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Abstract: Use of intra-body propagation signals has been proposed for 
biometric authentication. However, verification performance of the 
conventional method is low. To overcome this limitation, this study introduces 
the support vector machine (SVM) into the verification process, which 
improves the verification rate to approximately 83%. However, the correct 
acceptance rate of genuine users using only SVM is 49%, which is too low for 
practical applications. Thus, we introduce the concept of one versus one (1vs1) 
SVM. Each 1vs1 SVM distinguishes a genuine (authorised) user from another 
(unauthorised) user. Verification is achieved on the basis of a majority rule 
using plural 1vs1 SVMs related to a genuine user. The correct acceptance rate 
is greatly improved to 84% while maintaining equivalent verification 
performance. As a result, it is further confirmed that an intra-body propagation 
signal is a potential new biometric trait. 
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1 Introduction 

Biometric authentication attracts attention for its user-friendliness: it does not require us 
to have an ID card or to memorise a password (Wayman et al., 2005). However, 
biometrics is vulnerable to identity circumvention using artefacts that can alter or 
disguise biometric traits. In fact, there is a case study where fingerprint authentication 
systems were circumvented using fake fingers (Matsumoto et al., 2002). In addition, we 
confirmed through a case study that a face authentication system using a web camera 
accepted a printed face image. Fingerprints and faces are external features of the human 
body; therefore, they can be easily extracted by others without detection. Moreover, 
biometric systems that do not verify whether the sample provided belongs to a live user 
can be circumvented easily, as demonstrated by the above two examples. 

Use of intra-body propagation signals as biometric traits has been previously 
proposed (Nakanishi et al., 2007). An intra-body propagation signal is an electromagnetic 
wave propagated near the body surface. In particular, the electric field outside the body is 
exponentially attenuated as the distance from the skin increases; therefore, an intra-body 
propagation signal basically propagates both on the surface and through the body. Since 
body composition differs from person to person, the characteristics of the propagated 
signal are different for each individual. In addition, intra-body propagation signals are not 
radiated from the body, and are thereby not exposed on the body surface. Thus, it is not 
easy for others to extract this signal without being detected 1. Furthermore, if liveness 
detection using an intra-body propagation signal becomes possible, no additional sensor 
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for the liveness detection is required. Hence, an intra-body propagation signal may be 
useful as a new biometric trait. 

In Nakanishi et al. (2007), the spectrum of an intra-body propagation signal was 
extracted as a feature vector and the similarity between the spectrum and its template was 
evaluated on the basis of the Euclidean distance for verification purposes; however, the 
verification rate (VR) was only 58%. 

Therefore, in an effort to improve the VR, this study introduces the support vector 
machine (SVM) into the verification process (Nakanishi and Sodani, 2010). Improved 
verification performance with SVM is confirmed on the basis of the experiments 
conducted. However, SVM is originally a two-classifier (classifies data samples into one 
of the two classes, genuine and others); therefore, when SVM is used to distinguish a 
genuine user from others, the number of datasets for learning features of the genuine user 
becomes unbalanced with those of the others; this results in the degradation of 
verification performance. Thus, we introduce and discuss one versus one support vector 
machine (1vs1 SVM), a method that distinguishes a genuine user from another user. 
Verification is performed on the basis of a majority rule using plural 1vs1 SVMs related 
to the genuine user. 

2 Measurement and feature extraction 

The technology for intra-body communication is utilised (Zimmerman, 1996; Hachisuka 
et al., 2002) in order to obtain intra-body propagation signals. Three transmission modes 
have been proposed for intra-body communication: the simple circuit type, the 
electrostatic coupling type, and the waveguide type (Hachisuka et al., 2002). The simple 
circuit type regards a human body as a conducting wire and thereby requires additional 
external circuits. Hence, it is not suitable for practical use. The electrostatic coupling type 
can form such external circuits by electrostatic coupling. However, the coupling is easily 
influenced by the distance from the surrounding objects or the positional relation with 
them, and thereby becomes unstable and unreliable. In the waveguide type, an 
electromagnetic wave leaked from the input side propagates through the human body (the 
waveguide) and is then extracted at the output side. The waveguide type needs no 
external circuit and is not influenced easily by the surroundings. In this study, we use the 
leaked and propagated signal described in the waveguide model as an intra-body 
propagation signal. 

2.1 Measurement 

When we the human beings use a system, we make sure to grip or touch some part or 
surface of the system, for example, cellular phones, mouse devices, and vehicle handles. 
In these cases, the palm becomes an interface between the system and the user. 
Therefore, we plan to develop an authentication system using the palm in the future. 
However, at present, we use the forearm because it provides a convenient attachment 
location for body surface electrodes and has been used satisfactorily in previous  
intra-body communication studies. 

In order to examine the characteristics of intra-body propagation signals, we measure 
these signals using general-purpose measuring instruments – a signal generator, a digital 
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oscilloscope and commercially available electrodes with gelled pads – as shown in  
Figure 1. 

From the signal generator, a quasi-white noise signal is fed to a pair of input 
electrodes, whose signal bandwidth is 0–100 MHz and amplitude is 1.0 V. The distance 
between the electrodes is 5 cm. A leaked electromagnetic wave is propagated and then 
extracted at the digital oscilloscope through a second pair of electrodes. The distance 
between the two electrode pairs is 10 cm and the sampling rate is 500 M samples/s. 

While taking measurements, the arms are suspended in air because the amplitude of 
the propagated signals is reduced if an arm is in contact with anything other than air, as 
determined empirically analysis. The detailed mechanism that causes amplitude reduction 
has not yet been examined. 

Figure 1 Forearm measurement scene of intra-body propagation signals (see online version  
for colours) 

 

2.2 Feature extraction 

Because propagated signals are generated by a white noise source, it is difficult to extract 
individual signal features by comparing different signals measured for the same person. 
Thus, we evaluate extracting an individual feature from an amplitude spectrum. 

Figure 2 shows the spectra of a research participant measured for three days. These 
spectra show the degree of intra-individual variation in intra-body propagation signals. 

Each spectral distribution shows some similarity with the others. However, the 
spectrum, for example, at 80–100 MHz exhibits large variation, and the variation in  
intra-body propagation signals is confirmed to be large for the same person. 

Figure 3 shows the spectra from three research participants (X, Y, and Z), and 
indicates the degree of inter-individual variation in intra-body propagation signals. 

The spectral distributions are notably different from each other, suggesting that an 
intra-body propagation spectrum may be used as an individual feature, and that there are 
useful discriminative frequency bands among individuals. 

2.3 Spectrum smoothing 

As demonstrated in Figure 2, it is necessary to suppress an individual’s signal variation 
prior to verification, so smoothing of intra-body propagation spectra is applied. 



   

 

   

   
 

   

   

 

   

    User verification based on the support vector machine 5    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 2 Intra-body propagation spectra from a research participant, (a) 1st day (b) 2nd day  
(c) 3rd day 

 
(a) 

 
(b) 

 
(c) 

First, the data of an intra-body propagation signal are equally divided into several blocks. 
Next, a DC component is removed from each divided signal. The DC component 
becomes extremely large compared with other components. Therefore, the similarity 
comparison of the spectra is dominated by only the DC component if it is not removed. A 
mean value is calculated for each divided signal and is then subtracted from the 
amplitude of the signal. After that, an amplitude spectrum is calculated by fast Fourier 
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transform (FFT) with a window function from each divided signal. The smoothing is 
performed by ensemble averaging of all amplitude spectral values at the same frequency 
bin. As an example, an intra-body propagation spectrum and its smoothed version are 
presented in Figure 4. 

Figure 3 Intra-body propagation spectra from three participants, (a) participant: X  
(b) participant: Y (c) participant: Z 

 
(a) 

 
(b) 

 
(c) 
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Figure 4 Original and smoothed intra-body propagation spectra 

 

3 Verification using SVM 

In the conventional method (Nakanishi et al., 2007), verification is performed on the 
basis of dissimilarities of intra-body propagation spectra using the Euclidean distance. 
The verification performance is evaluated using the equal error rate (EER). The best EER 
is 42%, which is too high to conclude that the intra-body propagation signal is a potential 
new biometric trait. Thus, in order to improve verification performance, we introduce 
SVM into the verification process. 

3.1 SVM 

This subsection briefly explains SVM. Please refer to Cristianini and Shawe-Taylor 
(2000) for additional details on SVM. 

SVM is a pattern classification method based on supervised learning. It learns a 
separating hyperplane that maximises the distance (margin) between two classes and thus 
provides higher separation capability for unlearned data of the classes. Figure 5 illustrates 
the separating hyperplane of two classes C1 and C2. However, it is usually difficult to 
separate the classes perfectly. Thus, a cost parameter is introduced to allow for  
miss-separation, which is referred to as a soft margin. 

Generally, two classes in practical applications are almost linearly inseparable; so 
their datasets are transformed to higher-dimensional space by using a kernel function 
where they become linearly separable. In general, the polynomial kernel or the radial 
basis function (RBF) kernel is used in the transformation process. 

( ) ( )Polynomial kernel : , 1′ ′ ′= ⋅ + dK x x x x  (1) 

( )
2

2
RBF kernel : , exp

⎛ ⎞′−′ = −⎜ ⎟
⎝ ⎠

K
δ

x xx x  (2) 

where x is an m-dimensional vector, d is a natural number, and δ is the scale parameter. 
The suitable kernel and its optimal parameters depend on the samples to be classified. 
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Figure 5 A separating hyperplane between the two classes (see online version for colours) 

 

3.2 Verification 

The flowchart of the verification process using SVM is shown in Figure 6. Prior to the 
verification phase, the enrolment (learning) phase is performed. In order to prepare 
learning data, an intra-body propagation signal is measured for each genuine user. From 
the measured signal, the amplitude spectrum is obtained by FFT and smoothed as 
mentioned in Section 2.3. The above procedures are repeated L times for each user and 
then an ensemble-averaged amplitude spectrum is obtained using the L spectra. These 
procedures are performed for all users. 

Figure 6 Flowchart of the verification process using SVM 
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Next, normalisation is performed to suppress intra-individual signal variation. 
Normalisation is achieved by adjusting the mean value of the amplitude spectral values 
from each user to one. 

By using the averaged and normalised amplitude spectra, a user-specific model is 
constructed using SVM by classifying the genuine user’s spectral data to +1 and all other 
users’ to –1. The learning phase is completed when user-specific models for all users are 
obtained. 

In the verification (testing) phase, an applicant of the system presents a username or a 
user ID, and his/her intra-body propagation signal is measured once. After smoothing and 
normalising, the amplitude spectrum is tested using a user-specific model corresponding 
to the user name or ID. 

If the model outputs a value with a positive sign, the input signal is accepted as that of 
the genuine user, and the applicant is accepted into the system. Inversely, if the value is 
negative, the applicant is regarded as an imposter and system access is denied. 

3.3 Experiments (I) 

We carried out experiments to evaluate the effectiveness of introducing SVM into the 
verification system by using intra-body propagation signals. 

The number of research participants was 20. The frequency band of white noise was 
0–100 MHz and its amplitude was 2.0 Vp–p. The sampling frequency was 500 MHz. The 
number of sampled data was 4,000; therefore, measurement time was 8 μs. The number 
of divisions for smoothing was eight. The measurement of intrabody propagation signals 
was performed ten times a day for each participant and was repeated five times (days); 
hence, the total number of datasets was 50 for each participant. 

The number of datasets used to create the template L was five, where five datasets 
were randomly chosen from the ten datasets measured on the first day, and then averaged 
at each frequency bin. As a result, the averaged spectral data of 100 dimensions were 
used as individual features. In this study, we used SVMlight (Joachims, 2008) with  
one-dimensional polynomial kernel transformation. 

Forty datasets from each participant representing a genuine user and 20 × 19 from the 
19 other participants representing unauthorised users (others) were used in the learning of 
individual models, and ten datasets from each participant and 10 × 19 from others were 
used in the verification tests. 

The verification performance was evaluated using the correct acceptance rate (CAR), 
correct rejection rate (CRR), and VR. The CAR and CRR are the ratio of correctly 
accepted datasets and all participants’ sets (10 × 20), and that of correctly rejected 
datasets and all others’ sets (10 × 19 × 20), respectively. The VR is the ratio of correctly 
accepted and rejected datasets and all verification datasets (10 × 20 × 20). 

The results are presented in Table 1, where A-T indicates participants’ names. C is 
the cost parameter of SVM and is empirically set to be the best value. 

The averaged VR is 83%, and compared with the conventional verification, which 
produces an EER of 42% (roughly estimating a VR of 58%), the verification performance 
is greatly improved by introducing SVM. However, the VRs of participants A and M are 
low while that of D is 100%. The reason is that the cost parameter is relatively small. In 
general, a small cost parameter increases incorrectly-classified datasets, and thereby 
inseparable hyperplanes are constructed. 
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In addition, the CAR is low overall because a participant (G) is completely rejected. 
In the case of using SVM, the number of each user’s own datasets tends to be less than 
those of others as the number of users increases. The separation area of each user’s class 
becomes narrower (data are less unique) and overlaps with another’s area, yielding an 
inseparable area between the two classes even when using the kernel function. 
Table 1 Verification performance using SVM 

Participant VR (%) CAR (%) CRR (%) C 

A 61 80 60 1.0 
B 81 40 82 0.25 
C 87 40 89 7.0 
D 100 100 100 1.00 
E 83 70 83 0.05 
F 85 10 89 10.0 
G 95 0 100 0.01 
H 83 40 85 0.15 
I 69 90 68 3.0 
J 91 50 92 0.5 
K 82 20 85 5.3 
L 88 30 91 0.55 
M 64 70 64 1.0 
N 92 10 96 0.2 
O 75 30 77 6.0 
P 90 80 91 1.0 
Q 86 60 87 0.45 
R 88 80 88 0.25 
S 83 60 84 0.7 
T 88 20 91 0.5 

Ave. 83 49 85  

4 Introduction of 1vs1 SVM 

SVM is originally a two-classifier; therefore, when it is used for distinguishing a genuine 
user from the other users, the number of datasets for learning individual features of the 
genuine user becomes unbalanced with those of the other users, as mentioned above. 

4.1 1vs1 SVM 

Figure 7 illustrates the differences between the number of datasets for a genuine user and 
those of the other users, where A-Z are users, A is the genuine user, and B-Z are the other 
(unauthorised) users. The size of the frame represents the number of learning datasets. 
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Figure 7 Differences between the number and size of datasets for a genuine user and those of the 
other users 

 
(a) 

 
(b) 

 
(c) 

In the case of (a), it is clear that as the number of users is increased, the imbalance 
between the number of datasets for a genuine user and those for the other users becomes 
extremely large. In fact, it was confirmed in the previous section that the unbalanced 
number of datasets makes the rate of correctly accepted genuine data very low. For 
convenience, this approach is called one versus all SVM (1vsA SVM) hereafter. 

Clearly, for reducing such an imbalance, increasing the size of the genuine dataset is 
effective, as shown in (b). However, this approach increases the procedures for the 
enrolment phase and results in degradation of system usability as the number of genuine 
users increases. 

Another approach for reducing the imbalance is to introduce 1vs1 SVM (Hsu and Lin, 
2002). As shown in (c), 1vs1 SVM constructs a user-specific model that distinguishes a 
genuine user from an individual other user (1 versus 1). The problem of learning 
unbalanced data is solved and there is no degradation of usability. 

However, 1vs1 SVM needs many user-specific models commensurate with the 
number of other users. Assuming that the number of users is N, the number of models is 
N in the case of 1vsA SVM, but that of 1vs1 SVM becomes N(N – 1). 1vs1 SVM requires 
approximately N times the number of models and thereby requires increased memory 
capacity in the system. 

Let us assume that the number of learning data is M, in the case of 1vsA SVM, the 
number of learning times is NM for constructing each user-specific model; thus, the total 
number of learning times becomes N2M. In the case of 1vs1 SVM, the number of learning 
times for each model is 2M, so for each user, this number is 2M(N – 1), or 2M(N – 1) × 
N/2 = N(N – 1)M in total. Therefore, the total number of learning times in the case of 
1vs1 SVM is approximately equal to that using 1vsA SVM. 

On the other hand, it is easier to distinguish a genuine user from a single other user 
than to distinguish a genuine user from all other users. Assuming that the end of the 
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model learning process is not defined by the number of learning times, but the model 
learning is instead stopped when an error value falls below a certain threshold, the 
computational time for constructing a model in 1vs1 SVM becomes shorter than that in 
1vsA SVM. This is also confirmed in Hsu and Lin (2002). 

Next, we consider the case of increasing the number of users. All models must be 
relearned in the case of 1vsA SVM while only the models related to newcomers are 
constructed in the case of 1vs1 SVM. Assuming that the number of users is increased to 
N + 1, the number of operations in the case of 1vsA SVM is M × (N + 1) × (N + 1) =  
M(N + 1)2 while the number is (M + M) × N = 2MN in the case of 1vs1 SVM. The 
computational amount for relearning in the case of 1vs1 SVM is less than that in 1vsA 
SVM. 

In the verification phase, only one user-specific model is used in 1vsA SVM; in 
contrast, in the case of 1vs1 SVM, (N – 1) models are used and the final decision 
processing described in the next section is needed. 

On the basis of the above discussions, the introduction of 1vs1 SVM can reduce the 
computational time for learning, but needs a larger amount of memory and increases the 
computational time for verification. 

It is thought that an intra-body propagation signal has large secular variation; 
therefore, the data for learning should be updated regularly. In this case, it is necessary to 
update all user-specific models. From this viewpoint, 1vs1 SVM is also superior to 1vsA 
SVM for user verification, as data are updated regularly, although it may prove tedious to 
the users who must submit to the update process. 

4.2 Final decision based on a majority rule 

The flowchart of the verification using 1vs1 SVM is basically equivalent to that using 
1vsA SVM in Figure 6. In the enrolment phase, N(N – 1) user-specific models are 
constructed to distinguish a genuine user from other users. In the verification phase, a 
smoothed and normalised intra-body propagation spectrum of an applicant is tested by  
(N – 1) models corresponding to a user specified by the applicant (user name or ID). 
However, each model outputs a value independently; therefore, it is necessary to make a 
final decision considering all output values. 

In this study, we make the final decision on the basis of a majority rule. When the 
number of models output a positive number is larger than a specified threshold, the 
applicant is regarded as a genuine user, otherwise, he/she is regarded as an imposter. 

4.3 Experiments (II) 

In order to verify the effectiveness of introducing 1vs1 SVM, we conducted further 
experiments. The intra-body propagation signals discussed in Section 3.3 were used once 
again in the experiments. However, we have confirmed that there is an appropriate  
sub-band for each user to verification (Nakanishi and Sodani, 2010). Therefore, we used 
10 spectral values of a smoothed and normalised amplitude spectrum in a discriminative 
frequency band as an individual feature for each participant in learning and verification. 

In the learning phase, the number of data was 40 (= M) for each participant, that is,  
40 datasets from a participant and 40 from another were used for constructing a model. 
On the other hand, ten datasets from a participant and ten from another were used in the 
verification phase. 
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Figure 8 Error curves (see online version for colours) 

 

Table 2 Frequency bands and parameters in the grid search 

Frequency band (MHz) 0–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70, 70–80, 
80–90, 90–100 

Cost parameter: C 0.001, 0.002, ···, 0.009, 0.010, 0.015, ···, 0.095, 0.10, 0.15, 
···, 0.95, 1.0, 2.0, ···, 9.0, 10.0 

Polynomial: d 1, 2, 3 Kernel function 
RBF: δ 0.001, 0.002, ···, 0.009, 0.010, 0.015, ···, 0.095, 0.10, 0.15, 

···, 0.95, 1.0, 2.0, ···, 9.0, 10.0 

Prior to evaluating the verification performance, we sought the discriminative bands for 
all subjects and the best parameters for constructing all models by using a grid search, 
where all possible combinations are evaluated with a round-robin formula to find the best 
combination. Candidate bands and parameter values are summarised in Table 2. The 
frequency range (0–100 MHz) was equally divided into 10 bands (0–10, 10–20, ···,  
90–100 MHz), and each band was examined. For the cost parameter, each of the listed 
values from 0.001 to 10.0 was examined. Both the polynomial and RBF kernels were 
evaluated as the kernel function. In case of the polynomial kernel, 1, 2, or 3 was tested as 
the natural number: d, and in the RBF kernel, each listed value from 0.001 to 10.0 was 
examined as the scale parameter δ. 

After the grid search, we evaluated the verification performance using the best 
parameters obtained. Error curves representing the false acceptance rate (FAR) and the 
false rejection rate (FRR) are illustrated in Figure 8. 

When the threshold (number of majority votes) was set to approximately 14, an EER 
(= FAR = FRR) of 16% was obtained. Calculating the VR by (100-EER), it was 84% and 
so the verification performance was not influenced by introducing 1vs1 SVM. On the 
other hand, the rate of correctly accepted genuine data (CAR) was greatly improved to 
83%, which is calculated by (100-FRR), compared to 49% in the case of using 1vsA 
SVM. 
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5 Conclusions 

Intra-body propagation signals have been studied as a potential new biometric trait. 
However, improvement of the verification performance remains an issue. In this study, 
we introduced SVM into the verification process. The VR was improved from 58% to 
83%, and so it was confirmed that the verification performance can be greatly improved 
by introducing SVM. However, the correct acceptance rate remained low. Thus, we 
introduced 1vs1 SVM, and the correct acceptance rate was greatly improved from 49% to 
84%. This confirms that the intra-body propagation signal can be used as a new biometric 
trait. 

However, it could improve the verification performance may be further improved by 
introducing a weighted voting rule that considers the outputs of 1vs1 SVMs in the final 
decision instead of a simple majority rule used in this study. In addition, the VR was not 
greatly improved even after the introduction of SVM. Further improvements not only in 
the verification stage but also in the measuring, signal processing, and feature extraction 
stages are required to more accurately model an intra-body propagation signal to improve 
its viability as a biometric trait. 

In addition, the obtained performance in this study is based on the intra-individual 
variation measured for five days. The intra-body propagation signal is affected by 
changes in body conditions. In practical applications, the time between the measurements 
may be longer and will result in larger intra-individual variation; hence, system 
performance may degrade over time. In this case, some countermeasure, for instance, 
successive updating of templates, may be required, where the accepted intra-body 
propagation data are added to the data group to update templates on the basis of the  
first-in first-out method. Also, relearning using updated templates is required. 1vs1 SVM 
is effective for relearning than 1vsA SVM, as discussed in Section 4.1. 

We have proposed on-demand authentication, where users are verified on a regular or 
irregular schedule when requested by the system. On-demand authentication is effective 
for achieving a higher degree of security with a light system load (Nakanishi et al., 2010). 
Our goal is to establish the on-demand authentication of users who are using a system by 
gripping or touching some part or surface of the system, for instance, a handle of a 
vehicle or a computer mouse. In this study, we measured the signals propagated in 
forearms and evaluated their verification performance, but are now evaluating 
verification performance using the signals propagated in a person’s palm. 
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