| 1  | Effectiveness of real-time PCR for diagnosis and                                       |
|----|----------------------------------------------------------------------------------------|
| 2  | prognosis of varicella-zoster virus keratitis                                          |
| 3  |                                                                                        |
| 4  |                                                                                        |
| 5  | Kodai Inata, Dai Miyazaki, Ryu Uotani, Daisuke Shimizu, Atsuko Miyake, Yumiko          |
| 6  | Shimizu, Yoshitsugu Inoue                                                              |
| 7  | Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, |
| 8  | Tottori, Japan                                                                         |
| 9  |                                                                                        |
| 10 | Running title: Real-time PCR for VZV keratitis                                         |
| 11 |                                                                                        |
| 12 | Address correspondence: Kodai Inata, MD, Division of Ophthalmology and Visual          |
| 13 | Science, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago Tottori        |
| 14 | 683-8504, Japan                                                                        |
| 15 | Tel: 81-859-38-6617                                                                    |
| 16 | Fax: 81-859-38-6619                                                                    |
| 17 | E-mail: rx_78_2_gundam_vs_ms_06s_zaku2@yahoo.co.jp                                     |
| 18 | Word count: 2493                                                                       |
| 19 | Number of references: 22, number of figures: 3, number of tables: 3                    |
| 20 | 1                                                                                      |

#### 21 Abstract

**Purpose**: To determine the efficacy of real-time PCR for the diagnosis and prognosis 22 23 of varicella-zoster virus (VZV) keratitis. 24Study design: Retrospective case series. Methods: Patients: 545 consecutive patients with keratitis were examined to quantify 25 26 copy numbers of VZV DNA by real-time PCR. Association of copy numbers of DNA of VZV to clinical signs and disease course was assessed using logistic regression 27 analysis and Cox proportional hazard model. 28 29 **Results**: Of the 545 eyes, 38 eyes (6.9%) were diagnosed as VZV keratitis. The copy numbers of the DNA of VZV (median: 10<sup>4.19</sup> copy) was significantly associated with 30 31 diagnosis of VZV keratitis with the highest odds ratio (OR) of 3390 (for median copy) compared to clinical signs. Diagnostic accuracy of the VZV DNA copy indicated good 32 33 diagnostic value of area under the curve (0.92) by receiver operating characteristic analysis, and detection of unrelated VZV DNA from the cornea was very rare (0.2%). 34 When the VZV DNA copy and clinical signs were assessed for association with the 35 36 disease course after herpes zoster ophthalmicus, the disease duration was significantly prolonged in VZV keratitis cases with higher numbers of VZV DNA copies, 37 iritis, and history of recurrences. The amount of VZV DNA led to a continuous risk to 38 prolong disease duration until the ocular inflammation subsides (hazard ratio (HR) 39

- 40 0.17, 95%CI: 0.07 0.42, for median copies).
- 41 **Conclusions**: Higher VZV DNA copy numbers are associated with the refractoriness
- 42 of VZV keratitis, and its evaluation may be a clinically useful way to diagnose and
- 43 manage VZV keratitis.

# **Keywords:**

- 48 varicella-zoster virus keratitis, real-time PCR, herpes zoster
- 49 ophthalmicus

### 52 Introduction

| 53 | Herpes zoster contributes significantly to morbidity in elderly individuals and is mainly |
|----|-------------------------------------------------------------------------------------------|
| 54 | caused by a reactivation of the varicella-zoster virus (VZV). Almost one-third of         |
| 55 | individuals are estimated to be affected by herpes zoster, [1, 2] and up to 20% of        |
| 56 | herpes zoster infections are expressed as herpes zoster ophthalmicus (HZO).[2, 3]         |
| 57 | Patients with HZO have significantly higher risks of strokes and post-herpetic            |
| 58 | neuralgia. [4-6] Importantly, an ocular complication is observed in 35.1% to 65% of       |
| 59 | HZO patients.[7, 8]                                                                       |
| 60 |                                                                                           |
| 61 | However, the etiology of the ocular complication has not been determined. For             |
| 62 | example, the VZV DNA in the ocular lesions of VZV keratitis is occasionally not           |
| 63 | detected by conventional PCR. [9] For VZV keratitis cases positive for VZV DNA after      |
| 64 | HZO, VZV DNA was believed to disappear soon after the onset. Thus, it is still unclear    |
| 65 | whether active keratitis lesions are caused by VZV replication or an inflammatory         |
| 66 | response of the host.                                                                     |
| 67 |                                                                                           |
| 68 | The purpose of this study was to determine the relationship between the presence of       |

69 VZV DNA in the eye and the diagnosis of HZO. To accomplish this, we quantified the

| 70 | VZV DNA by quantitative real-time PCR (qPCR) and assessed the association of the      |
|----|---------------------------------------------------------------------------------------|
| 71 | copy numbers with the clinical signs with and without previous HZO. We then           |
| 72 | analyzed course of ocular complications after HZO. We shall show that VZV DNA was     |
| 73 | a significant risk factor for prolonged ocular complications after HZO.               |
| 74 |                                                                                       |
| 75 |                                                                                       |
| 76 | Materials and Methods                                                                 |
| 77 | Patients eligibility and diagnostic criteria of VZV keratitis                         |
| 78 | The medical records of 545 consecutive cases with clinically diagnosed keratitis were |
| 79 | reviewed, and all were examined at the Tottori University Medical Hospital between    |
| 80 | November 2005 and September 2016. All of these cases had undergone qPCR for           |
| 81 | VZV. Of these 545 cases, 283 patients were men, and the mean age was 56.1 $\pm$ 23.1  |
| 82 | years.                                                                                |
| 83 |                                                                                       |
| 84 | The diagnosis of HZO was based on the presence of primary skin rashes with            |
| 85 | erythema within the ophthalmic dermatome as described in detail.[9] Acute VZV         |
| 86 | keratitis was diagnosed when keratitis was present with preceding skin rashes <90     |
| 87 | days from the onset of the skin lesions.[2] In cases without preceding skin rash with |
| 88 | positive VZV by conventional PCR, a diagnosis of acute VZV keratitis was made by      |

| 89  | the responsiveness to oral valaciclovir/acyclovir or topical acyclovir ointment, or the  |
|-----|------------------------------------------------------------------------------------------|
| 90  | combination of these anti-herpetic drugs and steroid treatments. Chronic VZV             |
| 91  | keratitis was defined to be present when the activity required anti-viral drugs or       |
| 92  | steroids for ≥90 days from the onset of skin lesions.[2] Recurrent disease was defined   |
| 93  | to be present, when keratitis recurred ≥90 days after the resolution of the signs        |
| 94  | without the use of anti-viral drugs or steroids. DNA samples were collected at each      |
| 95  | outpatient visit until the clinical symptoms were resolved for the VZV keratitis cases.  |
| 96  |                                                                                          |
| 97  | A diagnosis of herpetic keratitis was made when herpes simplex virus (HSV) was           |
| 98  | detected by PCR. A diagnosis of other non-VZV keratitis, including bacterial keratitis,  |
| 99  | fungal keratitis, acanthamoeba keratitis, adenoviral keratitis, or autoimmune keratitis, |
| 100 | was made by conventional culturing, smearing, and PCR as described.[10-13]               |
| 101 |                                                                                          |
| 102 | This study was approved by the Institutional Review Board of Tottori University,         |
| 103 | Faculty of Medicine, Tottori, Japan. An informed consent was obtained prior to the       |
| 104 | procedures from all of the participants after an explanation of the procedures to be     |
| 105 | used.                                                                                    |
| 106 |                                                                                          |
|     |                                                                                          |

### 107 Quantitative real-time PCR

| 108 | Samples were collected from the ocular surface and cornea by rinsing them with 400          |
|-----|---------------------------------------------------------------------------------------------|
| 109 | $\mu I$ of saline without touching the eyelids and skin lesions. DNA was extracted from the |
| 110 | samples with the QIAamp DNA mini kit (Qiagen, Hilden, Germany) and were                     |
| 111 | amplified with the LightCycler (Roche, Basel, Switzerland) using QuantiTect Probe           |
| 112 | PCR kit (Qiagen) and primers (Supplementary Table 1).[14, 15] To determine the              |
| 113 | copy numbers of the DNA of VZV, a standard curve was generated with serial                  |
| 114 | dilutions of synthesized DNA fragments of the VZV polymerase gene.[14] The limit of         |
| 115 | detection at a 95% detection probability was 49 copies/assay. VZV copy number was           |
| 116 | adjusted by measurement of human GAPDH copy. [15]                                           |
| 117 |                                                                                             |
| 118 | Statistical analyses                                                                        |
| 119 | Data are presented as the means $\pm$ standard deviations (SDs). For bilateral cases,       |
| 120 | the more severely affected eye was used for the statistical analyses. Cox proportional      |
| 121 | hazard model with shared frailty was used to calculate the hazard ratio (HR) during         |
| 122 | the course of the disease. Statistical analyses were conducted using Stata 14. A P          |
| 123 | <0.05 was considered significant.                                                           |
| 124 |                                                                                             |
| 125 | Results                                                                                     |

126 Diagnostic efficacy of qPCR for VZV keratitis

| 127                                                                                      | Patients with corneal ulcer or inflammatory keratitis which was suspected to be                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 128                                                                                      | caused by VZV infection or required the exclusion of VZV for diagnosis were studied.                                                                                                                                                                                                                                                                                                                                                                |
| 129                                                                                      | Of the 545 eyes, 38 eyes (6.9%) were diagnosed with VZV keratitis. Thirty-seven                                                                                                                                                                                                                                                                                                                                                                     |
| 130                                                                                      | eyes had HZO keratitis and 1 eye had varicella keratitis. The mean age of the HZO                                                                                                                                                                                                                                                                                                                                                                   |
| 131                                                                                      | keratitis patients was 63.2 ± 20.0 years (Table 1).                                                                                                                                                                                                                                                                                                                                                                                                 |
| 132                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 133                                                                                      | qPCR for VZV was positive for 32 eyes (5.9%) of all the cases, and 30 eyes of PCR                                                                                                                                                                                                                                                                                                                                                                   |
| 134                                                                                      | positive cases had HZO keratitis and 1 eye had varicella keratitis. All the VZV keratitis                                                                                                                                                                                                                                                                                                                                                           |
| 135                                                                                      | cases had prior periocular skin rashes, and 35 eyes (92.1%) were within 3 months of                                                                                                                                                                                                                                                                                                                                                                 |
| 136                                                                                      | the initial visit. The percentage of eyes with ocular shedding of VZV DNA by non-VZV                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 137                                                                                      | infection was very low in the diseased corneas (0.2%).                                                                                                                                                                                                                                                                                                                                                                                              |
| 137<br>138                                                                               | infection was very low in the diseased corneas (0.2%).                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                          | infection was very low in the diseased corneas (0.2%). For the eyes diagnosed with VZV keratitis, the mean copy number was $10^{4.21} \pm 10^{2.61}$ ,                                                                                                                                                                                                                                                                                              |
| 138                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 138<br>139                                                                               | For the eyes diagnosed with VZV keratitis, the mean copy number was $10^{4.21} \pm 10^{2.61}$ ,                                                                                                                                                                                                                                                                                                                                                     |
| 138<br>139<br>140                                                                        | For the eyes diagnosed with VZV keratitis, the mean copy number was $10^{4.21} \pm 10^{2.61}$ ,<br>and the median copy number was $10^{4.19}$ . VZV DNA was significantly associated with                                                                                                                                                                                                                                                           |
| 138<br>139<br>140<br>141                                                                 | For the eyes diagnosed with VZV keratitis, the mean copy number was $10^{4.21} \pm 10^{2.61}$ ,<br>and the median copy number was $10^{4.19}$ . VZV DNA was significantly associated with<br>VZV keratitis (Odds ratio (OR): 3390 for $10^{4.19}$ (median) copies, 6.9/log copy, after                                                                                                                                                              |
| 138<br>139<br>140<br>141<br>142                                                          | For the eyes diagnosed with VZV keratitis, the mean copy number was $10^{4.21} \pm 10^{2.61}$ ,<br>and the median copy number was $10^{4.19}$ . VZV DNA was significantly associated with<br>VZV keratitis (Odds ratio (OR): 3390 for $10^{4.19}$ (median) copies, 6.9/log copy, after<br>age and GAPDH adjustments, $P = 0.000$ ; Table 2). Periocular skin rashes                                                                                 |
| <ol> <li>138</li> <li>139</li> <li>140</li> <li>141</li> <li>142</li> <li>143</li> </ol> | For the eyes diagnosed with VZV keratitis, the mean copy number was $10^{4.21} \pm 10^{2.61}$ ,<br>and the median copy number was $10^{4.19}$ . VZV DNA was significantly associated with<br>VZV keratitis (Odds ratio (OR): 3390 for $10^{4.19}$ (median) copies, 6.9/log copy, after<br>age and GAPDH adjustments, $P = 0.000$ ; Table 2). Periocular skin rashes<br>(irrespective of dermatomal distribution and within the prior 3 months) also |

| 147 | Next, we determined how these clinical signs and VZV DNA copy numbers are                  |
|-----|--------------------------------------------------------------------------------------------|
| 148 | related to the diagnosis of VZV keratitis (Table 2). VZV DNA qPCR had a sensitivity of     |
| 149 | 81.6% and specificity of 99.8%. The likelihood ratio, which denotes the efficiency of      |
| 150 | the test, was the highest at 408 (Table 2). In contrast to the clinical signs, qPCR for    |
| 151 | VZV had higher positive predictive value and likelihood ratio, indicating that qPCR is     |
| 152 | accurate for both the negative and positive results for the diagnosis of VZV keratitis.    |
| 153 |                                                                                            |
| 154 | Of the 545 eyes, periocular skin rashes were observed in 49 eyes (9.0%), and 15 of         |
| 155 | these eyes (30.6%) were not related to VZV infection. The sensitivity and specificity of   |
| 156 | the skin rashes was 92.1% and 97.2%, and its likelihood ratio was lower at 32.9.           |
| 157 |                                                                                            |
| 158 | Other clinical signs, including ocular hypertension, iritis, corneal dendritic lesion, and |
| 159 | scleritis, were also significantly associated with VZV keratitis, however, lower in        |
| 160 | positive predictive value and likelihood ratio.                                            |
| 161 |                                                                                            |
| 162 | Next, we assessed the diagnostic accuracy of these signs in comparison to that of          |
| 163 | qPCR using receiver operating characteristic analysis (ROC; Figure 1). The area            |
| 164 | under the curve (AUC) for periocular skin rashes calculated as reference was 0.95          |
| 165 | (95%CI: 0.90 – 0.99). The AUC for VZV qPCR was 0.92 (95%CI: 0.86 – 0.98) after             |

| 166 | GAPDH adjustments and was not different for the skin rashes. The AUC of dendritic       |
|-----|-----------------------------------------------------------------------------------------|
| 167 | lesions, ocular hypertension, and iritis was 0.66 (95%CI: 0.58 – 0.74), 0.62 (95%CI:    |
| 168 | 0.55 -0.70), and 0.60 (95%CI: 0.53 – 0.67) respectively, and their diagnostic accuracy  |
| 169 | was significantly lower than that of qPCR ( $P = 0.000$ ).                              |
| 170 |                                                                                         |
| 171 | Association of copy numbers of DNA of VZV to clinical signs and disease                 |
| 172 | course                                                                                  |
| 173 | We determined whether the copy numbers of the DNA of VZV was significantly              |
| 174 | associated with the clinical signs or outcomes using logistic regression analysis       |
| 175 | (Table 3). As expected, the copy number of DNA at the first visit was significantly     |
| 176 | associated with the presence of periocular skin rashes (OR: 100.6 for median copies,    |
| 177 | 95% CI: 22.9-441.9, $P = 0.000$ , age and GAPDH adjusted). Notably, the copy number     |
| 178 | of DNA was significantly associated with iritis with OR of 6.0 indicating that high VZV |
| 179 | copy number is especially associated with intraocular inflammation. This was            |
| 180 | followed by ocular hypertension (OR: 3.7) and dendritic lesion (OR: 3.5).               |
| 181 |                                                                                         |
| 182 |                                                                                         |
| 183 | Therefore, we determined whether the amount of the DNA of VZV at the initial            |
| 184 | diagnosis of keratitis can predict the refractoriness and prognosis of HZO keratitis. A |

| 185 | higher copy number of VZV DNA at the first visit was significantly correlated with the                        |
|-----|---------------------------------------------------------------------------------------------------------------|
| 186 | duration of the disease ( $\rho = 0.53$ , $P = 0.0007$ , Spearman correlation analysis). In                   |
| 187 | refractory cases with iritis as the intraocular inflammation, the VZV genome was                              |
| 188 | detected until all clinical signs of the keratitis were not detected (Figure 2).                              |
| 189 |                                                                                                               |
| 190 | When the history of recurrences was evaluated in HZO keratitis patients, 8 eyes                               |
| 191 | (21.6%) had a history of recurrences. Of these 8 eyes, 2 eyes (25%) were from                                 |
| 192 | immune compromised patients. Immune compromised patients had significantly                                    |
| 193 | higher number of recurrences by a 50.6% increase of chance ( $P = 0.019$ after VZV                            |
| 194 | DNA copy adjustment).                                                                                         |
| 195 |                                                                                                               |
| 196 | The mean duration of the HZO keratitis was 119 days (95%CI: 82 – 155). Kaplan                                 |
| 197 | Meier survival analyses were performed to determine whether high copy numbers                                 |
| 198 | (more than the median) at the first visit, the clinical characteristics and previous                          |
| 199 | recurrences were associated with the disease duration. The results showed that high                           |
| 200 | VZV copy numbers ( $\geq$ median; <i>P</i> = 0.008, log-rank test), iritis ( <i>P</i> = 0.01), and history of |
| 201 | recurrences were significantly associated with the duration of the disease ( $P = 0.006$ ,                    |
| 202 | Figure 3). Importantly, iritis with high VZV copy number had the most significant effect                      |
| 203 | on the disease duration.                                                                                      |

| 205 | During the course of the disease process, we monitored the copy numbers of the            |
|-----|-------------------------------------------------------------------------------------------|
| 206 | DNA of VZV until HZO keratitis resolved. DNA of VZV was continuously detected at          |
| 207 | the outpatient visits with declining tendency, and become detectable when signs           |
| 208 | become absent. Then, we calculated the hazard ratio of VZV copy numbers during            |
| 209 | the course (including the first visit) on the disease duration. VZV copy numbers          |
| 210 | indicated highly significant HR, and was 0.17 for median of VZV copies (95% CI:           |
| 211 | 0.07-0.42, $P = 0.000$ ). Thus, detection of VZV copy number predicted a prolonged        |
| 212 | disease course, and the disease prolonging effect declines with its decrease and          |
| 213 | become negligible when it is not detected. HR indicated that the keratitis was six        |
| 214 | times more likely not to be resolved on a given date when the VZV copy numbers            |
| 215 | exceeded median. Presence of iritis were also significant risk factor associated with     |
| 216 | longer disease duration with comparable HR (HR, 0.14, 95% CI: 0.04- 0.49, $P =$           |
| 217 | 0.002). When the history of recurrences was assessed, the hazard ratio was                |
| 218 | calculated to be 0.15 (95%CI: 0.03 – 0.69, $P = 0.01$ ), indicating that recurrences were |
| 219 | also associated significantly with a prolongation of the disease duration.                |
| 220 |                                                                                           |
| 221 |                                                                                           |

#### 223 **Discussion**

Our results showed that qPCR is highly efficacious for diagnosing ocular VZV 224225 infection. Using gPCR, we here show two important findings. First, in case of high viral loads at ocular surface after HZO, the prolongation of keratitis was significantly 226 associated with continuous viral production. Second, VZV keratitis was strictly 227 associated with previous HZO, although VZV iritis without keratitis can often occur 228 without noticeable history of HZO. These information is important for the 229 management of refractory ocular complications after HZO because ocular 230 231 inflammation was previously thought to be an anti-viral immune response without viral 232 production and often treated without antiviral medications. 233 Zaal et al examined the inflammation of VZV keratitis after HZO by conventional 234 PCR.[9] Because the inflammation often persisted after the VZV genome became 235 undetectable, they suggested that inflammation was an important component of the 236 pathology of VZV keratitis. 237 238 Considering the inflammatory aspect of ocular complications after HZO, a 239 240 combination of antiviral drugs and steroids is generally used, however consensus has not been reached on how antiviral agents should be used. [16] The general belief was 241

| 242 | that the period of VZV replication in the lesion is not prolonged beyond the acute           |
|-----|----------------------------------------------------------------------------------------------|
| 243 | phase of skin lesion stage. Currently, one-third of corneal specialists use antiviral        |
| 244 | drugs for 2 weeks and 18% do not use antivirals for HZO.[16]                                 |
| 245 |                                                                                              |
| 246 | In chronic and refractory cases, high amounts of VZV DNA were detected for a long            |
| 247 | time. If antivirals are discontinued after presumed clinical remission with significant      |
| 248 | viral replication, a recurrence in the form of delayed dendritic ulcer or iritis develops    |
| 249 | as ocular complications can be expected. Thus, VZV qPCR will be beneficial for               |
| 250 | clinicians to optimize drug dosage and duration during the disease course when the           |
| 251 | signs are resolving.                                                                         |
| 252 |                                                                                              |
| 253 | The presence of iritis was recently shown to be significantly associated with a risk of      |
| 254 | recurrences or chronicity in VZV keratitis after HZO.[2] We found that iritis with low       |
| 255 | copy numbers of the DNA of VZV was not a significant risk factor for refractoriness          |
| 256 | (Figure 2 <b>a</b> ). Instead, a combination of high amounts of VZV DNA copy and iritis were |
| 257 | the most significant factors in the refractory cases. In the refractory or chronic cases,    |
| 258 | high VZV DNA copy numbers were maintained until the inflammation subsided. This              |
| 259 | suggests that prolonged viral replication and not the presence of iritis, determines the     |

260 disease course in refractory cases.

| 262                                                                         | The results of two studies have suggested that the detection of VZV may be caused                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 263                                                                         | by shedding and was independent of the refractoriness.[8, 17] In addition, VZV may                                                                                                                                                                                                                                                        |
| 264                                                                         | be often reactivated in the saliva of healthy individuals when under extreme                                                                                                                                                                                                                                                              |
| 265                                                                         | stress.[17] In bone marrow transplant patients, 19% have subclinical viremia without                                                                                                                                                                                                                                                      |
| 266                                                                         | signs of HZO.[3, 18] This suggested detection of viral genome was frequent, and may                                                                                                                                                                                                                                                       |
| 267                                                                         | not reflect diseases. In Japanese population, seropositivity reaches almost 100% in                                                                                                                                                                                                                                                       |
| 268                                                                         | elderly subjects. [19] However, we found that the rate of unrelated VZV shedding                                                                                                                                                                                                                                                          |
| 269                                                                         | from the eye was very low (0.2%) even in eyes stressed by non-VZV keratitis. This is                                                                                                                                                                                                                                                      |
| 270                                                                         | in marked contrast to ocular HSV infection, in which spontaneous HSV shedding in                                                                                                                                                                                                                                                          |
|                                                                             |                                                                                                                                                                                                                                                                                                                                           |
| 271                                                                         | tear is observed in one third of healthy subjects. [20]                                                                                                                                                                                                                                                                                   |
| 271<br>272                                                                  | tear is observed in one third of healthy subjects. [20]                                                                                                                                                                                                                                                                                   |
|                                                                             | tear is observed in one third of healthy subjects. [20]<br>Recurrences of ocular complication after HZO are frequent. The percentage of eyes                                                                                                                                                                                              |
| 272                                                                         |                                                                                                                                                                                                                                                                                                                                           |
| 272<br>273                                                                  | Recurrences of ocular complication after HZO are frequent. The percentage of eyes                                                                                                                                                                                                                                                         |
| 272<br>273<br>274                                                           | Recurrences of ocular complication after HZO are frequent. The percentage of eyes with recurrences range between 5 to 25% depending on the duration of the                                                                                                                                                                                |
| 272<br>273<br>274<br>275                                                    | Recurrences of ocular complication after HZO are frequent. The percentage of eyes with recurrences range between 5 to 25% depending on the duration of the observation period.[2, 21, 22] Consistent with previous reports, the recurrence                                                                                                |
| <ul> <li>272</li> <li>273</li> <li>274</li> <li>275</li> <li>276</li> </ul> | Recurrences of ocular complication after HZO are frequent. The percentage of eyes<br>with recurrences range between 5 to 25% depending on the duration of the<br>observation period.[2, 21, 22] Consistent with previous reports, the recurrence<br>percentage in our study was 21.6%. Tran et al reported that a recurrence of keratitis |

episode was the only significant risk factor for recurrences. We suggest that the
clinical signs are secondary to the long disease course which would directly explain
the recurrences.

283
284 There are several limitations in our study. Our data were obtained at a tertiary referral

institution, and selection or referral bias may have affected our outcomes. However,

our data are based on 12 consecutive years of observation and should provide

287 epidemiological evidence for Asians. In addition, the outcomes from a large series of

VZV qPCR data from the eye have not been available.

289

In conclusion, VZV qPCR revealed an unexpectedly longer viral replication period
and provided an effective measure to assess the viral load accurately during the
course of the disease process. We propose that the management strategy of ocular
complication after HZO would be significantly improved in the future with the use of
VZV qPCR.

295

296

## 297 Acknowledgments/disclosure

- a. Yoshitsugu Inoue: This work was supported by Grant-in-Aid 25462755 and
- 299 17K11481 for Scientific Research from the Japanese Ministry of Education, Science,
- 300 and Culture.
- 301 b. No financial disclosures.

#### 302 **References**

Yawn BP, Saddier P, Wollan PC, St Sauver JL, Kurland MJ, Sy LS. A 1. 303 304 population-based study of the incidence and complication rates of herpes zoster before zoster vaccine introduction. Mayo Clin Proc. 2007;82(11):1341-9. 305 2. Tran KD, Falcone MM, Choi DS, Goldhardt R, Karp CL, Davis JL, et al. 306 Epidemiology of Herpes Zoster Ophthalmicus: Recurrence and Chronicity. 307 Ophthalmology. 2016;123(7):1469-75. 308 3. Liesegang TJ. Herpes zoster ophthalmicus natural history, risk factors, 309 clinical presentation, and morbidity. Ophthalmology. 2008;115(2 Suppl):S3-12. 310 Kang JH, Ho JD, Chen YH, Lin HC. Increased risk of stroke after a herpes 311 4. 312 zoster attack: a population-based follow-up study. Stroke. 2009;40(11):3443-8. Lin HC, Chien CW, Ho JD. Herpes zoster ophthalmicus and the risk of stroke: 313 5. 314 a population-based follow-up study. Neurology. 2010;74(10):792-7. Bouhassira D, Chassany O, Gaillat J, Hanslik T, Launay O, Mann C, et al. 315 6. Patient perspective on herpes zoster and its complications: an observational 316 prospective study in patients aged over 50 years in general practice. Pain. 317 2012;153(2):342-9. 318

319 7. Kaufman SC. Anterior segment complications of herpes zoster ophthalmicus.
320 Ophthalmology. 2008;115(2 Suppl):S24-32.

321 8. Cohen EJ, Kessler J. Persistent dilemmas in zoster eye disease. Br J
322 Ophthalmol. 2016;100(1):56-61.

323 9. Zaal MJ, Volker-Dieben HJ, Wienesen M, D'Amaro J, Kijlstra A. Longitudinal
324 analysis of varicella-zoster virus DNA on the ocular surface associated with herpes
325 zoster ophthalmicus. Am J Ophthalmol. 2001;131(1):25-9.

10. Kakimaru-Hasegawa A, Kuo CH, Komatsu N, Komatsu K, Miyazaki D, Inoue
Y. Clinical application of real-time polymerase chain reaction for diagnosis of herpetic
diseases of the anterior segment of the eye. Jpn J Ophthalmol. 2008;52(1):24-31.

11. Kandori M, Miyazaki D, Yakura K, Komatsu N, Touge C, Ishikura R, et al.
Relationship between the number of cytomegalovirus in anterior chamber and
severity of anterior segment inflammation. Jpn J Ophthalmol. 2013;57(6):497-502.

12. Ikeda Y, Miyazaki D, Yakura K, Kawaguchi A, Ishikura R, Inoue Y, et al.
Assessment of real-time polymerase chain reaction detection of Acanthamoeba and
prognosis determinants of Acanthamoeba keratitis. Ophthalmology.
2012;119(6):1111-9.

13. Koizumi N, Miyazaki D, Inoue T, Ohtani F, Kandori-Inoue M, Inatomi T, et al.
The effect of topical application of 0.15% ganciclovir gel on cytomegalovirus corneal
endotheliitis. Br J Ophthalmol. 2016.

339 14. Weidmann M, Meyer-Konig U, Hufert FT. Rapid detection of herpes simplex

virus and varicella-zoster virus infections by real-time PCR. J Clin Microbiol.
2003;41(4):1565-8.

Miyazaki D, Uotani R, Inoue M, Haruki T, Shimizu Y, Yakura K, et al. Corneal
endothelial cells activate innate and acquired arm of anti-viral responses after
cytomegalovirus infection. Exp Eye Res. 2017;161:143-52.

Sy A, McLeod SD, Cohen EJ, Margolis TP, Mannis MJ, Lietman TM, et al.
Practice patterns and opinions in the management of recurrent or chronic herpes
zoster ophthalmicus. Cornea. 2012;31(7):786-90.

17. Cohrs RJ, Mehta SK, Schmid DS, Gilden DH, Pierson DL. Asymptomatic
reactivation and shed of infectious varicella zoster virus in astronauts. J Med Virol.
2008;80(6):1116-22.

18. Wilson A, Sharp M, Koropchak CM, Ting SF, Arvin AM. Subclinical
varicella-zoster virus viremia, herpes zoster, and T lymphocyte immunity to
varicella-zoster viral antigens after bone marrow transplantation. J Infect Dis.
1992;165(1):119-26.

355 19. The National Institute of Infectious Diseases.
356 https://www.niid.go.jp/niid/ja/y-graphs/7179-varicella-yosoku-serum2016.html.
357 Accessed 11 Oct 2017.

358 20. Kaufman HE, Azcuy AM, Varnell ED, Sloop GD, Thompson HW, Hill JM.

| 359 | HSV-1   | DNA     | in  | tears    | and | saliva | of | normal | adults. | Invest | Ophthalmol | Vis | Sci. |
|-----|---------|---------|-----|----------|-----|--------|----|--------|---------|--------|------------|-----|------|
| 360 | 2005;4  | 6(1):2/ | 11_ | 7        |     |        |    |        |         |        |            |     |      |
| 300 | 2003,40 | 0(1).2- | +1- | <i>.</i> |     |        |    |        |         |        |            |     |      |

- 361 21. Miserocchi E, Fogliato G, Bianchi I, Bandello F, Modorati G. Clinical features
- 362 of ocular herpetic infection in an italian referral center. Cornea. 2014;33(6):565-70.
- 363 22. Donahue JG, Choo PW, Manson JE, Platt R. The incidence of herpes zoster.
- 364 Arch Intern Med. 1995;155(15):1605-9.
- 365

| Total 545 eyes | HZO keratitis | Varicella keratitis | Non-VZV-associated keratitis |
|----------------|---------------|---------------------|------------------------------|
|                | N=37          | N=1                 | N=507                        |
| Age            | 63.2 ± 20.0   | 2                   | 55.7 ± 23.1                  |
| Male           | 24 eyes       | 0 eyes              | 259 eyes                     |
|                | (64.9%)       |                     | (51.1%)                      |
| Asthma         | 3 eyes        | 0 eyes              | 11 eyes                      |
|                | (8.1%)        |                     | (2.2%)                       |
| Eczema         | 1 eyes        | 1 eyes              | 31 eyes                      |
|                | (2.7%)        |                     | (6.1%)                       |

 Table 1
 Demographic information of patients and VZV keratitis

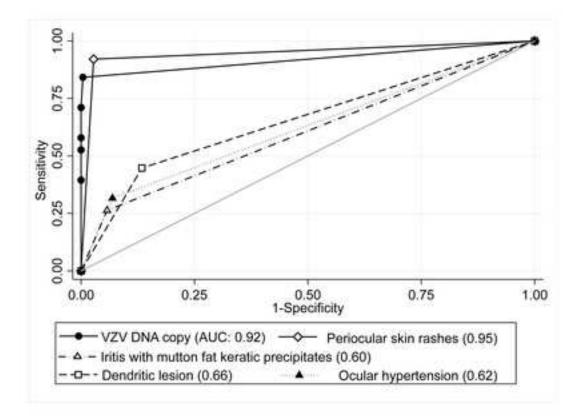
| Total 545 eyes | ratio of | Odds ratio   | positive     | negative     | Sensitivity  | Specificity   | likelihood |
|----------------|----------|--------------|--------------|--------------|--------------|---------------|------------|
|                | positive | after age    | predictive   | predictive   |              |               | ratio      |
|                | eyes     | adjustment   | value        | value        |              |               |            |
|                |          | 3390*        |              |              |              |               |            |
|                |          | (135-85383)  |              |              |              |               |            |
| VZV DNA        | 32*      | :median copy | 96.9%        | 98.6%        | 81.6%        | 99.8%         | 408        |
| сору           | (5.9%)   | 6.9*         | (80.3-99.6%) | (97.2-99.3%) | (65.8-91.1%) | (98.6-100%)   | (47-3037)  |
|                |          | (3.2-15.0)   |              |              |              |               |            |
|                |          | :log copy    |              |              |              |               |            |
| Periocular     | 49 *     | 701*         | 71.4%        | 99.4%        | 92.1%        | 97.2%         | 32.9       |
| skin rashes    | (9.0%)   | (162 - 3057) | (57.2-82.4%) | (98.1-99.8%) | (77.9-97.5%) | (95.3-98.3%)  | (16.6-57.4 |
| Ocular         | 47*      | 5.8*         | 25.5%        | 94.8%        | 31.6%        | 93.1%         | 4.6        |
| hypertension   | (8.6%)   | (2.7 – 12.6) | (15.0-40.0%) | (92.4-96.4%) | (18.7-48.0%) | (90.5-95.0%)  | (2.0-9.6)  |
| Iritis with    |          |              |              |              |              |               |            |
| mutton fat     | 39*      | 5.4*         | 25.6%        | 94.5%        | 26.3         | 94.3%         | 4.6        |
| keratic        | (7.2%)   | (2.4 - 12.5) | (14.3-41.7%) | (92.1-96.2%) | (14.6-42.6%) | (91.9-96.0%)  | (1.8-10.7) |
| precipitates   |          |              |              |              |              |               |            |
| Corneal        | 85*      | 5.0*         | 20.0%        | 95.4%        | 44.7%        | 86.6%         | 3.3        |
| dendritic      | (15.6%)  | (2.5 - 10.1) | (12.8-30.0%) | (93.1-97.0%) | (29.7-60.8%) | (83.3%-89.3%) | (1.8-5.7)  |
| lesion         |          |              |              |              |              |               |            |
| Scleritis      | 28**     | 3.9 ***      | 21.4%        | 93.8%        | 15.8%        | 95.7%         | 3.7        |
|                | (5.1%)   | (1.5 – 10.4) | (9.8-40.7%)  | (91.4-95.6%) | (7.2-31.3%)  | (93.5-97.1%)  | (1.1-10.8) |

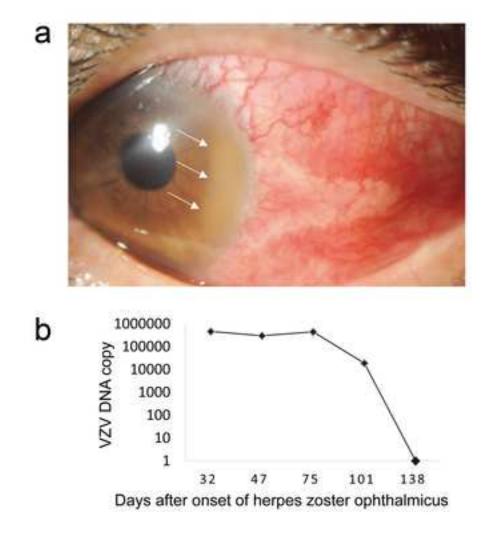
**Table 2** Association of VZV DNA copy numbers and clinical signs of VZV keratitis and evaluation of their diagnostic accuracy

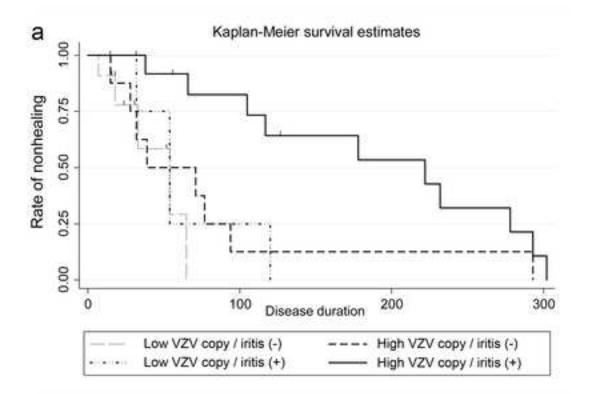
\*: statistically significant, \*: P=0.000, \*\*: P=0.009, \*\*\*: P=0.006, 95% confidence interval (95%CI)

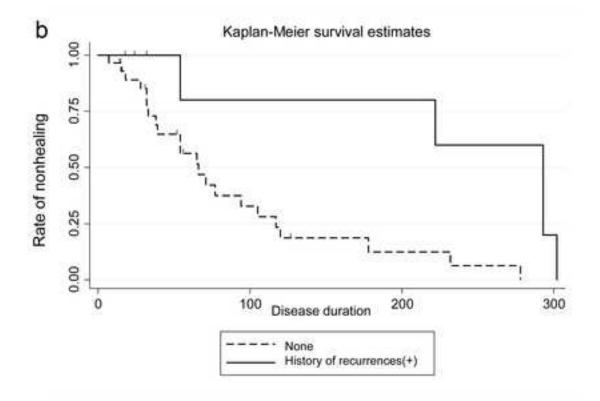
|                                               | Odds ratio    | 95% confidence interval | P value |
|-----------------------------------------------|---------------|-------------------------|---------|
|                                               | (Median copy) |                         |         |
| Periocular skin rashes                        | 100.6         | 22.9 – 441.9            | 0.000   |
| Iritis (with mutton fat keratic precipitates) | 6.0           | 2.4 – 15.2              | 0.000   |
| Ocular hypertension                           | 3.7           | 1.6 - 8.9               | 0.003   |
| Corneal dendritic lesion                      | 3.5           | 1.6 – 7.9               | 0.002   |

# Table 3 Association of VZV copy numbers to clinical signs and characteristics


Logistic regression analysis after age and GAPDH adjustment


| 377 | Figure captions                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------------|
| 378 | Figure 1. Diagnostic accuracy of qPCR for VZV and clinical signs.                                           |
| 379 | The sensitivity and specificity of VZV qPCR and clinical signs to diagnose VZV                              |
| 380 | keratitis are plotted to determine the area under the curve (AUC) as diagnostic                             |
| 381 | accuracy by receiver operating characteristic analysis. The VZV DNA copy number                             |
| 382 | has a very high accuracy comparable to that for skin rashes calculated as reference                         |
| 383 | and is significantly better than the other signs.                                                           |
| 384 |                                                                                                             |
| 385 | Figure 2. Case of VZV keratitis with duration of VZV disease. A 53-year-old man                             |
| 386 | presented with herpes zoster ophthalmicus (HZO) with periocular skin rashes. One                            |
| 387 | month later, he developed VZV keratitis with corneal edema and iritis, and the copy                         |
| 388 | number of the DNA of VZV was 4.7 $\times 10^5$ . The elevated copy number was present for                   |
| 389 | 4 months.                                                                                                   |
| 390 | <b>a</b> VZV keratitis with stromal infiltration (arrow) and iritis with VZV copy of 4.5 $\times 10^5$ at 2 |
| 391 | months after the onset of HZO.                                                                              |
| 392 | <b>b</b> Prolonged elevation of VZV DNA copy number during the course of the disease.                       |
| 393 |                                                                                                             |


**Figure 3**. Association of duration of VZV keratitis to VZV DNA copy number and


- 395 clinical characteristics.
- <sup>396</sup> Disease duration was analyzed using Kaplan Meier survival analysis and plotted on
- non-healing rate. **a** High VZV DNA copy number ( $\geq$  median (10<sup>4.19</sup> copies); *P* = 0.008,
- log-rank test), the presence of iritis (P = 0.01), and **b** history of recurrences (P =
- 399 0.006) were significantly associated with the disease duration.









