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Abstract This paper describes a technique on an optimiza-
tion of tree-structure data by of multi-objective evolutionary
algorithm(MOEA), or multi-objective genetic programming
(MOGP). GP induces bloat of the tree structure as one of
the major problem. The cause of bloat is that the tree struc-
ture obtained by the crossover operator grows bigger and
bigger but its evaluation does not improve. To avoid the
risk of bloat, a partial sampling(PS) operator is proposed
as a mating operator. The size of the tree and a structural
distance(SD) are introduced into the measure of the tree-
structure data as the objective functions in addition to the
index of the goodness of tree structure. GP is defined as a
three-objective optimization problem. SD is also applied for
the ranking of parent individuals instead to the crowding dis-
tance of the conventional NSGA-II. When the index of the
goodness of tree-structure data is two or more, the number
of objective functions in the above problem becomes four or
more. We also propose an effective many-objective EA ap-
plicable to such the many-objective GP. We focus on NSGA-
II based on Pareto partial dominance(NSGA-II-PPD). NSGA-
II-PPD requires beforehand a combination list of the num-
ber of objective functions to be used for Pareto partial dom-
inance(PPD). The contents of the combination list greatly
influence the optimization result. We propose to schedule a
parameter r meaning the subset size of objective functions
for PPD and to eliminate individuals created by the mating
having the same contents as the individual of the archive set.
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1 Introduction

A technique of genetic programming (GP) [17,18] is an al-
gorithm to optimize structured data based on a evolutionary
algorithm (EA) [11,25]. GP is applied to various fields such
as program synthesis[5], function generations[14] and rule
set discoveries[30]. Although GP is very effective for opti-
mizing structured data, it has several problems such as get-
ting into a bloat, inadequate optimization of constant nodes,
being easily captured in local optimal solution area when
applied to complicated problems. The main cause of the
bloat is a crossover operator which exchanges partial trees
of parent individuals[27,2,3,7], where this paper focuses
on the optimization of tree-structure data by means of GP.
Several techniques to reduce the bloat have been proposed
by improving the simple crossover operation[18,6,26,13,
19,10]. Although these methods have successfully inhibited
bloat to a certain extent, effective search has not necessarily
been performed. Moreover, there is no theoretical basis that
crossover is effective for optimizing the tree-structure data.

Apart from reduction of the bloat, a search method for
optimizing the graph structure has been proposed[15]. Al-
though this method is suitable for searching various size of
the structured data consisting of nodes and branches, the
algorithm is complicated and the computation cost is very
high. In this paper, we exclude the crossover operator which
is the cause of the bloat in GP, and propose a partial sam-
pling (PS) operator [29] as a new mating operator. In PS
operator, first of all, a partial sample of a partial tree struc-
ture is extracted from several individuals of a parent individ-
ual group by a procedure of a proliferation. Next, the partial
tree structure obtained by the proliferation is combined with
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a new tree structure by a metastasis. In this paper, two types
of metastasis are prepared for GP, one that depends on the
original upper node and the other that does not. Repeating
the proliferation and the metastasis regenerates a new tree-
structure data for the next generation.

Moreover, a multi-objective EA (MOEA) technique for
suppressing the bloat problem and acquire many kinds of
various tree-structure data is applied for GP by adding two
more objective functions. One of the newly added objective
functions is the size of the tree-structure data. Furthermore,
the relative position of the target individual in the popula-
tion in terms of the structural distance (SD) is also evaluated
as an objective function. Then, the optimization of the tree-
structure data is formulated as a multi-objective optimiza-
tion problem (MOP) based on these three objective func-
tions. NSGA-II [9,8] is applied to this MOP. In the con-
ventional NSGA-II, a crowding distance (CD) is applied for
ranking the front set overflowing from the parent group. Be-
cause the conventional NSGA-II sorts such the individuals
of the overflowing front set with CD and selects extreme so-
lution, diversity about tree structure is not maintained. In this
paper, SD is applied, instead of CD, for ranking the over-
flowing front set from the parent group.

The proposed technique and the conventional techniques
are applied to a double spiral problem [6,38] for verifica-
tion. This problem is a classification problem containing two
classes of point sets arranged on a spiral shape to be classi-
fied with a function. This problem is well known as one of
difficult problem to solve with a neural network.

The number of the index of the goodness of the tree-
structure data When the index of the goodness of tree-structure
data is two or more, the number of objective functions in the
above problem becomes four or more. We also propose an
effective many-objective EA (MaOEA) applicable to such
the many-objective GP. Many-objective optimization prob-
lems (MaOPs) are difficult to solve and is tackled by many
researchers [41,39,40,9,8,4]. Although SPEA2 [41,39,40]
and NSGA-II [9,8] are well known as powerful algorithm
for MOPs, they do not work so effectively for MaOPs [33,
12,1]. In this paper, we handle the case of solving an MaOP
by NSGA-II based algorithm.

When applying NSGA-II or SPEA2 to MaOP, as the ob-
jective number increases, most of the solutions in the so-
lution set, or population, become a relation that is not su-
perior or inferior to each other. This relation is called non-
dominated (ND) relationship. As a result, the convergence
of the obtained set of Pareto Optimal Solutions (POS) to
the optimum Pareto front remarkably decreases. Sato et al.
have proposed a concept of Pareto partial dominance that
makes it easier to determine the superiority/inferiority rela-
tionship between solutions by using several objective func-
tions instead of all objective functions as an algorithm for
such MaOP [34]. Since NSGA-II based on Pareto partial

dominance (NSGA-II-PPD) focuses on a relatively small
number of objectives, solutions are easy to decide superi-
ority/inferiority even on MaOP, and an effective selection
pressure can be expected.

SPEA2 with a shift-based density estimation (SDE) strat-
egy [23,21,20] is also very strong algorithm to solve multi-
objective optimization problems. This method requires a lot
of computational cost to forcibly rank individual subsets in
non-dominant relationships. Also when optimizing the tree
structure by SPEA2 technique with SDE, it has been diffi-
cult to suppress bloat. Therefore, this research focuses on
CD which is advantageous in terms of simplicity and less
computational cost. And this paper proposes SD for the pur-
pose of suppressing the bloat.

NSGA-II-PPD has the following three problems. The
first problem is that a combination list of the number of ob-
jects to be used for Pareto partial dominance must be spec-
ified before the optimization. The second one is that an ap-
propriate number of selected objectives according to the com-
plexity of the problem in undecided. Moreover, the contents
of the combination list greatly influence the optimization re-
sult. NSGA-II-PPD performs ND sorting using all objective
functions at a specific generation cycle, and preserves par-
ents as an archive set for the next generation. This process
generates child individuals having the same contents as the
already existing individual in the archive set in some cases.
As a result, the same individuals increases in the first front
set, which disturbs effective ranking in the front selection.
This is the third problem. By consideration of these prob-
lems, this paper proposes a simple scheduling technique of
partial objective set used for Pareto partial dominance and
a technique of killing individuals having the same contents
in preserving the archive set [28]. In order to verify the ef-
fectiveness of the proposed techniques, we examine a many-
objective 0/1 knapsack problem[41].

2 Partial Sampling Operator for Mating

One of the main causes of the bloat is the crossover opera-
tor generally applied in the conventional GPs, used for re-
generating a new tree-structure data. This paper proposes
to exclude the crossover operator from the conventional GP
and to apply PS operator for regeneration of a new tree-
structure data instead of the crossover operator. The PS op-
erator creates a new tree-structure data by partially sampling
tree structures from a parent individual and joining them to-
gether. This procedure is called a proliferation. The prolifer-
ation is terminated according to the probability, pt. Partially
sampled subtree structures by the proliferation are combined
together by a metastasis. Two types of the metastasis are pre-
pared, one that depends on the original upper node and the
other that does not. We call the the former as an upper node
depend metastasis and the latter as a random metastasis.
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In the initial proliferation, a root node, ni,root, of an indi-
vidual, indivi, randomly selected from a parent group Pg is
copied to a set Tsub as shown in Fig.1. The initial prolifer-
ation is started from the root node, ni,root, of the individual,
indivi. In this example, the starting root node contains an
identification, A. Let Ncand be a set of all lower nodes under
the node of Tsub, where that node is not selected as a node
of Tsub yet. One node is randomly selected from Ncand and
copied to Tsub. The proliferation terminates according to the
proliferation terminate probability, pt, or when Ncand = ∅.
When the proliferation is terminated, the set Tsub thus ob-
tained is copied to Tnew, where is a set of nodes as a new
tree-structure data. The set Tsub is initialized to ∅. Further-
more, the root node of the partial tree structure Tnew in the
initial proliferation is randomly generated in a low probabil-
ity on the initial proliferation.

In the conventional GP with variable structure length,
small partial structures are assembled by an regenerating op-
erator, for example, crossover or mutation, and these partial
structures are combined to generate a new tree-structure data
of a large size[31,32]. When the conventional GP increases
the average size of the tree-structure data, the size of the
partial structure also preserved for the next generation in-
creases. Therefor, scheduling the probability, pt, as follows
prevents the size of the partial tree structure from explod-
ingly increasing.

p0
t =

1
AverageSize(Rg)

, (1)

pg+1
t =

Succ(Rg)− p0
t ·Succ(Pg)

Succ(Pg)− p0
t ·Succ(Rg)

(
pg

t − p0
t

)
+ p0

t , (2)

where Rg denotes the population at the g-th generation, Pg ⊂

Rg denotes the parent set at the g-th generation,
AverageSize(Rg) denotes a function returning the average

Fig. 1 The initial proliferation in PS operator.

size of each tree structure of the population, and Succ(·) de-
notes a function returning the average size of the partial tree
structure that the argument set takes over from the previous
generation.

A partial tree structure is grown by applying one of two
kinds of metastasis to the partial tree structure obtained by
the initial proliferation. One of two kinds of metastasis is
a random metastasis. The random metastasis activates ac-
cording to a metastasis selection probability, pmet. The other
one metastasizes depending on the upper node. The upper
node depend metastasis activates according to the probabil-
ity, 1 − pmet. The partial tree structure Tnew shown in the
Fig.1 has three empty branched numbered as 1, 2 and 3. The
branch 1 has the upper node A, and the branches 2 and 3
have upper node D. Now, suppose that the branch 1 is se-
lected as a target of the upper node depend metastasis. In
the next proliferation, a node having the upper node A is
selected from the parent group, Pg. On the other hand, if
the random metastasis is applied to the partial tree structure
Tnew, the beginning node for the next proliferation is ran-
domly selected from the parent group, Pg.

A new node is selected from the parent group, Pg, ac-
cording to the decided metastasis type. This node is not nec-
essarily a root node. The proliferation is started from the
selected node again.

By repeating the proliferation and the metastasis, new
tree-structure data is generated as shown in Fig.2. However,
when the metastasis applied to only one parent individual,
or when a parent individual having the same structure as
the generated tree structure, the generated tree structure is
eliminated and PS operator is performed again. The termi-
nal nodes are given as a random number in a low probability,
where this is based on the conventional mutation idea.

Fig. 2 Outline of how a new tree structure is created by PS operator.
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3 Multi-Objective GP with Structural Distance

Optimizing the tree-structure data based only on the index
of its own goodness brings problems that causes the bloat
but also that the optimization is caught in a local optimum
region. Depending on the structure of the local optimum re-
gion, the optimization stagnates, causing an illusion as if the
obtained solution(s) were ultimate optimal. To avoid the risk
of such the problems, this paper, therefor, proposes a tech-
nique to optimize the tree-structure data based on the size of
the tree structure and SD in the population in addition to the
index of the goodness of tree structure.

In this paper, three objective functions, h1, h2 and h3,
are defined as follows to be used for the multi-objective op-
timization . An objective function according to the goodness
of an individual, indivi, is described by the following equa-
tion.

h1(indivi) = performance(rooti), (3)

where rooti denotes a root node of the individual, indivi, and
performance(rooti) denotes a function that returns value of
the goodness of the tree structure beginning from the root
node, rooti.

An objective function according to the size of tree struc-
ture is defined by the following equation.

h2(indivi) =
1

Size(rooti)
, (4)

where Size(rooti) denotes a function that returns the number
of the nodes of the tree structure beginning from the root
node, rooti.

An objective function according to average of SD in the
population is defined by the following equation.

h3(indivi) =
1

Npop

Npop∑
k=1

SD(rooti, rootk), (5)

where Npop denotes the size of the population, and
SD(rooti, rootk) denotes a function that returns SD between
indivi and indivk. In order to calculate SD, weights are given
to all the nodes of the tree structured data by means of the
following steps, when the tree structured data is initially
generated. An example of giving weights to the tree struc-
ture is shown in Fig.3.
(Step 1) Give weight 1 to the root node.
(Step 2) Assume that W is a weight given to the current
node.
(Step 3) Equally distribute weights to the lower nodes of
the current node so that the total is W/2.

Two tree structures are compared in order from the root
node to check conformity of both nodes as shown in Fig.3.
The distance, SD(rooti, rootk), is initialized as zero. When
different nodes are found in the conformity comparison, the

Fig. 3 An example of giving weights to the tree structure and an ex-
ample of computation of SD.

weight of that node is added to the distance. The lower nodes
below the different node are all ignored. Especially, when
the tree structures of both are completely different,
Distance(rooti, rootk) is given 1 as the maximum value.

Now, we have defined the three-objective optimization
problem. NSGA-II shown in Fig.4 is applied to solve this
problem. When several objective functions mean goodness
of the tree structure and should not be joined together, the
number of them and the two objective functions indicated
above, h2 and h3, are the total number of objective functions
in the proposed method in this paper. NSGA-II selects par-
ent individuals by using non-dominated sorting and ranking
with CD. Since tree-structure data is to be optimized in this
paper, CD based only on the value of the objective function
does not necessarily bring the diversity of the tree structure.
Therefore, this paper propose to use SD when selecting par-
ents from the rank set overflowing from the parent group. A

Fig. 4 Conventional NSGA-II with CD.
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block chart of the modified NSGA-II with SD is shown in
Fig.5.

Fig. 5 Modified NSGA-II with SD.

4 MANY-OBJECTIVE EVOLUTIONARY
ALGORITHM FOR MAOGP

MOP is a problem that optimizes, or maximizes in this pa-
per, multiple objective functions under several constraints.
Since the objective functions are in a trade-off relationship
with each other, it is not possible, in general, to obtain the
only one solution that completely satisfies all the objective
functions. Therefore, we require to obtain POS of compro-
mised solutions without superiority or inferiority to each
other. For the objective function vector f consisting m objec-
tive functions, fi, the problem of finding the variable vector
x that maximizes the value of fi in the feasible region S in
the solution space is defined as follows.{

max. f(x) =
[
f1(x), f2(x), · · · , fm(x)

]T

s.t. x ∈ S
(6)

When the values of the objective function, fi, of two solu-
tions x and y satisfy the following relation, we say that the
solution x dominates the solution y.

f(x) � f(y) ,

∀i ∈M : fi(x) = fi(y)∧∃i ∈M : fi(y) > fi(y) (7)

where M denotes a set of the indexes for the objective func-
tion, {1,2, . . . ,m}. When there is no solution dominates a so-
lution x, the solution x is called non-inferior solution. A set
of such the non-inferior solutions is defined as the following
POS.

POS = {x ∈ S|¬∃y ∈ S.f(y) � f(x)} (8)

A Pareto front showing the the trade-off relation between the
objective functions is defined as follows.

FRONT = {f(x)|x ∈ POS} (9)

Several effective studies [41,39,40,9,8,4] have been made
on MOP as defined by Eq.(6). NSGA-II shown in Fig.4 is a
powerful multi-objective optimization scheme as a method
proposed on one of these studies. NSGA-II applies non-
dominated sorting (ND sorting) to the population Q, and
the individuals are classified to several ranked subsets, F1,

F2, F3, · · · . While not exceeding the size of the parent set P,
the individuals of each subset are moved to the parent set in
order. Individuals of the subset that exceeds the size of the
parent set is sorted using crowding distance (CD sorting)
and moved to the parent set. The individuals not selected
are culled. The mating operators generates the child set C
from the parent set P by using the crossover and mutation
operators.

Although NSGA-II effectively solves MOP with less than
four objective functions, as the objective number m increases,
an appropriate POS could not be obtained even by those
methods containing the conventional NSGA-II. When ND
is performed based on the conventional Pareto dominance
using all m objective functions, as the number of objective
function increases, a subset of solutions satisfying Eq.(7) is
difficult to obtain [37]. Then most solutions of the popula-
tion become non-inferior solutions. As a result, the supe-
riority/inferiority relationship between solutions is difficult
to determined, and the selection pressure in the optimiza-
tion is significantly reduced. This paper focuses to NSGA-II
with Pareto partial dominance shown in Fig.6 for solving
MaOP. Pareto partial dominance is based on a concept of
partially applying Pareto domination to r objective functions
extracted from all m objective functions. The Pareto partial
dominance is defined by the following formula.

f(x) A f(y) ,

∀i ∈ R ⊂M : fi(x) = fi(y)∧∃i ∈ R ⊂M : fi(y) > fi(y) (10)

where R denotes a set of r indexes selected from M. Since
conditions satisfying Pareto partial dominance are relaxed
as compared with the conventional dominance using all m
objective functions, the population is easier to rank finely in
MaOP with large m.

In NSGA-II-PPD, first of all, given r, the number of ob-
jective functions to be considered in the partial ND sorting,
a combination list of mCr selections is prepared beforehand.
For each Ig generations, the combination of the objective
functions to be considered for Pareto partial dominance is
changed, and Rg+1 is selected with performing ND sorting
on Pg +Cg +A using all m objective functions and copied to
the archive set A, where + denotes the direct sum.
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Fig. 6 NSGA-II with Pareto partial dominance.

5 IMPROVEMENT OF NSGA-II BASED ON
PARETO PARTIAL DOMINANCE

NSGA-II-PPD has the following three problems. The first
problem is that the subset size of the objective functions to
be used for Pareto partial dominance is required to before-
hand specify before the optimization in a form of a list, or
the combination list. The second one is that an appropriate
value of the subset size according to the complexity of the
problem is unknown. The contents of the combination list
greatly influence the optimization result. On the other hand,
the creation of the combination list is a very troublesome
and difficult task for the user. NSGA-II-PPD performs ND
sorting using all objective functions at a specific generation
cycle, and preserves parents as an archive set for the next
generation. This process generates child individuals having
the same contents as the already existing individual in the
archive set in some cases. As a result, the same individu-
als increases in the first front set, which disturbs effective
ranking in the front selection. This is the third problem. In
order to avoid these problems, this paper proposes two im-
provements. A block chart of the improved NSGA-II-PPD
is shown in Fig.7.

As the first improvement, a subset size scheduling (SSS)
is proposed for NSGA-II-PPD. NSGA-II-PPD treated in this
paper does not use the combination list for each Ig genera-
tion cycle. The parameter r is given by the following equa-
tions.

q =
g ·m
G

+ rand int(2B+ 1)−B, (11)

r =


B, q < B
q, B 5 q < m
m, q = m

(12)

Fig. 7 Improved NSGA-II with Pareto partial dominance.

where m denotes the number of the objective functions,
rand int(·) denotes a function returns a random integer less
than the argument, B denotes an integer parameter larger
than 1 and less than m/2, and G denotes the end genera-
tion. Fig.8 shows the possible value of the selection number,
r.

In NSGA-II-PPD, several individuals having the same
contents as an individual already existing in the children,
Ct, or the archive set, A, are generated and stored by the
mating. If the optimization proceeds while sustaining such
the individuals having relatively good evaluation, duplicates
of them increases within the population. If the problem to
be optimized is relatively simple, individuals with the same
content are frequently generated during the optimization.
The second improvement is elimination of such the indi-
viduals having the same contents of an individual already
existing in the children, Cg, and the archive set, A, after the

Fig. 8 The selection number, r, probablistically takes a value on the
colored range according to the generation g, where rand int(·) denotes
a function returns a random integer less than the argument, B denotes
an integer parameter larger than 1 and less than m/2, and G denotes the
final generation.
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mating. In other words, the duplicates created by the mating
is eliminated, we call this elimination of duplicates (EoD).
Since the optimization problem treated in this paper is the
maximizing problem, by setting the value of all objective
functions of such the individual to 0, the individual are elim-
inated. The same content individual become the worst indi-
vidual. After EoD, the mating does not reproduce the indi-
vidual.

6 Verification of the Proposed Techniques

6.1 Double Spiral Problem

A double spiral problem is applied to verify an effectiveness
of the proposed techniques. The double spiral problem is
a problem of classifying two data sets arranged in a spiral
shape, and it is known as a problem that is difficult to solve
even using neural networks[6,38]. These two data sets are
arranged as shown in Fig.9 and are to be classified by the
following function f .

f (x,y) > 0 ⇐⇒ (x,y) ∈ D1,

f (x,y) < 0 ⇐⇒ (x,y) ∈ D2,

f (x,y) = 0 ⇐⇒ FALSE,
(13)

where (x,y) denotes the coordinates of each point on the
two-dimensional plane, and D1 and D2 denote the data sets
expressed with the red crosses and the blue circles shown in
Fig.9 respectively. In this paper, the case when f (x,y) = 0 is
treated as classification failure at the point (x,y).

Fig. 9 Arrangement of two data sets for double spiral problem. The
red cross denotes a point in the class D1 and the blue circle denotes a
point in the class D2.

The following nodes are prepared as elements for con-
stituting the classifying function f .

NN = {+,−,∗,÷,sin,cos, tan, ifltz} (14)

NT = {x,y,constant} (15)

whereNN denotes a set of non-terminal node,NT denotes a
set of terminal node, and “ifltz” denotes a function with three
arguments representing a conditional branch as follows,

ifltz(a,b,c) , “if a < 0 then b else c” =

{
b (a < 0),
c (otherwise).

(16)

The objective function, h1, according to the goodness of
an individual is defined by the following equation.

h1(indivi) = performance(rooti),

=
1

|D1∪D2|

|D1∪D2 |∑
k=1

g(xk,yk), (17)

g(x,y) =



1 ( f (x,y) > 0∧ (x,y) ∈ D1),
0 ( f (x,y) > 0∧ (x,y) ∈ D2),
1 ( f (x,y) < 0∧ (x,y) ∈ D2),
0 ( f (x,y) < 0∧ (x,y) ∈ D1),
0 ( f (x,y) = 0).

(18)

In this double spiral problem, the function, Size(rooti),
applied for the objective function according to the size of
tree structure is defined as the number of nodes of the tree
structure.

In order to verify the effectiveness, the following four
combinations are applied to the double spiral problem, com-
bination of the conventional operators and CD (expressed
as ”CO+MU & CD”), combination of the conventional op-
erators and SD (expressed as ”CO+MU & SD”), combi-
nation of PS operator and CD (expressed as ”PS & CD”)
and combination of PS operator and SD (expressed as “PS
& SD”). The conventional operators denotes the conven-
tional crossover and the conventional mutations[17,18,13,
36]. The size of the population, Npop, the running genera-
tions and the number of points in the double spiral prob-
lem, |D1∪D2|, are defined as 100, 1,000,000 and 190 re-
spectively. The probability, pmet, for selecting the type of
the metastasis is tried to 0.5, 0.25 and 0.75.

Fig.10 shows distributions on the h2 − h1 plane of the
first-front set in the final generation. As shown by Fig.10,
NSGA-II with combining PS operator and SD has given the
best solution set, distributed in the upper right direction, in
the widest range. The solutions obtained by NSGA-II with
combining PS operator and CD has relatively high diver-
sity but their evaluations are not so good. NSGA-II with
combining the conventional operators and CD has given rel-
atively good solutions but their diversity is low. NSGA-II
with combining the conventional operators and SD has given
the worst solution set with the lowest diversity.
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Fig. 10 Distribution on the h2-h1 plane of the first front set in the final
generation when using each method.

Fig.11 shows a comparison of distribution on the h2-h1
plane of the first front set in the final generation when 3-
objective and 2-objective optimizations are executed by us-
ing the PS operator with pmet = 0.50 and SD for the rank-
ing. Compared to the distribution of solutions given by 2-

Fig. 11 Comparison of distribution on the h2-h1 plane of the first front
set in the final generation when 3-objective and 2-objective optimiza-
tions are executed by using the PS operator with pmet = 0.50 and SD
for the ranking.

objective optimization, the 3-objective optimization has ac-
quired far better solutions in wider range. When PS opera-
tor with pmet = 0.50 and CD are combined, the same result
has been obtained as shown in Fig.12. This shows an effec-
tiveness of multi-objective optimization of the tree-structure
data as proposed in this paper.

Fig. 12 Comparison of distribution on the h2-h1 plane of the first front
set in the final generation when 3-objective and 2-objective optimiza-
tions are executed by using the PS operator with pmet = 0.50 and CD
for the ranking.

Fig.13 shows values of Norm [35] and MS [39] given by
each method. In this figure, PS∗. ∗ ∗ denotes when PS op-
erator with the metastasis selection probability, pmet, which
is equal to ∗. ∗ ∗ is used for the mating. Concerning both
Norm and MS values, the best result has been obtained by
the method using PS operator with pmet = 0.50 and SD. The
results using PS operator have gathered in the upper right of
the figure, whereas the results using the conventional crossover
and the conventional mutation have gathered in the lower
left. This shows the superiority of PS operator. On the other
hand, the advantage of SD has not been clearly shown by
this experiment. SD have optimized relatively better only
when combined with PS operator. NSGA-II even with SD
has given the worst results when combined with the conven-
tional operators. The reason for this result is considered as
that SD has a low ability to preserve extreme solutions as
CD does. In the case of the multi-objective optimization of
the tree structure, the ability to retain the diversity of tree
structures like the ranking with SD is necessary, then an im-
provement to add ability to preserve the extreme solutions
like CD should be considered.
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Fig. 13 Comparison of results by each method on MS-Norm plane.
CO+MU denotes when the conventional crossover operator and the
conventional mutation operators are used for the mating. PS∗. ∗ ∗ de-
notes when PS operator with the metastasis selection probability, pmet,
which is equal to ∗.∗∗, is used for the mating.

6.2 MANY-OBJECTIVE 0/1 KNAPSACK PROBLEM

In order to verify the effectiveness of the improved tech-
nique, a many-objective 0/1 knapsack Problem (MaOKSP)
[42] is performed. MaOKSP composed of m knapsacks and
j items. The capacity of the i-th knapsack is ci. The weight
and the price of the j-th item are wi j and pi j respectively in
the i-th knapsack. Let an individual x ∈ 0,1n be the n dimen-
sional vector that selects the items. MaOKSP is defined by
the following formula.

max. f(x) =
[
f1(x), f2(x), · · · , fm(x)

]T

s.t.
n∑

j=1

wi j · x j 5 ci
, (19)

fi(x) =

n∑
j=1

pi j · x j for i = 1,2, · · · ,m, (20)

where the number of items n, the weight matrix wi j, the
profit matrix pi j and the knapsack capacity vector ci are de-
fined as follows,

n = 1000, (21)

wi j ∈ (0,1) ⊂ R, (22)

pi j ∈ (0,1) ⊂ R, (23)

ci ∈ (0,100) ⊂ R. (24)

POS obtained by the optimization is evaluated by using
Maximum Spread (MS)[39] and Norm[35].

Norm [35] and Maximum Spread (MS)[39] are applied
for evaluation of each method. Norm denotes a measure of
the convergence of the population to the Pareto front PF
and is defined by the following equation.

Norm(PF ) =
1
|PF |

|PF |∑
j=1

√√ m∑
i=1

fi(x j)2, (25)

where x j denotes the j-th individual of the Pareto front, PF .
The larger the Norm value, the closer the approximate Pareto
front, PF . MS denotes a measure of the spread of the first
front at the final generation[39] and is defined by the follow-
ing equation.

MS(PF ) =

√√ m∑
i=1

(
max|PF |j=1 fi(x j)−min|PF |j=1 fi(x j)

)2
. (26)

The larger the MS value, the wider the spread of the popu-
lation given by the optimization.

The conventional NSGA-II, NSGA-II-PPD when r = 3,
r = 6 and r = 8, NSGA-II-PPD in the case of giving the com-
bination list shown in Table1 and the improved technique
are carried out for the verification. The optimization is per-
formed by setting the objective number to m = 4,6,8,10 and
the iterative generations to G = 1,000,000.

Fig.14 shows transition of the number of individuals of
the first-front according to the generation in the case that
m = 10 and Ig = 500. In the figure, “NSGA-II” denotes the
results by the conventional NSGA-II, “PPD(r=*)” denotes
the results by NSGA-II-PPD with the constant value of r = ∗,
“PPD(list)” denotes the results by NSGA-II based on Pareto
partial dominace with the combination list shown in Table1,
and “Improved” denotes the results by the algorithm pro-
posed in this paper. The conventional NSGA-II and NSGA-
II-PPD in r = 8 has given large number of the individuals
of the first-front set throughout the optimization. NSGA-II-
PPD with r = 6 has given the number next to them. At the
end of the optimization, the improved technique has caught

Table 1 The combination list for NSGA-II-PPD.

generation range
0 500k 900k

−500k −900k −1M
m r
4 2 3 4
6 3 5 6

generation rage
0 300k 600k 900k

−300k −600k −900k −1M
m r
8 3 5 7 8

10 3 6 8 10
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Fig. 14 Transition of the number of individuals of the first-front ac-
cording to the generation.

up with these values. NSGA-II-PPD with the combination
list is also similar.

Fig.15 shows Norm values after the optimization to the
objective number m in the case that Ig = 500. In any tech-
nique, the convergence to POS increases as the number of
objectives increases. Although, regarding to the convergence,
NSGA-II-PPD in the case that r = 3, NSGA-II-PPD with the
combination list and the improved technique have given al-
most equivalent results, the conventional NSGA-II has given
relatively poor results.

Fig.16 shows MS values after the optimization to the ob-
jective number m in the case that Ig = 500. The MS value,
or the diversity of POS, given by NSGA-II-PPD in the case
that r = 3 decreases as the objective number increases, whereas
it increases with the other three techniques. In the improved
technique, since r increases as the generation progresses, the
superiority/inferiority relationship of solutions becomes dif-
ficult to decide by Pareto partial dominance at the end of the
optimization, and many individuals belong to the first-front
set. As a result, since most individuals of the parents are
ranked by the CD sorting, and it is considered that diversity
has increased. NSGA-II-PPD with the combination list has
shown diversity equal to or less than that of the improved
technique. The reason that sufficient diversity has not been
obtained by NSGA-II-PPD in the case that r = 3 is consid-
ered as because partial dominance by using all objectives has
not been performed only between 900,000-1 million gener-
ations. Regarding the diversity of solutions, the conventional
NSGA-II has given the highest value.

Fig. 15 Comparison of Norm values to the object number m.

Fig.17 shows Norm values to the generation g in the
case that m = 10 and Ig = 500. In NSGA-II-PPD, the con-
vergence to POS tends to decrease as the value of the pa-
rameter r increases. In this technique, when r approaches
m, the solutions are hard to dominated by the partial domi-
nance, so a large number of individuals are selected as the
first-front set. As a result, sufficient ranking is not made in
the non-dominated sorting, and the convergence has deteri-

Fig. 16 Comparison of MS values to the object number m.
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Fig. 17 Comparison of the Norm values to the generation g.

orated. On the other hand, although the improved technique
has shown the highest convergence at the beginning of the
optimization, the convergence has declined at the final stage.
In the improved technique, since the value of r increases
as the generation progresses, the solutions become hard to
dominated by the partial dominance. As a result, sufficient
ranking is not made in the non-dominated sorting, and the
convergence has deteriorated in the final stage.

Fig.18 shows MS values to the generation g in the case
that m = 10 and Ig = 500. Although the diversity in the cases
of the conventional NSGA-II and NSGA-II-PPD in r = 8,
maintains a high value throughout, the convergence is low
as shown in Fig.17, so it is not necessary to pay attention
to them. On the other hand, the diversity is rising as the op-
timization progress in the case of the improved technique.
Moreover, the improved technique brings relatively high con-
vergence as shown in Fig.17, so that the superiority of the
improved technique is shown overall.

7 Conclusion

In this paper, multi-objective optimization of tree-structure
data, or MOGP, has been proposed, where the tree structure
size and the structural distance (SD) are additionally intro-
duced into the measure of the goodness of the tree structure
as the objective functions. Furthermore, the partial sampling
(PS) operator has been proposed to effectively search tree
structure while avoiding the bloat. In order to verify the ef-
fectiveness of the proposed techniques, they have applied to
the double spiral problem. yukari By means of the multi-

Fig. 18 Comparison of the MS values to the generation g.

objective optimization of tree-structure data, we have found
that more diverse and better tree structures are acquired.
The proposed method incorporating PS operator and SD in
NSGA-II has given relatively good results. However, since
PS opertor has low ability to numerically optimize constant
nodes on the tree structure, it has not well worked effectively
for the function optimization. In addition, since ranking with
SD in NSGA-II has low ability to preserve extreme solutions
in the objective function space, solutions not have been ef-
fectively selected.

When the index of the goodness of tree-structure data
becomes two or more, the number of objective functions
in MOGP becomes four or more, MaOGP. The improved
NSGA-II-PPD applicable to such the MaOGP has been also
proposed in this paper. In the improvement, we have pro-
posed SSS and EoD.

The improved NSGA-II-PPD with SSS and EoD and
other conventional techniques are applied to the many-objective
0/1 knapsack problem for verification of the effectiveness.
The improved NSGA-II-PPD has given the higher diversity
than other techniques as the number of the objective func-
tions of the problem increases. On the other hand, the im-
proved NSGA-II-PPD has given the convergence equal to or
higher than the other techniques even when the number of
the objective functions becomes large. By means of the pro-
posed simple scheduling of the parameter r, sufficient con-
vergence has been obtained in the early generations with the
smaller r, and the diversity has been supplemented in the
generations with the larger r at the end of the optimization.
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In the future, a technique to incorporate numerical opti-
mization ability such as a particle swarm optimization [16]
and the mutation to PS operator and the ranking selection
technique combining SD and CD should be considered in
the future. The PS operator proposed in this paper has a
mechanism to terminate the proliferation, but does not have
no mechanism to forcibly exit from the PS operator. Such
the mechanism to forcibly exit from the PS operator should
be considered.

Since the improved NSGA-II-PPD still has given insuf-
ficient results in terms of the diversity, we need to improve
this point while maintaining the current convergence. Al-
though each technique has been applied to the relatively sim-
ple many-objective 0/1 knapsack problem in this paper, we
need to apply to more complicated problems and verify the
effectiveness. We also need to pursue the combination list
and to compare the further improved NSGA-II-PPD and the
conventional NSGA-II-PPD with the optimal combination
list. And then, we need to propose an effective MaOGP by
combining these improved techniques in the future.

In this paper, the quality indicator MS is applied to as-
sess the diversity of the final solutions. However, MS is able
to simply be affected by the convergence of the solutions,
in favor of poorly-converged solutions. In this sense, MS is
not necessarily effective for the assessment of the diversity.
In the future research, it is necessary to consider techniques
such as a diversity comparison indicator (DCI) [22] to as-
sess the diversity of the solutions. On the other hand, the
convergence of the solutions has been evaluated only using
Norm. In this regard, the future research needs to visualize
solutions in multi-objective optimization with parallel co-
ordinates [24], which can partially reflect the convergence,
spread and uniformity.
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