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Abstract  

   We prepared composite electrodes of iron silicide/Si by using mechanical grinding for mixtures of 

ferrosilicon and Si followed by gas-deposition, and investigated their electrochemical properties as 

Li-ion battery anode. With increasing the mechanical grinding time, the phase transformation from FeSi 

to FeSi2 took place more significantly, and the composite electrode showed better cycle stabilities. There 

was no remarkable difference in mechanical properties and electronic conductivity between FeSi and 

FeSi2. On the other hand, the FeSi2 exhibited about three times larger capacities in comparison with the 

FeSi electrode. In addition, a result of our first principle calculation indicates that Li ion can diffuse more 

easily in FeSi2 lattice than in FeSi lattice. It is suggested that the better cyclability of the composite 

electrodes was attributed to the moderate reactivity of FeSi2 with Li and the smooth Li-ion diffusion in it.  
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1. Introduction  

   Li-ion battery has been extensively studied in these days not only for portable electronic devices but 

also for electric vehicles. In particular, much larger energy density is required for the electric vehicles. 

Based on this requirement, Si has attracted much attention as a high-capacity anode material in the 

next-generation Li-ion battery. It can accommodate 3.75 Li ions per Si atom at room temperature [1-5]. 

This accommodation leads to a theoretical capacity of about 3580 mA h g−1, which is approximately ten 

times higher than the theoretical capacity of a graphite anode in practical use. On the other hand, Si has 

critical disadvantages of a low electronic conductivity, a slow kinetics of Li-ion diffusion, and significant 

volume changes during Li-insertion and Li-extraction. The volume changes are a very serious problem as 

anode material because those cause a huge mechanical stress and a loss of electrical contact between 

active material and current collector. The electrode performance, consequently, drastically degrades with 

increasing charge−discharge cycles. Many researchers have studied various composite electrodes 

consisted of elemental Si and other active materials compensating for the silicon's disadvantages.  

   Since about 2003, the authors have intensively investigated various anode materials of intermetallic 

compounds [6-9], Si-based composites [10-20], and elemental Si [21-23]. As a part of these results, it has 

been revealed that silicon's high capacity can be effectively exerted for a long term charge−discharge 

cycle by a combination of elemental Si and suitable other active materials. We have reported that four 

kinds of properties are mainly required for the active materials as follows [10-20]:  

  1. Mechanical properties suitable for relaxation of the stress from Si 

  2. High electronic conductivity  

  3. Moderate reactivity with Li+ 

  4. High thermodynamic stability  

As for the fourth factor, transition metal silicides are promising as the active materials because they have 

generally high thermodynamic stabilities. The authors have succeeded in improving anode performances 

of composite electrodes consisted of elemental Si and rare-earth metal silicides such as LaSi2/Si [11], 
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mischmetal silicide (MmSi2)/Si [15], and Gd−Si/Si [25]. On the other hand, we have investigated 

Li-insertion/extraction properties for composite electrodes of Si and base metal silicide such as FeSi2/Si 

[15,24], NiSi2/Si [24], and VSi2/Si [15,24]. From the viewpoint of abundance and cost, it is very 

important to utilize iron silicides for an electrode material of large size Li-ion battery for electric vehicles 

and stationary batteries.  

   Ferrosilicon (Fe−Si) is one of several ferroalloys used for desulfurization and deoxidation from 

molten steel in a steel process. The Fe−Si is less expensive than metal grade Si (4N purity) because it is 

widely used in great quantities in steel industry. It consists of mostly FeSi2 which shows 

charge−discharge capacities of about several ten mA h g−1. The capacities are considered an appropriate 

reactivity with Li+ as the third factor. Moreover, FeSi2 has a more ductile property, a higher electrical 

conductivity, and a higher thermodynamic stability compared with elemental Si. As a preceding study, 

Ai et al. reported that FeSi2/Si/C nanocomposites were synthesized by a ball-milling method, and that the 

nanocomposite electrodes showed an excellent capacity retention of 92% at the 200th charge−discharge 

cycle in a conventional organic electrolyte [26]. On the other hand, Choi and Kim et al. prepared a 

sputtered FeSi2.7 (FeSi2/Si composite) thin-film delivering a good retention of 92% at the 100th cycle 

even in an ionic liquid electrolyte [27]. They have purchased, however, commercial source materials of 

Fe and Si for the FeSi2 synthesis though the composites of FeSi2 and Si were found to be excellent anode 

active materials. Therefore, it is expected that Fe−Si becomes a promising candidate to be combined 

with Si as a low-cost anode material. In this study, we applied Fe−Si to Si-based composite electrodes 

and investigated their electrochemical properties as Li-ion battery anode.  

 

2. Experimental  

   As an active material, Fe−Si and Si powders (Silgrain® e-Si, Elkem AS) were used. The average 

particle sizes of the Fe−Si and Si powders were approximately 60 µm and 10 µm, respectively. A 

mechanical grinding (MG) was performed for a mixture of the Fe−Si and Si powders to obtain a 



4 

 

composite active material of Fe−Si and Si (Fe−Si/Si). The mixture of the Fe−Si and Si powders was put 

in a zirconia vessel together with balls so that the weight ratios of Fe−Si:Si were 70:30, 50:50, and 30:70. 

The weight ratio of the balls to the active materials was 15:1. The vessel used was sealed to keep an 

atmosphere of dry argon gas. The MG was carried out by using a high-energy planetary ball mill (P-6, 

Fritsch) for 10, 20, and 30 hours with a rotation speed of 380 rpm at room temperature, resulting in a 

formation of Fe−Si/Si composite powders. The particle sizes of the composite powders were measured 

by a using a laser diffraction particle size analyzer (SALD-2300, Shimadzu Co. Ltd.). The typical sizes 

of primary particles were confirmed to be about 0.1 µm. The crystal structure of the powders was 

confirmed by using X-ray diffraction (XRD, Ultima IV, Rigaku). A reference breaking strength of the 

powders was measured by a uniaxial compression test using a dynamic ultra-micro hardness tester 

(DUH-211S, Shimadzu Co. Ltd.). In this study, the reference breaking strength was defined as an applied 

pressure when a compressed particle of the powder showed 10% deformation compared with its original 

size. The electrical resistivity was measured for the powders under a uniaxial press of 55 MPa using a 

two probes method.  

   Thick-film electrodes of Fe−Si/Si composites were prepared by a gas-deposition (GD) method [9,23]. 

This method is a unique process in which thick films thicker than 1 µm consisting of various metal, alloy, 

and oxide powders can be easily formed by a single deposition without any binder. Procedures and 

conditions of thick-film electrode preparation have been described in our previous reports [9-23]. In this 

study, we prepared Fe−Si/Si composite film electrodes by using a nozzle with 0.5 mm in diameter, an Ar 

carrier gas with a purity of 99.99% under a differential pressure of 7.0×105 Pa, and a current collector of 

Cu foil substrate with 20 µm in thickness. The active material weights in the electrodes were typically 

kept within the range of 46–79 µg.  

   Li-insertion/extraction properties of the composite electrodes were evaluated in a beaker-type 

there-electrode cell. We assembled the composite electrodes as a working electrode, Li metal sheets 

(Rare Metallic, 99.90%) as counter and reference electrodes, and LiClO4 dissolved in propylene 
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carbonate (PC; C4H6O3, Kishida Chemical Co., Ltd.) at a concentration of 1 M as the electrolyte. 

Galvanostatic charge–discharge tests were carried out using an electrochemical measurement system 

(HJ-1001 SM8A, Hokuto Denko Co., Ltd.) at 303 K with potential ranges of 0.005–2.000 V vs. Li/Li+. 

The current densities were set to be 1.0 A g–1, corresponding to current rates of 0.40–0.93C. 

   To investigate behavior of Li-ion migration in iron silicides, we performed first principle calculations 

based on density functional theory (DFT) using projector augmented wave (PAW) method as 

implemented in the Vienna Ab Initio Simulation Package (VASP) [28,29]. The local density 

approximation (LDA) was also used as the term exchange correlation with a cutoff energy of 350 eV and 

all calculations performed nonmagnetically. The Brillouin zone sampling was done via a (6×6×6) k-point 

mesh within Gamma point centered mesh scheme. Structural relaxation was carried out to determine all 

atomic positions after Li was inserted into crystal lattices of FeSi2 and FeSi. We calculated a formation 

energy Ef for Li-inserted FeSi2 in a super cell consisted of six unit cells as an interstitial solid solution 

(Li 0.17FeSi2) from a total energy Etotal. The Ef of Li0.17FeSi2 was defined by  

     Ef(Li 0.17FeSi2)  =  Etotal(Li 0.17FeSi2)  –  0.17 Etotal(Li)  –  Etotal(FeSi2).  

As for Li-inserted FeSi, Ef of Li0.06FeSi in a super cell consisted of four unit cells was calculated by 

equation of  

     Ef(Li 0.06FeSi)  =  Etotal(Li 0.06FeSi)  –  0.06 Etotal(Li)  –  Etotal(FeSi).  

To evaluate Li migration in crystal structure, we calculated the formation energies in migration pathway 

between the most stable interstitial sites of Li. As an energy barrier for the migration, changes in 

formation energies of Li-inserted FeSi2 were investigated when Li migrates between adjacent stable sites.  

 

 

3. Results and discussion 

   Figure 1 shows XRD patterns of Fe−Si powder as received. We can recognize diffraction peaks of 

not only FeSi2 (Inorganic Crystal Structure Database, ICSD No.01-073-1843) but also FeSi (ICSD 
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No.01-079-0619). It was confirmed that Fe−Si powder consists of a mixture of FeSi2 and FeSi. A 

thick-film electrode using Fe−Si alone, prepared for a preliminary experiment, showed low discharge 

capacities less than 20 mA h g−1 and a very stable cyclability as we expected. Although as-received 

Fe−Si alone is not suitable for anode material, we expected high capacity and stable cyclability by 

compounding Fe−Si with elemental Si using MG. Figure 1 compares XRD patterns of Fe−Si/Si 

composite powders prepared by MG for 10−30 hours. In each composite powder, FeSi2 and Si peaks 

were observed. On the other hand, the peak intensity of FeSi was decreased with increasing MG time, 

and the peak disappeared when MG time reached 20 hours. This indicates that a phase transformation 

from FeSi to FeSi2 took place by MG with the existence of excess Si. These results suggest that the phase 

transformation to FeSi2 almost completed in case of MG 30 hours (Fig.S1), and that FeSi2 and Si phases 

uniformly intermixed in Fe−Si/Si composites. The crystalline size of FeSi2 was estimated to be about 14 

nm by using Scherrer equation.  

   Figure 2 shows potential profiles at the first cycle for electrodes of Fe−Si/Si composites prepared by 

MG for 30 hours. The weight ratios of Fe−Si/Si were 30/70, 50/50, and 70/30 wt.%. In the all electrodes, 

we observed potential plateaus in the charge (lithiation) reaction at 0.1–0.3 V vs. Li/Li+ and in the 

discharge (delithiation) reaction at 0.3–0.5 V vs. Li/Li +, indicating alloying and dealloying reactions of 

Li–Si.  

   Figure 3 represents cycling performances of the Fe−Si/Si composite electrodes as compared with 

those of electrodes using Si alone and Fe−Si alone. The discharge capacity of the Si electrode rapidly 

decreased with increasing the cycle number. This poor cyclability originates in properties of Si itself: low 

electronic conductivity, slow kinetics of Li-ion diffusion, and significant volume changes during 

Li-insertion and Li-extraction. In particular, the volume changes cause pulverization and loss of electrical 

contact for active material layer, resulting in the significant capacity fading. On the other hand, the 

capacity fading was suppressed for the Fe−Si/Si composite electrodes. After 30–50 cycles, the capacity 

of the composite electrodes exceeded that of the Si electrode. This result demonstrated that compounding 
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Fe−Si and Si is effective for improving performance of Si-based anode. It is easily suggested that FeSi2 

phase in the composite can improve electrical conductivity and can relax the stress from Si. With 

increasing the amount of Fe−Si in the composite, the cyclability was much improved though the initial 

capacity was reduced owing to lower amount of elemental Si in it.  

   To discuss the effect of MG treatment on the good cyclability, we focused on the time of MG 

treatment. Figure 4 presents relationship between cycle number and retention of initial capacity for the 

Fe−Si/Si electrodes with the ratio of 70/30 wt.%, and dependence of MG time on the retention. In case of 

MG for 10 hours, the electrode showed a drastic retention decay by the 60th cycle and a very low 

retention of 7% at the 100th cycle. In contrast, when MG time was 20 hours or more, the electrodes 

exhibited good retentions higher than 60% for 100 cycles. We considered that this improved retention 

should be correlated with the phase transformation from FeSi to FeSi2 by MG.  

   As we mentioned in the introduction section, active material combining with Si in composite 

electrode is required to have four kinds of important properties: (i) mechanical properties suitable for 

relaxation of the stress from Si, (ii) high electronic conductivity, (iii) moderate reactivity with Li+, and 

(iv) high thermodynamic stability. To make clear difference in these properties between FeSi and FeSi2, 

we separately prepared single phase FeSi and FeSi2 powders by a mechanical alloying method 

[11,15,19].  

   By a uniaxial compression test using a dynamic ultra-micro hardness tester, we evaluated a reference 

breaking strength (pressure required for 10% deformation) [15] for FeSi and FeSi2 powders. The 

breaking strengths of FeSi and FeSi2 were 229±21 and 213±44 MPa, which were much lower than the 

value of 409±68 MPa obtained for Si. This result revealed that both silicides have a favorable mechanical 

property to relax the stress from Si. No remarkable difference in the mechanical property was observed 

between FeSi and FeSi2. An electrical conductivity was studied under a uniaxial pressure for active 

material powder by using our measurement system [15]. The resistivity of both silicides was 2.6×101 Ω 

cm, which was about 100 times lower than that of 6.0×103 Ω cm in case of Si. It was found that FeSi and 
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FeSi2 equally improve the electrical conductivity of the composite electrodes. As for thermodynamic 

stability, Acker et al. have reported that the standard enthalpies of formation of FeSi and FeSi2 were −74 

and −79 kJ mol−1 [30]. Thus, FeSi has as good a thermodynamic stability as FeSi2 does. There was no 

significant difference in the three properties, thereby indicating that an electrochemical reactivity of 

silicides with Li+ should be different.  

   Figure 5 shows Li-insertion/extraction properties of thick-film electrodes using FeSi and FeSi2 

prepared by the mechanical alloying method. In each electrode, gentle potential shoulders were observed 

in the initial charge–discharge curves (Fig.5(a)). We consider that these silicides reversibly store Li ions 

at interstitial sites in their crystal lattice as Mg2Ge does [31] though detailed reaction mechanism is still 

unclear. Both electrodes showed very stable cyclability for 300 cycles. The discharge capacities of the 

FeSi2 electrode were three times larger than those of the FeSi electrode. As for metal silicide-based 

composite electrodes, it is suggested that a discharge capacity of about several ten mA h g−1 for silicide 

electrodes is favorable for improving cyclability of composite electrodes though it depends on the kind of 

active materials and conditions of charge-discharge tests. In a typical condition of our experiments, when 

electrodes of metal silicide alone showed reversible capacities of about several ten mA h g−1, silicide/Si 

composite electrodes exhibited better cycling performances [11,15,25]. In contrast, a NiSi2 electrode 

showed higher initial capacity than 100 mA h g−1, and thus poor cycle stability was obtained for a 

NiSi2/Si composite electrode because the higher reactivity of NiSi2 with Li leads to its large volume 

change and disintegration of the composite electrode [24].  

   Figures 6(a) and 6(b) illustrate migration pathway between the most stable interstitial sites for Li in 

the structures of (a) tetragonal FeSi2 and (b) cubic FeSi. The figures were created using VESTA package 

by K. Momma and F. Izumi [32]. The migrations in FeSi2 and FeSi were calculated along [100] and 

[110] directions in which Li has the longest interatomic distances to nearest neighbor atoms of Si and Fe. 

In case of FeSi, we calculated the formation energies in curved pathway with consideration for 

asymmetry of atomic configuration. As we expected, FeSi2 exhibited less energy barrier for Li migration 
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in the pathway than FeSi (Fig.6(c)) though Li concentration in the cell of Li0.17FeSi2 is higher than that of 

Li 0.06FeSi. This calculation results indicate that FeSi2 has a more favorable structure for Li migration than 

FeSi. Taking account of the larger reversible capacities of the FeSi2 electrode as shown in Fig.5(b), FeSi2 

phase has an advantage not only in smooth Li-ion diffusion but also in the quantity of 

Li-insertion/extraction. Therefore, we consider that the electrode of Fe−Si/Si composite, in which FeSi 

transformed to FeSi2 by MG, showed the good cyclability.  

 

 

4. Conclusions  

   We prepared the Fe−Si/Si composite by using MG for elemental Si and ferrosilicon, which is 

industrially available and less expensive material, and investigated the influence of MG on the anode 

performance of the composites. With increasing the MG time, the phase transformation from FeSi to 

FeSi2 took place more significantly, and the composite electrodes exhibited higher capacity retention for 

100 cycles. As a result of measurements for the mechanical properties and the electronic conductivity, 

there was no remarkable difference in these properties between FeSi and FeSi2. On the other hand, the 

FeSi2 exhibited about three times larger capacities in comparison with the FeSi electrode. In addition, a 

result of our first principle calculation indicates that Li ion can diffuse more easily in FeSi2 lattice than 

FeSi lattice. We consider that the better cyclability of the composite electrodes was attributed to the 

moderate reactivity of FeSi2 with Li and the smooth Li-ion diffusion in it.  
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Figure 1. XRD patterns of Fe−Si/Si composite powders prepared by MG with different grinding times.  
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Figure 2. Initial charge−discharge curves of thick-film electrodes using Fe−Si/Si composites prepared by 

MG for 30 hours. The weight ratios of Fe−Si/Si were 30/70, 50/50, and 70/30 wt.%.  
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Figure 3. Charge−discharge cycling performances of the Fe−Si/Si composite electrodes. For comparison, 

this figure shows results for electrodes of Si alone and Fe−Si alone. 
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Figure 4. Effect of MG time on capacity retention of Fe−Si/Si composite electrodes with weight ratio of 

70/30 wt.%. In cases of MG times of 10, 20, and 30 hours, the electrodes showed initial capacities of 750, 

600, and 620 mA h g−1.  
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Figure 5. (a) Charge–discharge curves and (b) cycle stability for electrode of FeSi2 alone prepared by 

mechanical alloying method. For comparison, anode properties of FeSi electrode were also shown in the 

figure.  
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Figure 6. Migration pathway between the most stable interstitial sites for Li in crystal structures of (a) 

FeSi2 and (b) FeSi. The figures were created using VESTA package [32]. (c) Change in formation 

energies of LixFeSi2 when Li migrates between adjacent stable sites. The formation energy at the most 

stable site of Li was set to be 0.  
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Figure captions  

Figure 1. XRD patterns of Fe−Si/Si composite powders prepared by MG with different grinding times.  

 

Figure 2. Initial charge−discharge curves of thick-film electrodes using Fe−Si/Si composites prepared by 

MG for 30 hours. The weight ratios of Fe−Si/Si were 30/70, 50/50, and 70/30 wt.%.  

 

Figure 3. Charge−discharge cycling performances of the Fe−Si/Si composite electrodes. For comparison, 

this figure shows results for electrodes of Si alone and Fe−Si alone. 

 

Figure 4. Effect of MG time on capacity retention of Fe−Si/Si composite electrodes with weight ratio of 

70/30 wt.%. In cases of MG times of 10, 20, and 30 hours, the electrodes showed initial capacities of 750, 

600, and 620 mA h g−1.  

 

Figure 5. (a) Charge–discharge curves and (b) cycle stability for electrode of FeSi2 alone prepared by 

mechanical alloying method. For comparison, anode properties of FeSi electrode were also shown in the 

figure.  

 

Figure 6. Migration pathway between the most stable interstitial sites for Li in crystal structures of (a) 

FeSi2 and (b) FeSi. The figures were created using VESTA package [32]. (c) Change in formation 

energies of LixFeSi2 when Li migrates between adjacent stable sites. The formation energy at the most 

stable site of Li was set to be 0.  


