1	Infection of endotheliotropic human
2	cytomegalovirus of trabecular meshwork cells
3	Running title: CMV infection of trabecular meshwork cells
4	Daisuke Shimizu ^{1,4} , Dai Miyazaki ¹ , Yumiko Shimizu ¹ , Mayumi Hosogai ² , Isao
5	Kosugi ³ , Yoshitsugu Inoue ¹
6	¹ Ophthalmology and Visual Science, Tottori University Faculty of Medicine, Yonago
7	City, Japan.
8	² Department of Ophthalmology, Gunma University Graduate School of Medicine,
9	Maebashi City, Japan
10	³ Regenerative and Infectious Pathology, Hamamatsu University, School of Medicine
11	⁴ Department of Ophthalmology, Chiba University Graduate School of Medicine,
12	Chiba City, Japan
13	
14	Correspondence to Dai Miyazaki, MD
15	36-1 Nishicho, Yonago 683-8504, Japan
16	tel:81-859-38-6617 fax:81-859-38-6619
17	miyazaki-ttr@umin.ac.jp
18	26 references and 9 figures
19	Keywords: cytomegalovirus; corneal endothelial cells; trabecular meshwork;

20 secondary glaucoma; endotheliitis

21 Abstract

22	Purpose: Human cytomegalovirus (HCMV) infections can cause endotheliitis which
23	is associated with an elevation of the intraocular pressure (IOP). However, the
24	mechanism of the IOP elevation has not been determined. The purpose of this study
25	was to determine whether HCMV strains which are capable of infecting corneal
26	endothelial cells can also replicate, induce anti-viral responses, and can reorganize
27	the actin cytoskeleton in trabecular meshwork cells.
28	Study design: Experimental study design
29	Methods: Cultured primary human trabecular meshwork cells (HTMCs) were
30	infected with the Towne or TB40/E strains of HCMV. TB40/E is trophic for vascular
31	endothelial and corneal endothelial cells. Real-time PCR, western blot, and
32	fluorescent immunostaining have been used to determine whether HCMV-infected
33	HTMCs will support the expression of viral mRNA and protein, allow viral replication,
34	and elicit anti-viral host responses. We also determined whether lytic replication was
35	present after an HCMV infection.
36	Results: HCMV infection led to the expression of viral mRNA and proteins of IE1,
37	glycoprotein B(gB), and pp65. TB40/E infection induced interferon- β , a sign of host
38	anti-viral immune response and MCP-1. Together with the induction of the regulators
39	of actin cytoskeleton, myosin phosphatase Rho interacting protein (MPRIP) and

- 40 monocyte chemotactic protein-1 (MCP-1), TB40/E induced a high level of expression
- 41 of viral proteins, including IE1, gB, and pp65 as well as actin stress fiber formation,
- 42 and achieved pathogenically high viral titers.
- 43 **Conclusions:** Human trabecular meshwork cells support the replication of
- 44 endotheliotropic TB40/E strain of HCMV which indicates that this strain may have
- 45 high virulence for trabecular meshwork.

46 Introduction

47	Human cytomegalovirus (HCMV) infection can lead to endotheliitis which is
48	associated with an elevation of the intraocular pressure (IOP) and endothelial cell
49	loss [1]. Its chronic and relapsing nature resembles the clinical characteristic of
50	Fuchs iridocyclitis and Posner-Schlossman syndrome. These disease entities are
51	characterized by chronic and relapsing elevations of the IOP, and HCMV infection
52	has been recognized to be an important causative pathogen for these relapses and
53	elevations.
54	
55	In HCMV endotheliitis, the IOP elevation and endothelial inflammation frequently
56	recurs during the long course of the disease process. The IOP elevation can last for
57	months or years, and the eye can become refractory to the IOP lowering
58	medications. Because of this, these patients often require filtering surgery. The
59	findings strongly suggest that the HCMV may actively proliferate in the trabecular
60	meshwork and corneal endothelial cells.
61	
62	The IOP elevation during the long disease course of HCMV endotheliitis will damage
63	the trabecular meshwork cells which can then lead to a severe reduction of aqueous
64	outflow. However, there is no definitive proof that surgically-obtained trabecular

65	meshwork tissue was permissive for HCMV infection. Because filtering surgery is
66	generally performed after years of IOP elevation, the trabecular meshwork cells were
67	already damaged. This may explain the absence of HCMV proteins in the trabecular
68	meshwork specimens.

When HCMV infects permissive cells, latent infection can be established. During the 70 latency phase, detection of viral protein antigen is very difficult unless the specimen 71 72 is collected during the reactivation phase. We have shown that corneal endothelial cells can be infected by the Towne strain, the TB40/E strain, and a clinically-isolated 73 strain of HCMV [2, 3]. However, the efficiency of infection measured by TCID₅₀ is 74 75 markedly different depending on the strain, and vascular endotheliotropic TB40/E 76 was also tropic for corneal endothelium. We have hypothesized that endotheliotropic 77 HCMV strain will infect trabecular meshwork cells more efficiently than non-tropic strains of HCMV. 78

79

Thus, the purpose of this study was to determine whether endotheliotropic strain of HCMV can infect trabecular meshwork cells and reorganize the actin stress fibers. In addition, we examined whether HCMV infection will induce strong immune responses which may explain the increased outflow resistance of the trabecular

84 meshwork in eyes with HCMV infection.

85

86 Materials and Methods

All protocols and methods adhered to the tenets of the Declaration of Helsinki, and
 the study was approved by the Ethics Committee of Tottori University.

89

90 Cells and virus	90	Cells	and	virus
--------------------	----	-------	-----	-------

- 91 Human trabecular meshwork cells (HTMC) were isolated from trabecular tissues
- 92 stripped form cadaver eyes donated for research purposes. (ScienCell, Carlsbad,
- CA) The HTMCs were propagated to confluence on 6- or 96-well plates in
- 94 Dulbecco's modified Eagle's medium (DMEM; Gibco, Grand Island, NY)
- 95 supplemented with 15% fetal bovine serum.

96

- 97 <u>A</u>standard laboratory strain, Towne, and <u>an</u> endotheliotropic HCMV strain, TB40/E,
- 98 were used. <u>The Towne strain is a representative laboratory strain together with</u>
- 99 AD169, and is one of most widely used HCMV strain. The Towne strain has been
- 100 <u>used for vaccine development. [4]</u>

101

102 The TB40/E strain was created by transfecting human foreskin fibroblast cells (HFF)

103	transfected by a TB40-BAC4 clone and propagated by standard procedures as
104	described in detail [2]. The viral titers were designated by the 50% tissue culture
105	infection dose (TCID $_{50}$) method using human foreskin fibroblast cells infected with
106	serially diluted supernatants.
107	
108	Real-time RT-PCR
109	Total RNA was isolated from HTMCs at the indicated time points after infection by
110	the two HCMV strains and reverse transcribed using the QuantiTect Reverse
111	Transcription Kit (Qiagen). The cDNAs were amplified and quantified by the
112	LightCycler (Roche, Mannheim, Germany) using the QuantiTect SYBR Green PCR
113	kit. The sequences of the real-time PCR primer pairs were:
114	IE-1:
115	forward 5'- CCTCCAAGGTGCCACGGCCCGA-3',
116	reverse 5'- CATCCTCCCATCATATTA-3'.
117	UL83 (pp65):
118	forward 5'- GTCAGCGTTCGTGTTTCCCA-3',
119	reverse 5'- GGGACACAACACCGTAAAGC-3'.
120	Glycoprotein B (gB):
121	forward 5'- GGGACACAACACCGTAAAGC-3',

- 122 reverse 5'- ATGATGCCCTCRTCCARGTC-3'.
- 123 Interferon- β (IFN- β):
- 124 forward 5'-CATTACCTGAAGGCCAAGGA -3',
- 125 reverse 5'-CAATTGTCCAGTCCCAGAGG-3'
- 126 Myosin phosphatase Rho interacting protein (MPRIP):
- 127 forward 5'- CTCTCCACACGAGCTGAC-3',
- 128 reverse 5'- TCTTCTGGTGCGTTTCTTCC-3'
- 129
- 130 Monocyte chemotactic protein-1 (MCP-1):
- 131 forward 5'- AGGTGACTGGGGGCATTGAT-3',
- 132 reverse 5'- GCCTCCAGCATGAAAGTCTC-3'
- 133
- 134 Glyceraldehyde-3-phosphate dehydrogenase (GAPDH):
- 135 forward 5'- AGCCACATCGCTCAGACAC-3',
- 136 reverse 5'- GCCCAATACGACCAAATCC-3'.
- 137
- 138 To measure the degree of viral DNA replication, HTMCs were infected with either the
- 139 TB40/E or the Towne strain, and viral DNA was extracted from the cells at the
- indicated time points with the QiaAmp DNA mini kit (Qiagen, Hilden, Germany). The

141	extracted DNA was amplified with the LightCycler (Roche, Base, Switzerland) and
142	normalized to known dilutions of synthesized pp65 DNA fragments.
143	
144	Western blot
145	HTMCs were infected with the TB40/E strain or the Towne strain at a selected
146	multiplicity of infection (MOI). Cell lysates were harvested at 1, 2, and 3 days post
147	infection (PI), and 10 μ g of protein/lane were electrophoresed. The transferred
148	membrane were stained with antibodies for HCMV IE1(NEA-9221, Perkin Elmer,
149	Boston, MA), pp65 (CA003, EastCoast Bio, North Berwick, Maine, USA), or UL44
150	(CH167, Santa Cruz, Santa Cruz, CA) [5]. The proteins were made visible with
151	horseradish peroxidase-conjugated secondary antibody and chemiluminescence
152	substrate as described [2].
153	
154	Immunocytochemistry
155	HTMCs were infected with HCMV at MOI of 5 and stained for HCMV proteins with
156	mouse anti-HCMV monoclonal antibody against IE-1 (MAB8129, Millipore,
157	Darmstadt, Germany) or pp65 (ab31624, Abcam, Cambridge, UK), or glycoprotein B
158	(gB; ab6499, Abcam, Cambridge, UK). IE1, pp65, and gB were made visible by

159 incubation with Alexa 488 conjugated-secondary antibody and stained for actin

160	cytoskeleton using phalloidin. Images were photographed with a confocal
161	microscope (LSM710, Zeiss, Germany).
162	
163	Electron microscopy (EM)
164	HTMCs were infected with either the TB40/E strain or the Towne strain of HCMV and
165	fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer. After post fixation
166	with 1% OsO4 in 0.1 M sodium cacodylate buffer, cells were stained with 1% uranyl
167	acetate. Cells were dehydrated, embedded in Epon 812, and sectioned with a
168	microtome. The sections were stained with 4% uranyl acetate and 0.4% lead citrate
169	and were examined by transmission electron microscopy (TEM).
170	
171	Statistical analyses
172	Data are presented as the means \pm standard error of the means (SEMs). Statistical
173	analyses were performed by <i>t</i> test, Mann Whitney U test, or ANOVA with post hoc
174	test.
175	
176	Results
177	When HTMCs were infected with the Towne strain of HCMV at an MOI of 5, an
178	induction of the viral immediate early protein, 1E1, was detected at 6 h, and there
	4.4

179	was a gradual increas to 24 h post infection (Fig. 1a right). The transcriptions of the
180	delayed early proteins, gB, and leaky late protein, pp65, were also increased at 24 h
181	PI (Fig.1b, 1c, right).
182	
183	When HTMCs were infected with the TB40/E strain, IE1 was induced at 6 h. The
184	induction kinetics of gB and pp65 were similar to that following the standard
185	laboratory Towne strain infection, however the induction levels were significantly
186	higher (Fig. 1).
187	
188	HCMV-infected HTMCs were examined for IE1, pp65, and DNA polymerase
189	processivity subunit UL44 by western blot analysis (Fig. 2). Consistent with the gene
190	transcription outcomes, the IE1 protein was promptly induced at 1-day PI with both
191	strains. Notably, TB40/E induced the expression of pp65 as early as 1-day PI at low
192	MOI. In contrast, Towne infection required 3 days at high MOI for the induction. With
193	TB40/E infection, the UL44 induction was also earlier at 2 days PI compared to 3
194	days PI with the Towne strain.
195	
196	We next determined whether HCMV infection will induce the antiviral responses of
197	the host cells, regulation of cytoskeleton, and MCP-1 as an IOP-related cytokine.

198	[14] When HTMCs were infected with the TB40/E strain, there was a significant
199	induction of interferon- β (Fig. 3). In contrast, infection by the Towne strain did not
200	induce interferon-β.
201	
202	We then examined whether HCMV infection will induce the regulatory factors for
203	actin cytoskeleton (Fig. 4). After infection by the TB40/E strain of HCMV, the
204	induction of the myosin phosphatase Rho interacting protein (MPRIP) was
205	significantly increased in the HTMCs. Again, Towne infection did not induce MPRIP
206	appreciably. Both strains induced MCP-1 in response to HCMV infection, however a
207	prolonged induction was observed after TB40/E infection at 24 h PI (Fig. 5).
208	
209	The location of the viral protein expression and actin stress fiber formation after
210	HCMV infection was determined by immunostaining (Fig. 6). Intense IE1 staining
211	of the nuclei of HTMCs was detected at 2 day PI with nuclear F-actin [6]. The
212	expression of IE1 moved to the assembly compartment in the cytoplasm at 3 days
213	PI. (Fig. <u>6a</u> , 6b; upper panel) The expression of pp65 was also detected in the nuclei
214	at 2 days PI (Fig 6c.), and it was localized to the viral assembly compartments in the
215	cytoplasm at 3 days PI. (Fig. <u>6</u> a, 6b; lower panel) The expression of gB was delayed
216	and its expression was observed at 3 days PI. (Fig <u>. 6</u> a, 6b; middle panel)

218	When HTMCs were infected by TB40/E, an owl's eye appearance was observed in
219	the nucleus with IE staining earlier than after Towne infection (Fig. <u>6</u> a; white arrow),
220	and it was detected as early as 1-day PI. (Fig. 6a; upper left) The level of expression
221	increased in the cytoplasm at 3 days PI.
222	
223	The expressions of pp65 and gB were observed in the nuclei at 2 days PI, and they
224	were also localized in the viral assembly compartment and distinct stress fibers of
225	actin were formed.
226	
227	TB40/E infection induced significant remodeling of the actin cytoskeleton (Fig.
228	6c) Thus, the TB40/E infection was more robust with an earlier expression of viral
229	proteins and actin stress fiber formation.
230	
231	The replication of viral DNA in HTMCs was assessed after infection with the TB40/E
232	strain or the Towne strain (Fig. 7). Both strains induced significant increases of viral
233	genome at 2 days PI at MOI of 5, and the increase continued, and both strains
234	supported an efficient replication at MOI 1. Interestingly, TB40/E infection induced 5
235	times more viral replication than the Towne strain at day 3 PI.

237	HCMV infected HTMC were examined by TEM. Infection by either the TB40/E strain
238	or the Towne strain led to many viral particles and electron-dense particles (dense
239	bodies) in the cytoplasm of the HTMCs (Fig. <u>8</u>).
240	
241	Then, we compared the increase in the level of the TB40/E and Towne strains in
242	HTMC using titration by TCID ₅₀ . HTMCs were infected with TB40/E or Towne at MOI
243	of 1 and 5, and titrated (Fig. 9). TB40/E led to a continuous increase until day 11 PI
244	and reached 10^7 TCID ₅₀ . In contrast, the increase of the Towne strain reached a
245	plateau at day 5 PI, and the maximum viral titer remained 10 times lower than that of
246	TB40/E.
247	
248	Discussion
249	Earlier studies have shown that infection of the anterior segment of the eye by
250	HCMV can cause endotheliitis or iritis. Both diseases are characterized by an
251	elevation of the IOP which is not observed for HCMV retinitis. Thus, anterior segment
252	infections by HCMV may belong to a unified spectrum of a disease. Under these
253	conditions, an IOP elevation can be caused by an increase in the outflow resistance
254	in which the trabecular meshwork cells play a major role.

256	Steroid treatment is well known to induce steroid-induced glaucoma and impair the
257	outflow function of the trabecular meshwork. When the trabecular meshwork cells
258	were exposed to dexamethasone in vitro, there is a remodeling of the actin fibers
259	and an induction of contraction [7]. Thus, stress fiber formation and actin remodeling
260	were suggested as possible mechanisms of the secondary glaucoma. Our results
261	showed that HCMV can replicate in HTMCs and reorganize the actin cytoskeleton of
262	the cells [2]. This may explain why there was an elevation of the IOP associated with
263	HCMV infection.
264	
265	In eyes with open angle glaucoma, IL-4, IL-6, IL-8, IL-16, CCL2(MCP-1), TGF-β1,
266	CCL13, CCL15, CCL22, CCL24, CXCL13, CXCL16, and TNF-α were found to be
267	significantly elevated in the aqueous humor. [8]-[13]. Of these, the elevation of MCP-
268	1 is consistent, and MCP-1 is a representative cytokine whose level is significantly
269	correlated with the elevation of the IOP. [14] MCP-1 is well known to attract
270	mononuclear cells and also induce collagen synthesis by TGF-β1 induction [15]. It
271	also induces the production of matrix metalloproteinase-1 and tissue inhibitor of
272	metalloproteinase-1 (TIMP-1). All of these changes may explain the induction of
273	fibrotic change of outflow system leading to the IOP elevation.

275	Very recently, the AD169 strain of HCMV was reported to be able to infect
276	<u>HTMCs. [16] AD169 infection induced TGFβ1 but its induction required at least 3</u>
277	days, and the induction levels remained within 10-20% of that of mock infection.
278	Moreover, AD169 infection did not induce any mRNA of cytoskeleton-related
279	molecules including fibronectin, α -SMA, and collagen type 1A. This suggests less
280	fibrogenic ability of AD169 which is in marked contrast to dexamethasone treatment
281	to HTMCs, which induced fibronectin and α-SMA.
282	
283	We have shown that HCMV can proliferate in primary corneal endothelial cells, and
284	TB40/E is tropic for corneal endothelium as well as vascular endothelium [2]. This_
285	led us to hypothesize that endotheliotropic strains can cause more relevant disease
286	characteristics. The results showed that the endothelial cell tropic TB40/E proliferate
287	very efficiently in trabecular meshwork cells with marked actin cytoskeleton stress
288	fiber formation. This implicates the endothelial type of HCMV infection to be the
289	cause of the higher virulence.
290	
291	In HCMV endotheliitis, the copy numbers of the DNA of HCMV in the aqueous humor
292	determines the frequency of recurrences, degree of IOP elevation, and endothelial

293	cell loss [17]. These findings indicate that the copy number of the viral genome
294	determines the course of the disease and refractoriness. The adaptive Towne strain
295	also proliferated in HTMCs, however the TCID $_{50}$ remained 10 times lower than that
296	of TB40/E for HTMCs and corneal endothelial infections. The TB40/E strain
297	proliferated well in corneal endothelial cells and required 4 days to reach a plateau
298	with high tissue culture infective dose (TCID) titers. Thus, the trabecular meshwork
299	cells supported both the endotheliotropic and adaptive strains however the TB40/E
300	strain was more efficient in proliferation and had a higher virulence in HTMCs.
301	
302	Contraction and reorganization of the actin stress fibers presumably play important
303	roles in the IOP regulation through the conventional outflow channels. Rho kinase
304	inhibitors reorganize or disrupt F-actin fibers through Rho GTPase proteins, and they
305	were recently made available for use on patients to reduce the IOP by targeting the
306	outflow through Schlemm's canal. HCMV diverts the actin fiber transport system of
307	the host to organize nuclear egress, viral assembly, and egress from the cytoplasm.
308	Thus, HCMV infection disrupts or reorganizes the actin fiber cytoskeleton. For
309	example, US-28 protein of HCMV activates the RhoA-mediated motility and the
310	ROCK pathway [18, 19]. In the intracellular viral assembly complex of the host, RhoB
311	is diverted to reorganize or disrupt actin stress fibers leading to efficient viral

312 production [20].

314	Adaptive HCMV strains, including the Towne and AD169 strains, proliferate well in
315	fibroblasts, however macrophages, dendritic cells, vascular endothelial cells, and
316	epithelial cell do not allow efficient proliferation. These strains are deficient by as
317	many as 20 genes [21], including pUL128, pUL130, and ppUL131A, which mediate
318	viral entry into endothelial cells or epithelial cell lineage [22, 23]. However, whether
319	these factors and other viral genes determine the pathogenicity of HCMV has not
320	been determined.
321	
322	We observed the induction of IE1 transcript and gene products in the HTMCs. The
323	induction of IE1 determines the latency or reactivation of HCMV in the infected cells.
324	A strong induction of IE1 by the TB40/E strain indicates a facilitated activation of viral
325	gene induction (Figure 1, 2). However, IE1 expression is not a reliable marker of viral
326	infection because it can be induced without viral replication. IE1 is induced even in
327	non-permissive animal cells because of its very potent promotor activity.
328	
329	We showed a strong induction of the pp65 protein which strongly inhibits antiviral
330	interferon responses, and it can serve as the major target of the host acquired

331	immune system. The HCMV proteins, including pp65, provoke strong acquired
332	immunity of CD8 ⁺ T cells through MHC class I recognition pathway. Because of the
333	high prevalence of HCMV infection in elderly subject, [24] up to 30% of CD8 ⁺ T cells
334	in their bodies responsive to HCMV antigen [25]. This substantial expansion of CD8+
335	T cells that are memory inflated is often facilitated by antigen presentation by non-
336	hematopoietic cells including endothelial cells [26, 3]. This immunostimulatory effect
337	of infected cells is characterized by potent interferon responses which we showed for
338	TB40/E infection.
339	
340	gB mediates the adhesion of HCMV to the host heparan sulfate proteoglycan. Thus,
341	neutralization of gB by antibody generation is an important strategy of the host to
342	prevent cell-to-cell spread or cell fusion after infection. Collectively, the strong
343	expression of pp65 and gB by the trabecular meshwork cells and the reactivity of the
344	host acquired immunity may determine the clinical characteristics of the disease.
345	
346	There are some limitations for our study. Our analysis was based on an in vitro
347	infection model of cultured trabecular meshwork cells. This may not reflect the in vivo
348	role of trabecular meshwork including the conventional outflow of aqueous humor. In
349	addition, the inflammatory cells recruited by CMV-induced inflammation in vivo, may

350	cause remodeling of trabecular meshwork. However, our finding that the
351	endotheliotropic strain of HCMV is pathogenic in both the corneal endothelium and
352	trabecular meshwork is important information to understand the disease etiology.
353	
354	In conclusion, HCMV can infect trabecular meshwork cells and promote the
355	reorganization of the actin cytoskeleton. This then presumably leads to the IOP
356	elevation in the host. Understanding the viral and host aspects of HCMV infection
357	may provide important clues to develop efficacious treatment of refractory anterior
358	segment infection by HCMV.

359 Acknowledgments

- This work was supported by Grant-in-Aid 17K11481, 17K16969, and 16K11322 for
- 361 Scientific Research from the Japanese Ministry of Education, Science, and Culture.

363 **References**

- 365 1. Koizumi N, Inatomi T, Suzuki T, Shiraishi A, Ohashi Y, Kandori M et al. Clinical features and
- 366 management of cytomegalovirus corneal endotheliitis:analysis of 106 cases from the Japan corneal
- 367 endotheliitis study. Br J Ophthalmol. 2014:in press.
- 2. Hosogai M, Shima N, Nakatani Y, Inoue T, Iso T, Yokoo H et al. Analysis of human cytomegalovirus
- replication in primary cultured human corneal endothelial cells. Br J Ophthalmol. 2015;99:1583-90.
- doi:10.1136/bjophthalmol-2014-306486.
- 371 3. Miyazaki D, Uotani R, Inoue M, Haruki T, Shimizu Y, Yakura K et al. Corneal endothelial cells activate
- 372 innate and acquired arm of anti-viral responses after cytomegalovirus infection. Exp Eye Res.
- 373 2017;161:143-52. doi:10.1016/j.exer.2017.06.017.
- 4. Bradley AJ, Lurain NS, Ghazal P, Trivedi U, Cunningham C, Baluchova K et al. High-throughput
- 375 sequence analysis of variants of human cytomegalovirus strains Towne and AD169. J Gen Virol.
- 376 2009;90:2375-80. doi:10.1099/vir.0.013250-0.
- 5. Isomura H, Stinski MF, Murata T, Yamashita Y, Kanda T, Toyokuni S et al. The human cytomegalovirus
- 378 gene products essential for late viral gene expression assemble into prereplication complexes before
- 379 viral DNA replication. J Virol. 2011;85:6629-44. doi:10.1128/JVI.00384-11.
- 380 6. Wilkie AR, Lawler JL, Coen DM. A Role for Nuclear F-Actin Induction in Human Cytomegalovirus
- 381 Nuclear Egress. MBio. 2016;7. doi:10.1128/mBio.01254-16.

382	7. Clark AF, Wilson K, McCartney MD, Miggans ST, Kunkle M, Howe W. Glucocorticoid-induced
383	formation of cross-linked actin networks in cultured human trabecular meshwork cells. Invest
384	Ophthalmol Vis Sci. 1994;35:281-94.
385	8. Kuchtey J, Rezaei KA, Jaru-Ampornpan P, Sternberg P, Jr., Kuchtey RW. Multiplex cytokine analysis

- 386 reveals elevated concentration of interleukin-8 in glaucomatous aqueous humor. Invest Ophthalmol Vis
 387 Sci. 2010;51:6441-7. doi:10.1167/iovs.10-5216.
- 388 9. Zenkel M, Lewczuk P, Jünemann A, Kruse FE, Naumann GOH, Schlötzer-Schrehardt U.
- 389 Proinflammatory Cytokines Are Involved in the Initiation of the Abnormal Matrix Process in
- 390 Pseudoexfoliation Syndrome/Glaucoma. The American Journal of Pathology. 2010;176:2868-79.
- 391 doi:10.2353/ajpath.2010.090914.
- 392 10. Sawada H, Fukuchi T, Tanaka T, Abe H. Tumor necrosis factor-alpha concentrations in the aqueous
- humor of patients with glaucoma. Invest Ophthalmol Vis Sci. 2010;51:903-6. doi:10.1167/iovs.09-4247.
- 11. Ghanem A, Arafa L, Elewa A. Tumor Necrosis Factor-α and Interleukin-6 Levels in patients with
- 395 primary open-angle Glaucoma. J Clinic Experiment Ophthalmol. 2011;2:2.
- 12. Chua J, Vania M, Cheung CMG, Ang M, Chee SP, Yang H et al. Expression profile of inflammatory
- 397 cytokines in aqueous from glaucomatous eyes. Molecular vision. 2012;18:431.
- 398 13. Garweg JG, Zandi S, Pfister IB, Skowronska M, Gerhardt C. Comparison of cytokine profiles in the
- aqueous humor of eyes with pseudoexfoliation syndrome and glaucoma. PloS one. 2017;12:e0182571.
- 400 14. Kokubun T, Tsuda S, Kunikata H, Yasuda M, Himori N, Kunimatsu-Sanuki S et al. Characteristic

- 401 Profiles of Inflammatory Cytokines in the Aqueous Humor of Glaucomatous Eyes. Ocular Immunology
- $402 \qquad \text{and Inflammation. 2017:1-12.}$
- 403 15. Yamamoto T, Eckes B, Mauch C, Hartmann K, Krieg T. Monocyte chemoattractant protein-1
- 404 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an
- 405 autocrine IL-1 α loop. The Journal of Immunology. 2000;164:6174-9.
- 406 16. Choi JA, Kim JE, Noh SJ, Kyoung Kim E, Park CK, Paik SY. Enhanced cytomegalovirus infection
- 407 in human trabecular meshwork cells and its implication in glaucoma pathogenesis. Sci Rep.
- 408 2017;7:43349. doi:10.1038/srep43349.
- 409 17. Kandori M, Miyazaki D, Yakura K, Komatsu N, Touge C, Ishikura R et al. Relationship between the
- 410 number of cytomegalovirus in anterior chamber and severity of anterior segment inflammation. Jpn J
- 411 Ophthalmol. 2013;57:497-502. doi:10.1007/s10384-013-0268-2.
- 412 18. Vomaske J, Varnum S, Melnychuk R, Smith P, Pasa-Tolic L, Shutthanandan JI et al. HCMV pUS28
- 413 initiates pro-migratory signaling via activation of Pyk2 kinase. Herpesviridae. 2010;1:2.
- 414 doi:10.1186/2042-4280-1-2.
- $415 \qquad {\rm 19.\ Langemeijer\ EV,\ Slinger\ E,\ de\ Munnik\ S,\ Schreiber\ A,\ Maussang\ D,\ Vischer\ H\ et\ al.\ Constitutive}}$
- 416 beta-catenin signaling by the viral chemokine receptor US28. PLoS One. 2012;7:e48935.
- 417 doi:10.1371/journal.pone.0048935.
- 418 20. Goulidaki N, Alarifi S, Alkahtani SH, Al-Qahtani A, Spandidos DA, Stournaras C et al. RhoB is a
- 419 component of the human cytomegalovirus assembly complex and is required for efficient viral

420 production. Cell Cycle. 2015;14:2748-63. doi:10.1080/15384101.2015.1066535.

421	21. Cha TA, Tom E, Kemble GW, Duke GM, Mocarski ES, Spaete RR. Human cytomegalovirus clinical
422	isolates carry at least 19 genes not found in laboratory strains. J Virol. 1996;70:78-83.
423	22. Revello MG, Gerna G. Human cytomegalovirus tropism for endothelial/epithelial cells: scientific
424	background and clinical implications. Reviews in medical virology. 2010;20:136-55.
425	doi:10.1002/rmv.645.
426	23. Ryckman BJ, Chase MC, Johnson DC. HCMV gH/gL/UL128-131 interferes with virus entry into

- 427 epithelial cells: evidence for cell type-specific receptors. Proc Natl Acad Sci U S A. 2008;105:14118-23.
- 428 doi:10.1073/pnas.0804365105.
- 429 24. Moorman NJ, Cristea IM, Terhune SS, Rout MP, Chait BT, Shenk T. Human cytomegalovirus protein
- 430 UL38 inhibits host cell stress responses by antagonizing the tuberous sclerosis protein complex. Cell
- 431 Host Microbe. 2008;3:253-62. doi:10.1016/j.chom.2008.03.002.
- 432 25. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F et al. Broadly targeted human
- 433 cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed
- 434 subjects. J Exp Med. 2005;202:673-85. doi:10.1084/jem.20050882.
- 435 26. Klenerman P, Oxenius A. T cell responses to cytomegalovirus. Nat Rev Immunol. 2016;16:367-77.
- 436 doi:10.1038/nri.2016.38.

438	Figure	legends
-----	--------	---------

439	Figure 1. Induction of the mRNA of the genes of human cytomegalovirus
440	(HCMV) in human trabecular meshwork cells (HTMC) after HCMV infection
441	HTMCs were infected with the Towne strain or the TB40/E strain of HCMV, and the
442	induction of the mRNA of IE1(a), pp65 (b), and glycoprotein B (gB)(c) was
443	determined by RT-real-time PCR. Viral genes, IE1, pp65, and gB, were sequentially
444	induced after infection by the Towne strain or the TB40/E strain of HCMV. TB40/E
445	induced significantly higher amounts of IE1, pp65, and gB.
446	*: <i>P</i> = 0.05, **: <i>P</i> = 0.05; n = 8
447	
448	Figure 2. Induction kinetics of viral gene proteins in HTMCs after HCMV
448 449	Figure 2. Induction kinetics of viral gene proteins in HTMCs after HCMV infection.
448 449 450	Figure 2. Induction kinetics of viral gene proteins in HTMCs after HCMV infection. HTMCs were infected with the Towne strain or the TB40/E strain at MOI of 1 or 5,
448449450451	 Figure 2. Induction kinetics of viral gene proteins in HTMCs after HCMV infection. HTMCs were infected with the Towne strain or the TB40/E strain at MOI of 1 or 5, and the extracted viral proteins were assayed by western blot analyses. The proteins
 448 449 450 451 452 	 Figure 2. Induction kinetics of viral gene proteins in HTMCs after HCMV infection. HTMCs were infected with the Towne strain or the TB40/E strain at MOI of 1 or 5, and the extracted viral proteins were assayed by western blot analyses. The proteins of IE1, pp65, and UL44 were sequentially expressed after the HCMV infection.
 448 449 450 451 452 453 	Figure 2. Induction kinetics of viral gene proteins in HTMCs after HCMV infection. HTMCs were infected with the Towne strain or the TB40/E strain at MOI of 1 or 5, and the extracted viral proteins were assayed by western blot analyses. The proteins of IE1, pp65, and UL44 were sequentially expressed after the HCMV infection. Infection by the TB40/E strain led to stronger inductions of pp65 and UL44.
 448 449 450 451 452 453 454 	Figure 2. Induction kinetics of viral gene proteins in HTMCs after HCMV infection. HTMCs were infected with the Towne strain or the TB40/E strain at MOI of 1 or 5, and the extracted viral proteins were assayed by western blot analyses. The proteins of IE1, pp65, and UL44 were sequentially expressed after the HCMV infection. Infection by the TB40/E strain led to stronger inductions of pp65 and UL44.
 448 449 450 451 452 453 454 455 	Figure 2. Induction kinetics of viral gene proteins in HTMCs after HCMV infection. HTMCs were infected with the Towne strain or the TB40/E strain at MOI of 1 or 5, and the extracted viral proteins were assayed by western blot analyses. The proteins of IE1, pp65, and UL44 were sequentially expressed after the HCMV infection. Infection by the TB40/E strain led to stronger inductions of pp65 and UL44. Figure 3. Induction of interferon response in HTMCs after infection by the

457	The extracted mRNA at 6 h post infection was evaluated for interferon using real-
458	time RT-PCR for interferon- β . TB40/E infection induced significantly higher levels of
459	interferon- β than Towne. *: <i>P</i> = 0.016, **: <i>P</i> = 0.0001; n = 5.
460	
461	Figure 4. Induction of myosin phosphatase Rho interacting protein (MPRIP) in
462	HTMCs after infection by the TB40/E strain of HMCV.
463	HTMCs were infected with the TB40/E strain or the Towne strain. The level of mRNA
464	induction of myosin phosphatase Rho interacting protein (MPRIP) was evaluated
465	using RT-PCR. TB40/E infection induced significantly higher levels of MPRIP at 12 h
466	PI than Towne. * <i>P</i> = 0.0001; n = 5.
467	
468	Figure 5. Induction of MCP-1 in HTMCs after infection by HMCV
469	HTMCs were infected with the TB40/E strain or the Towne strain. The level of mRNA
470	induction of MCP-1 was evaluated using RT-PCR. TB40/E infection prolonged the
471	induction of higher levels of MCP-1 at 24 h, while induction of MCP-1 by Towne was
472	observed at 6 h PI and was transient. *: P = 0.04, **: P < 0.001; n = 5.
473	
474	Figure <u>6.</u> Induction of viral gene proteins and remodeling of actin
475	cytoskeleton after HCMV infection.

476	HTMCs were infected with the TB40/E strain (a) or the Towne strain (b) of HCMV at
477	MOI of 5 and immunostained for IE1, pp65, and glycoprotein B (Green). TB40/E
478	infection induced significant remodeling of the actin cytoskeleton (c, pp65,
479	green). Actin was stained using phalloidin (red). Nucleus was labelled by DAPI
480	(blue). *: viral assembly compartment.
481	
482	Figure 7. Viral genome replication for HCMV in human trabecular meshwork
483	cells (HTMCs).
484	HTMCs were infected with the HCMV and examined for viral genomic copy
485	equivalent using real-time PCR. Both the TB40/E strain and Towne strain induced
486	significant increases of the viral genome. TB40/E infection induced 5 times more
487	viral replication than Towne at day 3 post infection. $n = 6$
488	
489	Figure 8. Production of infectious virions after HCMV infection of human
490	trabecular meshwork cells (HTMCs)
491	HTMCs were infected with the TB40/E strain or the Towne strain of HCMV at MOI of
492	0.1 and examined by electron microscopy. Viral particles (arrow) and dense bodies
493	(arrowhead) can be seen in the cytoplasm. Bars indicate 500 nm (TB40/E) and 200
494	nm (Towne).

496 **Figure 9. Efficient growth of HCMV in HTMCs.**

- 497 HTMCs were infected with TB40/E or Towne at MOI of 1 and 5 and were titrated for
- tissue culture infectious dose (TCID₅₀). Both strains had efficient growth in HTMCs.
- 499 The maximum viral titer was significantly higher for the TB40/E strain. n = 4.

Figure.1

TB40/E

Towne

C.

TB40/E

Towne

TB40/E

Towne

