly detection. We use autoen-
coders trained to learn the normal behavior of each
computing node based on its historical telemetry
data of ”good” behaviors. The autoencoders are
trained and tested on a in-production supercom-
puter and deployed as an extension of the built-in
embedded monitoring devices.
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