
Brain Waves as Unconscious Biometrics towards
Continuous Authentication

- The Effects of Introducing PCA into Feature Extraction -

Isao Nakanishi and Takuya Yoshikawa
Graduate School of Engineering

Tottori University
4-101 Koyama-minami, Tottori 680-8552, Japan

Abstract—For user management in high-security systems,
continuous authentication is required, where unconscious bio-
metrics is suitable. We have proposed to use brain waves as
such unconscious biometrics. Assuming continuous authentication
of drivers, we have measured brain waves in virtual driving
environments and evaluated the verification performance. In this
paper, we introduce Principle Component Analysis (PCA) into
the feature extraction. It is confirmed that the introduction of
PCA is effective for improving the verification performance.
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I. INTRODUCTION

From the viewpoint of user management in high-security
systems, such as public transport systems which are responsi-
ble for many human lives, computer systems which can access
to classified information, and distance learning systems in
which students receive some qualification or license, one-time-
only authentication is no-good. A registered user gets certified
from a system and then he/she switches to another who is not
registered to the system, one-time-only authentication cannot
prevent such spoofing. On this issue, continuous authentication
is the only solution. In addition, only biometrics which can
present biometric data unconsciously is applicable in the
continuous authentication.

We have proposed to use brain waves as unconscious
biometrics [1], [2], [3]. Assuming to apply them to contin-
uous driver authentication, we have measured brain waves in
virtual driving environments and evaluated their verification
performance. There are many studies which use brain waves
as biometrics [4]. However, none of them regards brain waves
as unconscious biometrics. They merely treat the brain wave
as an alternative of conventional biometrics.

In our conventional approach, the spectra at α-β band of
brain waves were used as individual features and Support Vec-
tor Machine (SVM) was adopted in verification [5]. However,
the verification performance obtained was not satisfactory.

In this paper, we try to improve the verification perfor-
mance by introducing Principle Component Analysis (PCA).

II. CONVENTIONAL APPROACH

In this section, our conventional approach to person authen-
tication using brain waves is introduced. In the research area
using the brain wave as biometrics, it is general to use multiple

Fig. 1. Brain wave sensor

brain wave sensors to achieve higher verification performance.
However, considering practical applications of the brain wave
as biometrics, it is inconvenient to set multiple brain wave
sensors on scalp while moving hair. On the other hand, we use
a brain wave sensor, which is located on the forehead using
a headband as shown in Fig. 1. It is relatively acceptable for
users to put a sensor on their forehead since the forehead is
not relatively covered by hair.

In addition, it is usual to measure brain waves in relaxed
and/or eye-closed conditions in the research area. However,
it is not realistic to evaluate the verification performance
using such brain waves. On the other hand, assuming con-
tinuous authentication of drivers in public transport systems,
we measured brain waves form thirty subjects in two virtual
driving environments, which are named Route Tracing (RT)
and simplified Driving Simulator (DS) [3] as shown in Fig. 2.

The subjects wore the brain wave sensor shown in Fig. 1,
sat a chair, and watched the screen while doing nothing in RT
or controlling the controllers in DS. Please refer to Ref. [3] in
details.

The measurement was carried out twice a day and it was
repeated five days and so 10 EEGs were obtained from each
subject and 120 EEGs were obtained in total. And the spectra
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Fig. 2. Measurement of brain waves in virtual driving environments
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Fig. 3. Spectral means as individual features

of all brain waves measured are calculated using Fast Fourier
Transform (FFT) and each spectrum is normalized by dividing
each spectral value by the spectral mean. Dividing α-β band
into several regions and calculating a spectral mean in each
region, the spectral means from all regions are extracted as
individual features as shown in Fig. 3.

Using SVM as a verification method, we have evaluated the
performance of the brain waves. As a result, the verification
performance of EER=30% was obtained [5] and it is a problem
for us to improve the performance.

III. PRINCIPLE COMPONENT ANALYSIS

In the conventional approach, the spectra of brain waves
are directly used as individual features. In order to improve the
verification performance of the brain waves, a new extraction
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Fig. 4. Distribution of two-variable data

method of individual features is needed. Thus, we introduce
PCA into the feature extraction of brain waves.

PCA is one of multivariate analysis methods. Figure 4
shows an example of the distribution of two-variable data.
It is clear that there is a relationship between two variables.
Thus, an axis which represents the relationship is located as
z1 in the figure. As a result, we obtain a new axis, that is, a
new variable which defines more explicit relationship between
the original two variables. z1 is a principle component and
obtained by seeking a direction on which the variation of data
(variance) becomes the largest. To obtain a new variable which
has the largest variation of data leads to expanding differences
between data; therefore, it is expected to improve verification
performance by introducing PCA.

In addition, the original two variables are reduced to one
new variable; therefore, the reduction of dimensions can be
also achieved by using PCA. If to define only a new axis which
obviously represents the relationship between the original two
variables is difficult, the second axis which is orthogonally
oriented to the first one is defined. In that case, the former is
called the first principle component and the latter is the second
principle component.

The above explanations are easily extended to a multivari-
ate case. PCA is to present xp with P variables by using
M(≤ P ) principle components which are independent. mth
principle component zm is given by

zm =
P∑

p=1

wpm xp (m = 1, 2, · · · ,M) (1)

where wpm are transformation coefficients, which are deter-
mined to make the variance of zm in all data the smallest.
The result by applying each xp to Eq. (1) is called principal
component score.

How each principle component represents the characteris-
tics of original data is defined as the ratio of the variance of
each principle component to all variances. It is called contribu-
tion ratio. Moreover, the ratio of the variances of m principle
components to all variances is called cumulative contribution
ratio. In general, the number of principle components used



AMeasurement of EEGs
All UsersB C Z

FFT & Normalizing

Learning by 1vs1 SVMAvsB AvsC AvsZBvsC BvsZYvsZ
AvsDBvsDLearned Models

Enrollment An Applicant as User “B”?Verification 

Evaluation by Models

Specify the
 Models fo
r “B”

BvsA BvsC BvsZBvsD
Decision by Majority Rule+/- +/- +/- +/-

PCA
Calculation of Principle Component Scores

Spectra
TransformationCoefficients

Measurement of a EEGFFT & NormalizingSpectrum
Calculation of Principle Component Scores

The Applicant is “B” or not “B”

Scores Scores

Fig. 5. Verification based on PCA

in analysis is determined to yield the cumulative contribution
ratio of about 80 %.

IV. VERIFICATION BASED ON PCA

Figure 5 shows the procedure of the verification method
based on PCA. In the enrollment stage, brain waves are
measured from all users of a system and then their spectra
are obtained by using FFT. After normalizing all spectra,
transformation coefficients for each principle component are
obtained by applying PCA to the spectra. Next, using the
transformation coefficients, a principal component score for
each spectrum is calculated. At the same time, using the
cumulative contribution ratio, the number of principle com-
ponents is determined. Principle component scores in the
selected principle components are used as individual features.
Also, transformation coefficients for the selected principle
components are memorized in the system.

Verification is achieved by one versus one Support Vector
Machine (1vs1SVM) [6]. SVM is a powerful two-class clas-
sifier based on learning. From all users, a pair (two users)
is selected, and one is assumed to be a genuine user and
another is assumed to be a forger. By giving +1 to the principle
component scores of the genuine user and -1 to those of the
forger, a SVM model for classifying the two users is learned.
In this way, SVM models for all possible pairs are obtained
and memorized in the system.

In the verification stage, an applicant who wants to use the
system indicates his /her name and specifies a user. Next, his
/her brain wave is measured and its spectrum is calculated.
Using the spectrum and the transformation coefficients memo-
rized in the system, principle component scores are calculated
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Fig. 6. Relations between EERs and cumulative contribution ratios

and then evaluated in SVM models which are related with
the user specified by the applicant. The outputs of the SVM
models are real number and so coded to +1 or -1 by using the
sign function. When the number of models of which output
are +1 is larger than a threshold, the applicant is regarded as
genuine.

V. PERFORMANCE EVALUATION

In order to evaluate the verification performance of the
proposed method, we carried out experimental evaluation using
brain waves which had already measured from thirty subjects
in two virtual driving environments explained in Sect. II.

In advance of the evaluation, we had to determine the
number of principle components which were used in veri-
fication. Thus, we examined the verification performance in
varying cumulative contribution ratios. The number of learning
data was five from each subject. The number of test data
was also five from each subject. Optimal kernel functions and
parameters for constructing SVM models were found through
the grid searching. The verification performance is evaluated
using Equal Error Rate (EER), where False Acceptance Rate
(FAR) is equal to False Rejection Rate (FRR).

The results are shown in Table I, where the number of

TABLE I. EERS (%) IN VARIOUS CUMULATIVE CONTRIBUTION
RATIOS

Cumulative Contribution Ratio (%)
60 70 80 90

RT 32 (6) 28 (12) 30 (22) 32 (38)
DS 33 (2) 31 (3) 31 (10) 33 (26)

principle components is presented in parentheses. These are
plotted in Fig. 6. The smallest EER was obtained at the
cumulative contribution ratio of 70 % in RT while 70 % and
80 % in DS. From these results, we determined to set the
cumulative contribution ratio to 70 %.

Next, we evaluated the verification performance. However,
the performance of learning-based classifiers generally de-
pends on the number of learning data. Thus, we investigated
the verification performances in varying the numbers of learn-
ing data. In addition, in order to evaluate the effectiveness of
the normalization of spectra which had been adopted in the
conventional approach, we tried to remove the normalization
from the enrollment and verification stages.



EERs in various numbers of learning data and with or
without the normalization are summarized in Table II, where

TABLE II. EERS (%) IN VARIOUS NUMBERS OF LEARNING DATA AND
WITH/WITHOUT THE NORMALIZATION

Number of Learning Data
3 5 7

RT withN 31 28 25
outN 29 28 22

DS withN 35 31 26
outN 29 26 24

‘withN‘ and ‘outN‘ mean the cases of with and without
normalization, respectively. Additionally, please be aware that
the number of test data was five from each subject in the cases
of the number of learning data was three and five while the
number of test data was three in the case of the number of
learning data was seven since the total number of data from
each subject was limited to ten.

EERs of the conventional approach were 30 % in both
environments [5], in which the number of learning and test data
was five. Comparing the conventional EERs with EER of 28 %
in RT and 31 % in DS, the effectiveness of introducing PCA
is not clear. It could be due to the normalization of spectra. In
PCA, principle components are obtained by seeking directions
(axes) on which the variations of data (variances) become
larger described in Fig. 4. On the other hand, the purpose
of introducing the normalization is to reduce the variances of
spectra. As a result, the effectiveness of introducing PCA might
be not exerted.

EERs without the normalization in RT and DS when the
number of learning data was five were 28 % and 26 %,
respectively. Comparing them with the conventional EERs, the
effectiveness of introducing PCA is confirmed. In the case of
using PCA, it is better not to use the normalization of spectra.

The relations between the numbers of learning data and
EERs are plotted in Fig. 7. From this figure, it is confirmed that
EERs were decreased, that is, the verification performances
were improved as the number of learning data was increased.
As the result, EERs of 22 % in RT and 24 % in DS are
achieved. In this evaluation, it was impossible to increase
the number of learning data to more than seven since the
total number of data was ten. Further improvement of the
verification performance might be expected as the number of
learning data is increased to ten or more.

VI. CONCLUSIONS

We had studied to use brain waves as biometrics towards
continuous authentication. The conventional method had been
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Fig. 7. Relations between EERs and the number of learning data

evaluated using brain waves measured by a single brain wave
sensor and in virtual driving environments. In this paper, in
order to improve the performance, we introduced PCA into
feature extraction. The effectiveness of introducing PCA was
confirmed in experimental evaluations. In addition, we also
confirmed that it is better not to normalize the spectra of brain
waves in the case of using PCA.

On the other hand, the variation of data from each user,
that is, the intra-individual variation is not considered when
using PCA. In person verification, not only the variation of
all data (inter-individual variation) but also the intra-individual
variation must be considered for achieving better performance.
It is a problem for us to introduce any scheme for reducing
intra-individual variations into feature extraction.
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