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CHAPTER!-----------------------------

General Introduction 

l.lBACKGROUND 

Water flow throughout the soil-plant-atmosphere continuum is regulated by a number 

of complex physical and biophysical processes that are mutually dependent. Important 

"top-down" controls on water uptake by plants include hydrologic and climate conditions, 

which determine the rates of potential evapotranspiration and assimilation, and ecosystem 

productivity. In contrast, vegetation exerts a "bottom-up" control on both regional climate 

and hydrologic conditions through its interactions (via water and energy) with the near­

surface atmosphere. Almost all interactions within the soil-plant-atmosphere system are 

mediated by soil moisture (Figure 1.1 ), which is a key variable in terms of controlling the 

influence of climate, soil, and vegetation on the water balance and also in controlling the 

dynamic impact of the water balance on plants (e.g., Neilson, 1995; Laio et al., 2001; 

Porporato et al., 2001; Porporato and Rodriguez-Iturbe, 2002). 

Soil moisture plays a central role in the global water cycle and climate system by 

Evaporation 

.. - Precipitation 

Top-down 
controls 

Figure 1.1 Schematic representation ofthe climate-soil-vegetation system. The grey area 
indicates the focus of this thesis. 
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controlling the partitioning of water and energy fluxes at the earth's surface, and may 

control the distribution of water upon continents via land surface-atmosphere feedback 

mechanisms (Koster et al., 2003). Soil moisture acts as a memory of anomalies in the 

water cycle; consequently, it has a delayed and durable influence on the overlying 

atmosphere through land-surface fluxes of heat and moisture. Early general circulation 

model (GCM) simulations (Delwarth and Manabe, 1988, 1989) and observational 

evidence (Vinnikov and Y eserkepova, 1991) indicate that a continental soil-moisture 

anomaly shows interseasonal persistence as a climate memory due to its low potential 

evaporation. 

Figure 1.2 schematically illustrates land surface-atmosphere interaction during 

periods of drought (Shinoda, 2000). A rainfall anomaly (Phenomenon 1 in the figure) 

results in the persistence of anomalous land-surface conditions (soil moisture and 

vegetation) during the cold season (Phenomenon 2), leading in turn to an anomaly of the 

same sign during the following warm season (Phenomenon 3). This mechanism may 

operate as a positive feedback system. The resulting positive feedback can increase the 

duration and intensity of climate extremes such as droughts, heat waves, and floods (e.g., 

Charney, 1975; Sud and Smith, 1985; Seneviratne et al., 2006). This feedback is strongest 

LAND SURFACE I ATMOSPHERE INTERACTION 

A DROUGHT CASE 

------ Year i --- 1 Year i + 1 

Warm season I Cold season I Warm season 

.iay J 1 :1. s.p I Oct N D 1 F M .~ l\iayl 1 J :1. Stp 

~~ I ~+ / 
RAINFALL t I .... \:: ', // 

D rougltt 

~ .. 
I I 
1 I 
I I 

SOIL MOISTURE I 1 ...._ \~ .- Frozen soil ( j 

...... _ 

: Positive 
I Feedhllck 
I 
I 
I 

VEGETATION --+---~.--~+----------------4~------~ 

Plrellome11on 1 Plte11omenon 2 Plre11ome11on 3 

Figure 1.2 Schematic diagram illustrating land surface-atmosphere interaction during a period 
of drought. After Shinoda (2000). 
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in mid-continental regions with~ transitional climate (Koster et al., 2004). 

Soil moisture is generally the key environmental variable in terms of analyses of 

vegetation dynamics. Temporal variations in the availability of soil moisture have a direct 

effect on plant water potential, related tissue turgor, transpiration rate, and leaf carbon 

assimilation by photosynthesis, which in turn influence plant growth and reproduction 

(e.g., Porporato et al., 2001; Porporato and Rodriguez-Iturbe, 2002). This effect is most 

noticeable in water-controlled ecosystems such as drylands (Rodrigues-Iturbe and 

Proporate, 2004), where vegetation is frequently subjected to water stress. 

Spatial differences in the dynamics of soil moisture availability are a key factor in the 

development of distinct functional vegetation types (e.g., grasslands, savannas, forests) 

and ecosystem structures. Many extratropical arid and semi-arid regions suffer water stress, 

which is controlled by temporal fluctuations in soil moisture (e.g., Smith and Griffith, 

1993; Rodriguez-Iturbe et al. 2001). Although other sources of stress (e.g., temperature, 

fire, grazing, nutrient availability) are generally present, soil moisture is the most 

important factor controlling vegetation activity in many dryland ecosystems. 

More than 40% of the continental areas worldwide are covered by dry lands, which are 

characterized by an aridity index (UNEP, 1992; defined as the ratio of annual mean 

precipitation to annual potential evapotranspiration) that is generally between 0.00 and 

0.65. The main dryland regions are located in continental interiors. Figure 1.3 shows the 

distribution of cold drylands in mid-latitude Asia and warm drylands in low-latitude 

African and Asian drylands Soil freezing in cold drylands so•N 
60'N r---·----:;..,?;~~~~~r-~-~ ~~. ~-.:..3~!-~~v:"f•-t:::~lllf::":f;;J?~~· ~~"!"""'~· ---~~;;:;;.J"F"~· · ~>~P"!!!J11 

40'N 

20'N 

o· 

':.• 

o· 40'E 
Aridity index (PIPET) 

- 0.00-0.05: Hyper-arid 
---, 0.05-0.20:Arid 

t:=:=:i 0.10-0.50: S<mi-arid ==== 0.50-0.65: Dry-subhumid 

80'E 120'E so•E 120°E 
Pumafnut zoafO 

Continuow 

Discontinuous 
Sporadic 

30°N 

Figure 1.3 (a) Map of African and Asian drylands (UNEP, 1992) and (b) soil freezing in cold, arid 
regions (Brown et al., 2005). Drylands are defined based on the aridity index, which represents the 
ratio of mean annual precipitation (P) to mean annual potential evapotranspiration (PET). 
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Africa. The mid-latitude drylands are characterized by distinct warm and cold seasons 

(with large seasonal amplitudes in temperature). The plant-growing season is limited by 

the short rainy season during the warm months, while the soil is frozen in winter. 

Permafrost is widespread in east Eurasia (mean annual air temperature, < 0°C), including 

Mongolia, where sporadic and to a lesser extent continuous permafrost predominates 

(Figure 1.3b ). 

1.2 SOIL MOISTURE DYNAMICS IN DRYLANDS 

The main control exerted by hydrological processes on vegetation activity in drylands 

is via the soil moisture dynamic, which in turn is controlled by complex interactions 

among precipitation, evapotranspiration, runoff, and drainage. The soil moisture dynamic, 

which is complex and depends on many interactions and processes, can be expressed as 

follows: 

dt = P(t)- E(w, t}- R(\.v, t) - D t) 1.1 

where W is soil moisture content (mm), Pis precipitation (mm), R'is runoff (mm), E is 

evapotranspiration (mm), and Dis deep drainage below the plant root zone (mm). In cold 

drylands, P includes water from snowmelt, as described in Chapter 2. The schematic 

diagram in Figure 1.4 defines water loss as water that is not stored in the root zone as deep 

drainage, runoff, evaporation, or transpiration; this amount depends on the soil moisture 

status when precipitation occurs and during periods between rainfall events. 

In drylands, the global circulation prevents large-scale convective activity because the 

dominant atmospheric movement is downwards. In areas where convection is suppressed, 

cloud formation is rare, meaning that the radiation receipt is high. Given that little water is 

available for evaporation, most of this radiation yields sensible rather than latent heat; thus, 

temperatures are high and rainfall is low. The low annual precipitation in these regions is 

almost exactly matched by the annual evapotranspiration (e.g., Robock et al., 2000). 

Potential evapotranspiration is high; consequently, runoff and deep drainage are negligible. 

Moreover, a negligible amount of deep drainage is commonly found within natural 

vegetation areas of arid regions where annual precipitation is less than 300 mm 
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Figure 1.4 A local soil moisture balance 

(e.g., Scanlon et al., 1997). In such regions, the small amount of rainfall and high 

evaporative demand provide constraints on vegetation growth and yield. 

The vegetation in drylands is generally well adapted to conditions of water stress and 

is divided into several major plant functional types, such as grasses, shrubs, forbs, and 

succulents (Sala et al., 1997). Grasses are dominant in cold drylands with continental 

climates; i.e., in areas with increasing availability of soil moisture during the warm season. 

In such regions, precipitation is the main immediate source of water, meaning that the 

availability of soil moisture plays a crucial role in controlling vegetation patterns and the 

type of vegetation cover (e.g., as observed in Mongolia), and is consequently of primary 

importance to the ecosystems in such areas (Miyazaki et al., 2004; Zhang et al., 2005; 

Munkhtsetseg et al., 2007; Bat-Oyun et al., 2010; Nandintsetsetseg et al., 2010; Shinoda et 

al., 2010b). 
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1.3 STUDY AREA: MONGOLIA 

1.3.1 Overview of Topography and Climate 

Mongolia lies in a transitional zone (42°-52°N) between the boreal forests of Siberia 

and the Gobi Desert, spanning the southernmost border of the area of permafrost and the 

northernmost deserts of Central Asia. About half of Mongolia lies at an altitude of around 

1400 m a.s.l, making it one of the highest countries in the world. Mongolia is separated 

from the ocean by large distances and high mountain chains, which is an important factor 

in defining its climate. The climate of Mongolia is strongly influenced by its topography 

and location north of the high Himalayan massif (Goulden et al., 2009). Because of its 

geographical and topographical characteristics, Mongolia has a cold and arid climate. 

As indicated by the spatial distribution of the aridity index (Figure 1.5), precipitation 

decreases and temperature (and consequently evapotranspiration) increases southward, 

resulting in increasingly arid conditions. More than 40% of Mongolia is arid or hyper-arid. 

Mongolia typically has a long, cold, dry winter (Siberian winter) and a short, warm 

summer. The annual mean temperature is 0.7°C, with large seasonal differences. Average 

annual precipitation is 230 mm, most of which occurs in summer (June-August). In 

general, May to August is the period of plant growth upon the Mongolian grasslands 

(Shinoda et al., 2007). Snowfall occurs between mid-October and the end of April, and the 

annual maximum snow depth (3.4 em) occurs in January (Morinaga et al., 2003). 

1oo·E 12o·E 

5o·N 

40"N 

30.N 

PIPET 
0.65 

Dry-Subhumid 
0.50 

Semi-Arid 
0.20 

Arid 
0.05 

Hyper-Arid 

0.00 

Figure 1.5 Location of Mongolia (shading denotes arid regions, as defined by the aridity 
index; UNEP, 1992). 
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Due to its cold climate, almost half(51.4%) ofMongolia is permafrost (Figure 1.2b). 

Northern Mongolia represents the southernmost boundary of the Siberian continuous 

permafrost zone (Sharkhuu, 2004), where deep soils remain frozen throughout the year. 

The average thickness and temperature of continuous permafrost are 50-250m and l-3°C, 

respectively. Seasonal thaw (to depths of 2-3 m in silt soils and 4-5 m in coarse soils) 

occurs between May and September. In non-permafrost areas, ground-soil freezing occurs 

between mid-October and the end of April. 

Recent studies in northern Mongolia indicate that permafrost is currently showing a 

thawing trend (Sharkhuu et al., 2007). With climate warming, the active layer or surface 

soil layer above the permafrost that thaws each summer is gradually increasing in depth 

with thawing of the near-surface layer of permafrost. A pronounced warming trend has 

been reported throughout Mongolia (Marcc, 2009). Related changes have also been 

detected, such as a decrease in the number of extremely cold days and an increase in the 

number of extremely warm days (Nandintsetseg et al., 2007). 

1.3.2 Water Resources 

Mongolia contains limited water resources. The total water resources are estimated to 

be 599 km3
, consisting mainly of water stored in lakes (500 km3

) and in glaciers (62.9 

km3
). Surface water and groundwater make up just 4% and 2% of the total water resources, 

respectively. However, these additional water resources play a vital role in the country's 

economy with regard to agriculture, forestry, and livestock production, as well as 

industrial and domestic supply. Salinization and poor water quality are major problems in 

Mongolia. The use of water resources in Mongolia is limited by problems with water 

quality related to the occurrence of saline water, seasonal freezing, and droughts, although 

the overall scarcity of water is the main factor that limits water supply. Many users and 

communities are dependent on groundwater, the flow and availability of which are 

inherently more stable than that of surface water. Sustainable development in Mongolia 

depends on the appropriate utilization of water resources. 

1.3.3 Vegetation 

Mongolia contains many different ecosystems, ranging from alpine tundra to deserts. 

The region's location, size, and topography have resulted in a unique assembly of natural 

vegetation zones. The northernmost zone consists of taiga forest and forest steppe, while 
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the southern region contains steppe, desert steppe, and desert. The present study focuses 

on the forest steppe, steppe, and desert steppe zones (Figure 2.1 ), which are described 

below. 

Forest steppe: Most of Mongolia's forest is actually part of the forest-steppe transition, 

which is restricted to north-facing slopes; south-facing slopes are covered by steppe 

vegetation. The forest-steppe zone is an ecotone between the more typical taiga of Siberia 

and the steppe regions of Mongolia and other mid-latitude countries of the Asian continent. 

In the northern part of the forest-steppe transition zone, trees are found on east-, west-, 

and north-facing mountain slopes. Farther south, the forest is limited to northern slopes 

and the steppe expands onto the eastern and western slopes, ultimately leaving few, if any, 

trees in the steppe areas of central Mongolia. In most forest steppe areas, annual 

precipitation ranges from 300 to 400 mm. The soil of the forest steppe is generally dark 

chestnut and chestnut. In this zone, forb-grass is the most abundant vegetation (e.g., Stipa 

spp., Cleistogenes Keng-Stpa spp., Artemisia-Stipa spp., Festuca-artemisia spp.) and the 

forest area is dominantly larch (Larix sibirica), locally mixed with Siberian pine (Pinus 

sibirica). 

Steppe: Steppe ecosystems are widespread in Mongolia, with almost 80% of the land area 

being covered by grassland or steppe. Grasses and sedges (e.g., Poa spp., Stipa spp., 

Leymus spp., and Carex spp.) are dominant in many areas, in combination with forbs on 

dryer slopes. In most steppe areas, annual precipitation ranges from 125 to 250 mm, and 

the main soil types are calcareous chestnut and non-calcareous chestnut. The steppe is 

ideal grazing land for mixed herds of sheep, cashmere goats, cows, and horses, as 

commonly tended by nomads. 

Desert steppe: The desert steppe transition zone is drier than the steppe but receives more 

precipitation (100-120 mm) than desert areas. This transition zone is distinguished from 

semi-desert and steppified desert. Shrubs are common on the desert steppe, whereas 

grasses are sparse and forest patches are rare. Desert species (Anabasis spp., Caragana 

spp., Ajania spp.) become increasingly dominant within this zone, where the soil is mainly 

brown desert soil. This ecotone, in which camels and cashmere goats are important 

livestock animals, is expanding northward with increasing desertification caused by heavy 

grazing pressure and climate change. 
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1.3.4 Socio-Economy 

Climate and landscape conditions are key factors in determining land use and 

sustainable development throughout Mongolia, where the economy is centered on 

agriculture and mining. Agriculture in Mongolia contributes 20.6% of annual gross 

domestic product and employs 42% of the labor force. However, the dominance of a cold, 

arid climate means that limited potential exists for further agricultural development. Of a 

total land area of 1 ,564 million km2
, less than 1% is arable, 8-10% is forested, and the 

remainder is pasture. Most of the population depends on livestock and other climate­

dependent sectors of the economy. Animal husbandry plays a major role in the national 

economy, employing 40% of the total population, contributing 21.2% to agricultural gross 

production, and accounting for 30% of the country's exports. Climatic variability appears 

to be the major limiting factor in terms of expansion of the economy in Mongolia. Hence, 

the adoption of an environmental management strategy based on climate conditions would 

be important in ensuring the sustainable development of the country. 

1.3.5 Problems Facing Mongolian Grasslands 

Temperate grasslands occur in mid-latitude regions where the seasonal climate favors 

the dominance of perennial grasses (Archibold, 1995). In Mongolia, grasslands occupy 

82% of the total land area (Batima and Dagvadorj, 2000), being the main source of forage 

for livestock farming. This vast grassland makes up 4.5% of the total area of Asia, and it 

has the potential to affect climate variability in adjacent areas (e.g., Siberia and East Asia) 

and to affect the global atmosphere via land surface-atmosphere interaction. Xue (1996) 

showed that reduced vegetation activity over grasslands plays an important role in 

modifying the East Asian monsoon circulation, and in producing a rainfall anomaly over 

China. The author suggested that interannual variability in vegetation activity within 

grasslands has a significant effect not only on Mongolia, but on the climate of East Asia. 

The annual mean temperature in Mongolia has increased by 2.14 °C during the past 70 

years, during which time precipitation showed a slight decrease (Marcc, 2009). The rising 

temperature and increasing uncertainty in rainfall associated with climate change are likely 

to result in increased variability in extreme climate events, including their frequency and 

magnitude (Goulden et al., 2009). In Mongolia, drought frequency has increased and 

become widespread since the mid-1960s, affecting grasslands and creating problems in the 

farming sector (e.g., Natsagdorj, 2003). Drought has led to the occurrence of dzud, which 
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is harmful to the pastoral life of nomads and to the economy overall. Dzud is a natural 

disaster in which unusual weather and/or land-surface conditions (involving snow/ice 

cover and a lack of bare pasture) result in high livestock fatalities during winter and spring 

(Shinoda and Morinaga, 2005). 

A recent assessment found that 78.2% of Mongolia has been affected by moderate to 

very severe desertification, mainly identified based on soil erosion, due to overgrazing 

(Mandakh et a!., 2007). The increasing frequency of drought and increasing rate of 

desertification, in combination with the effects of climate change, have severely affected 

arid ecosystems in Mongolia, leading to degradation of grasslands. Nomadic herding 

families face limited access to adequate pasture resources due to a lack of wells, and the 

quality of much of the available pasture land has declined due to overgrazing, 

desertification, and drought caused by climate change. An estimated 12 million animals 

died during the severe droughts and dzuds that occurred between 1999 and 2002 (Batima 

eta!., 2008). 

Figure 1.6 Sheep Grazing in the Mongolian Grassland. 
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1.4 OBJECTIVES 

The present study aims at exploring soil moisture dynamics and its relationship with 

climate and vegetation activity in the cold, arid climate of Mongolia, with a focus on three 

vegetation zones: the forest steppe, steppe, and desert steppe. The study concentrated on 

soil moisture dynamics that act to mediate the climate-vegetation system. In this context, 

the specific objectives of the study were as follows: 

• To explore in detail the seasonal and spatial clranges in soil moisture, and the 

relationship among these changes, climatology, and plant phenology across 

Mongolia. A specific goal was to modify the water balance model for cold, arid 

regions by considering region-specific processes of winter soil-freezing and spring 

snowmelt. Twenty-year (1986-2005) soil moisture observations were used to 

validate the model (Chapter 2). 

• To study multi-decadal trends in soil moisture and to clarify the nature of temporal 

fluctuations in climate forcing and its long-term changes (Chapter 3). 

• To investigate the relationships between soil moisture and vegetation activity on 

seasonal and interannual timescales (Chapter 4). 

• To understand the memory mechanism of the soil moisture-vegetation system in a 

cold, arid climate and its temporal timescales (Chapter 5). 

The results of this dissertation are presented in six chapters. Chapter 1 provides a 

general introduction and describes the study area. Some of the work arising from this 

thesis is included· in two published papers and in two manuscripts submitted for 

publication. The work presented in Chapter 2 has been published in the International 

Journal of Climatology (Nandintsetseg and Shinoda, 2010a), while that in Chapter 3 has 

been submitted to the Journal of Arid Environment (Nandintsetseg and Shinoda, 2010b). 

The content of Chapter 4 has been published in SOLA (Nandintsetseg et al., 2010), and 

that of Chapter 5 presents the results of the paper submitted to the Journal of Geophysical 

Research, Atmospheres (Shinoda and Nandintsetseg, 2010). Finally, the main conclusions 

and future tasks are presented in Chapter 6. 
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CHAPTER2----------------------------

Seasonal Change of Soil Moisture: Its Climatology and 
Modeling* 

Abstract 

Mongolia has an arid and cold climate due to its geographical settings of inland and 
mid-latitude highlands. The soil moisture varies seasonally, depending mainly on the 
balance of precipitation and evapotranspiration as well as on winter soil-freezing and 
spring snowmelt. Soil moisture climatology (1986-2005) for Mongolia is presented with 
a focus on three vegetation zones; the forest steppe, steppe, and Gobi Desert. For this 
purpose, we used soil moisture observations based on the gravimetric method for the top 
50-cm soil layer from 26 grass-covered field sites during April-October of the 20-year 
period. In general, there was a latitudinal gradient in soil moisture content, with the 
southwestern soils drier than northeastern soils. The seasonal change in soil moisture was 
small and the seasonal pattern was similar throughout Mongolia. The seasonality was 
characterized by three major phases of the warm season; the spring drying, summer 
recharge, and autumn drying phases, although each phase differed somewhat in timing 
and length between zones. In the northernmost forest steppe zone, the recharge phase 
was longer than in the southern steppe and Gobi Desert zones, while the two drying 
phases were shorter in the forest steppe zone. This difference had a significant effect on 
the plant phenological timings of Stipa spp. and earlier in the forest steppe zone and later 
in the Gobi Desert zone. A simple water balance model was developed to examine the 
observed soil moisture dynamics, which implicitly simulated snow accumulation and soil 
freezing. The model simulated the observed seasonal and interannual soil moisture 
variations reasonably well (r = 0.75, p < 0.05). The results demonstrated that the three 
phases of seasonal change were produced by a subtle balance between precipitation and 
evapotranspiration. This model will provide a useful tool for a reliable and timely 
monitoring of agricultural drought for decision-makers and herders in Mongolia. 

*This chapter is edited version of: 
Banzragch Nandintsesteg and Masato Shinoda. 2010. Seasonal change of soil moisture in Mongolia: its 
climatology and modeling. International Journal of Climatology. 
DOl: 10.1002/joc.2134. Copyright© 2010 Royal Meteorological Society. 
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2.1 INTRODUCTION 

Recent widespread and intense droughts are likely manifestations of large-scale 

climate change, including global warming. Droughts have become widespread in the 

Northern Hemisphere, including Asia, and notably in Mongolia (e.g. Dai et al., 1998; 

Barlow et al., 2002; Hoerling and Kumar, 2003; Lotsch et al., 2005). In Mongolia, the 

trend of increasing drought frequency has become increasingly important for animal 

husbandry and pasturing (e.g. Natsgadmj, 2003; Batima et al., 2008). 

The continental arid climate in Mongolia creates an extensive area of steppe that is 

the main source of forage for livestock, and pastoral animal husbandry is the country's 

major agricultural sector. The effect of drought on Mongolian grasslands has been 

identified quantitatively (e.g. biomass) (Miyazaki et al., 2004; Zhang et al., 2005; 

Munkhtsetseg et al., 2007; Shinoda et al., 2009) and also qualitatively in aspects such as 

phenology (Kondoh et al., 2005; Shinoda et al., 2007). Soil moisture plays an important 

role in many complex land-surface processes and their interactions with the atmosphere, 

acting as a bridge between deficits in precipitation (meteorological drought) and failures 

of plant growth (agricultural drought). It has been found that soil moisture deficits limit 

the growth of pasture in Mongolia (Miyazaki et al., 2004; Zhang et al., 2005; Nakano et 

al., 2008; Shinoda et al., 2009). Therefore, accurate assessment and modeling of soil 

moisture in these pasture lands are required for reliable and timely monitoring of 

agricultural drought for decision-makers and herders. 

Historical records of soil moisture content measured in situ are available for few 

regions in the world and often represent very short periods (Robock et al., 2000); 

however, unique long-term, updated measurements are available for Mongolia. Several 

studies have investigated the time-space variability of soil moisture across Mongolia 

using datasets from the Global Soil Moisture Data Bank (Robock et al., 2000). In 

Mongolia, the seasonal variations in soil moisture are small and vertical profiles are 

almost constant with depth (Robock et al., 2000; Ni-Meister et al., 2005). Thus, soil 

moisture in Mongolia is characterized by relatively small temporal variability. However, 

subtle seasonal changes can have a significant impact on vegetation dynamics, controlling 

plant growth and phenology (e.g., Shinoda et al., 2007). 

With this background in mind, the present study aimed to explore the detailed 

seasonal changes in observed and estimated soil moisture across Mongolia, focusing on 
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three vegetation zones; forest steppe, steppe, and Gobi Desert. In this analysis, a unique 

long-term, updated dataset for 26 stations during 1986-2005 was used to present soil 

moisture climatology. Moreover, we produced a water balance model for extratropical 

regions such as Mongolia by considering region-specific processes of winter soil-freezing 

and spring snowmelt. The long-term continuous observations for Mongolia are useful for 

the validation of soil moisture modeling. 

2.2. MATERIALS AND METHODS 

2.2.1 Data 

The soil moisture dataset used in this paper was obtained from the Institute of 

Meteorology and Hydrology of Mongolia (IMH). Soil moisture observations were started 

in Mongolia more than 20 years ago (Erdenentsetseg, 1996). We chose 26 stations in 

grass-covered fields for the entire period of 1986-2005 (Table 2.1), while the periods of 

available soil moisture data differed from station to station. To study natural conditions of 

soil moisture on a consistent basis, only data collected at grass-covered field sites were 

analyzed. In general, the dominant soil texture in the top 50-cm layer at the selected 

stations was sandy. 

The northern part of Mongolia is covered by forested mountain ranges with a dry 

sub-humid climate, whereas the southern part encompasses the Gobi Desert at lower 

elevations with a drier climate (Batima and Dagvadmj, 2000). This climatic pattern as a 

function of latitude characterizes the vegetation cover in the zones. These zones form 

belts of vegetation at different altitudes (from mountains to plains) and latitudes (from the 

north to south). The locations of the soil-moisture sampling stations and distribution of 

the seven natural zones are shown in Figure 2.1. For the convenience of discussion, the 

locations of those stations are categorized, into three zones; forest steppe, steppe, and 

Gobi Desert. The vegetation cover of the forest steppe, steppe, and Gobi Desert is 53, 25, 

and 15 %, respectively (Gunin eta!. 1999). 

At all stations, soil moisture observations were conducted on the 8th, 18th, and 28th of 

each month during the warm season (April-October) using the gravimetric method. Soil 

moisture was not measured in winter (November-March) as the soil was frozen. Soil 

moisture was measured in 11 vertical layers; 5-cm layers from 0-10 em and 1 0-cm layers 

from 10-100 em. Most of the stations had no observations beneath 50 em depth, and thus 

only data for the 0--50-cm soil layer were analyzed. 
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Table 2.1. Soil moisture observation stations with information on location, elevation, soil type, 

wilting point (Wwp), and field capacity (Wrc) of the 0-50 em soil layer. 

Station Lat. Long. Elev. Natural Soil Wwp Wrc 

name ("N) eE) ( m) zone type (mm) (mm) 

Ulgii 48.97 89.97 1714 Gobi desert Brown, sandy 6 62 

Ulaangom 49.80 92.08 934 Gobi desert Light-brown, sandy 13 70 

Khovd 48.02 91.65 1405 High mountain Light-brown, sandy 6 62 

Uliastai 47.75 96.82 1751 High mountain Dark-brown, coarse silt 15 104 

Tosontsengel 48.70 98.28 1724 High mountain Dark-brown, coarse silt 19 89 

Altai 46.40 96.25 2147 High mountain Light-brown, sandy 13 80 

Tsetserleg• 47.45 101.47 1695 Forest steppe Dark-brown, medium silt 19 89 

Murun• 49.63 100.17 1288 Forest steppe Dark-brown, medium silt 19 89 

Khutag• 49.37 102.70 938 Forest steppe Dark-brown, medium silt 25 129 

Bulgan 48.80 103.55 1210 Forest steppe Dark-brown, medium silt 25 129 

On on 49.12 112.70 896 Forest steppe Dark-chestnut, coarse silt 19 89 

Darkhan 49.47 105.98 709 Steppe Dark brown, sandy 17 104 

Ugtaal 48.27 105.42 1160 Steppe Dark-brown, sandy 19 89 

Zuunmod 47.72 106.95 1529 Steppe Dark-brown, coarse silt 25 140 

Maanit 47.30 107.48 1427 Steppe Brown, sandy 19 89 

Undurkhaan 47.32 110.67 1028 Steppe Brown, sandy 19 89 

Choibalsan• 48.07 114.60 759 Steppe Dark-brown, sandy 15 79 

Khalkhgol 47.62 118.52 688 Steppe Dark-chestnut, coarse silt 28 104 

Bayankhongor 46.13 100.68 1860 Steppe Light-brown, sandy 16 104 

Arvaikheer• 46.27 102.78 1831 Steppe Brown, coarse silt 17 80 

Baruun-urt• 46.68 113.28 986 Steppe Dark-brown, sandy 25 79 

Mandalgobia 45.77 106.28 1398 Gobi desert Light-brown, sandy 16 79 

Sainshand• 44.90 110.12 915 Gobi desert Desert- brown, sandy 13 80 

Saikhan 44.08 103.55 1302 Gobi desert Desert- brwon, sandy 22 80 

Dalanzadgad• 43.58 104.42 1469 Gobi desert Desert- brown, sandy 13 59 

Ulaangom 49.80 92.08 934 Gobi Desert Light-brown, sandy 13 70 

The stations are listed in order from north to south and west to east. The stations are also shown in Figure 2.1. 
• selected the stations to represent each of the natural zones 

This soil layer includes the major rooting zone of the grasses that dominate most of 

Mongolia. The data are expressed as plant-available soil moisture (mm) in the upper 0-50 

em soil layer and were calculated as the actual total soil moisture minus the moisture 

content at the wilting point. We also used data of soil hydraulic properties such as wilting 

point (Wwp) and field capacity (Wfc) (Table 2.1) from the IMH. The field measurements of 

Wwp and Wfc were based on the methods described by Kachinsky (1965). In addition, 

precipitation, air temperature snow depth data for the 26 stations from IMH were used to 

investigate the soil moisture dynamics. Furthermore, the phenology data of Stipa spp. 
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Figure 2.1 Locations of soil moisture measuring stations and natural zones in Mongolia. 

were used; this is known as one of the dominant species representing the Mongolian 

steppe. The phenology data, which were taken with in-fence observations that had not 

been influenced by grazing, are useful for studying the relationship between the natural­

state vegetation, climate and soil environments. In this analysis, used is the data for the 

phenological timing when more than half of the samples of Stipa spp. show a 

phenological phenomenon such as emergence (Em), heading (Hd), flowering (Fl), 

maturity (Mt), and senescence (Ss). The detailed information on the data is given in 

Shinoda et a!. (2007). 

Climate data (precipitation, temperature, and snow depth) underwent a series of data 

quality evaluation procedures at the IMH to correct or remove errors. The actual quality 

control (QC) included numerical formulas or visual inspections of time series that 

considered three basic statistical relationships: (1) relationships of data elements to 

themselves (e.g. outliers relative to long-term means); (2) relationships to nearby station 

data (e.g. neighbor checks); and (3) relationships to some other parameters e.g., sea level 

pressure to station pressure (Jambaajamts and Norjmaa, 1997; Richard and Masika, 2002). 

In the present study, QC of time-series of the observed soil moisture data was conducted 

to exclude outliers; we eliminated the soil moisture values having an increase that 

exceeded the precipitation amount during a 1 0-day period. 
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2.2.2 Soil Moisture Modeling 

In the present study, we modified the one-layer water balance model developed for 

low-latitude arid regions by Yamaguchi and Shinoda (2002) to represent the extratropical 

characteristics (such as seen in Mongolia) of winter soil freezing and spring snowmelt. 

This model, which is well known as the "bucket model", was widely used for general 

circulation models (Manabe, 1969) and this has also been used for an operational 

monitoring of soil moisture in many regions of the world (e.g. Marengo et al., 1996; 

Huang et al., 1996; Yeung, 2005; Yamaguchi and Shinoda, 2002; Shinoda and 

Yamaguchi, 2003). We applied this water balance model to the 20-year (1986-2005) soil 

moisture observations of the top 50-cm soil layer for 26 Mongolian stations. The model 

calculates absolute plant available soil moisture content using only daily precipitation (P) 

and air temperature (1) data with a limited number of measured soil parameters, as 

expressed by the following equations: 

dWm{t) = p
7
(t)- E(t) + 

R = W-Wfc 
R =0 

for 
for 

- R(t) 

W>Wfc 
::S Wte 

(2.1) 

(2.2) 

where Wm, the plant-available soil moisture, is expressed as the actual soil moisture 

minus the moisture content at the wilting point (mm) that exists from the surface to 50-

em depth; tis time (days); Pr is daily rainfall (mm); M is melt of the snow (expressed as 

snow water equivalent, mm) that is accumulated when air temperature is equal to or 

below 0°C. If air temperature is above 0°C, the accumulated snow melts. E is 

evapotranspiration (mm); and R is the combination of surface runoff and deep drainage 

(mm). In the model, the Pr is considered occurring when the air temperature was above 

0°C. The soil is assumed to have one layer with field capacity Wrc· For this model, if W> 

Wrc, the excess is assumed to be R (Eq. 2.1). In arid regions such as Mongolia, these two 

factors are generally negligible as described by Yamanaka et al. (2007). Moreover, a 

negligible small amount of deep percolation was commonly found within natural 

vegetation areas of various arid regions where the annual precipitation was less than 300 

mm (Scanlon et al., 1997). In Mongolia, the annual precipitation is approximately 200 

mm that is almost exactly matched by the annual evapotranspiration (Robock et al., 2000). 

Most of the precipitated water on the grassland quickly returns to the atmosphere from 

17 



the upper layers of the soil via evapotranspiration and the fact that precipitated water 

never infiltrates to depths below 20-cm (Yamanaka et al., 2007). Thus, we consider that 

although the treatment of surface runoff and deep drainage in our model is simplified, this 

would not cause a serious error in the soil moisture estimation. The evapotranspiration 

(E) varies with W such that: 

E=PETW_W 
W*-­T 

(2.3) 

where r is interpreted as a "residence time" or "turnover period" that signifies the time 

required for a volume of water equal to the annual mean of exchangeable soil moisture to 

be depleted by evapotranspiration. W* is a moisture storage capacity ofthe 0-50 em layer 

soil (mm). The actual value of -r is a function of soil properties, including the Wwp, Wrc, 

and the potential evapotranspiration rate (PET) with higher PET values resulting in lower 

residence times. In addition, the parameters of Wwp and Wrc used in this study were 

measured in the grass-covered field, thus including some information of not only soil 

properties but also of the root system (implicitly). Yamanaka et al. (2007) showed the 

value of -r ranges from 20 to 26 days, suggesting the precipitated water on the grassland in 

Mongolia quickly returns to the atmosphere via evapotranspiration. Following Serafini 

and Sud (1987), we calculated the value -r such that: 

where 

and 

y exp(.AWrc) - 1 
T = -ln----;......­

APET exp(A.Wwp) - 1 

a 
l = W, - W..vp 

fo 

y = '1- exp (-a) 

(2.4) 

(2.5) 

(2.6) 

In the above equation, a accounts for variations in vegetation type and Minths and 

Serafini (1984) determined it based on the experimental relationship between the actual 

and potential evapotranspiration. Serafani and Sud (1987) suggested that a should be 

adjusted to account for the variations in vegetation type; a = 16-20 may be suitable for a 
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forest, and a= 2 may be appropriate for a desert. However, Mintz and Serafani (1984), 

and Serafani and Sud (1987) suggested using a = 6.81 for most vegetation types 

everywhere in the world. Thus, a value of 6.81 was used in this study. The PET depends 

mainly on the net radiative heating on the surface. However, long-term measurements or 

sufficiently accurate calculations of the net radiation at the surface are inadequate or 

absent over large areas of Mongolia. With this background, we estimate PET from the 

observed air temperature and duration of sunlight using the Thornthwaite method (1948). 

The PET was calculated on a daily basis with the Thornthwaite (1948) formula as 

modified by Mintz and Walker (1993): 

0 for T< 0°C 

PET = { [ 0.553 (1~T) a] for 0 ~ T ~ 26.5 °C 

(2.7) 
h 

( -13.86 + 1.075T- 0.0144T 2
)-, for T> 26.5 °C 

12 

12: . _ (Tm) 1.514 

I= I> with and L._ = 0 
(2.8) 

l.--
5 

1 

a= (6.75 X 10-7 J 3) _..:. (7.71 X 10-5! 2) + (1.79 X 10-21) 0.492 (2.9) 

where T is the daily mean air temperature ec), T m is the monthly mean air temperature 

(°C), h is the length of daylight (hours), and I is the annual heat index (sum of the 12 

monthly heat indices i). Worldwide, this method has been used to calculate soil moisture 

indexes (Palmer, 1965, 1968) and derive global soil moisture fields (Mintz and Serafani, 

1984). The wide use ofthis method is due to the simplicity ofthe calculation, using only 

surface air temperature. Yamaguchi and Shinoda (2002) examined the applicability of 

this method to the semi-arid Sahel region, demonstrating that the Thornthwaite PET 

coincided fairly well with the Penman PET during May-October when the daily air 

temperature was below 26.5°C. However, the Thornthwaite PET reached the maximum 

during March-May and October-November, which is the nature of this formula when the 

air temperature was above 26.5°C (Yamaguchi and Shinoda, 2002). In Mongolia, the air 

temperature was generally below 26.5°C all year around (Figure 2.6), making the 

Thornthwaite method a reliable choice in this country. The effectiveness of this model 

was validated by comparison with the 20-year soil moisture observations in Section 3.3. 
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2.3 RESULTS 

2.3.1 Seasonal change in soil moisture 

The climatological air temperature (1986-2005) in Mongolia averaged over 26 

stations revealed a substantial seasonal change; approximately 11.5°C during the warm 

season (April-October) and approximately -13.7°C during the cold season (November­

March); the annual precipitation during this period was about 200 mm (Figure 2.2, Table 

2.2). About 80% of the total precipitation was during April-September, of which 50-60% 

was in July-August. There was snow cover from mid-October to the end of April. Over 

Mongolia, the yearly maximum snow depth (3.4 em) is in January (Morinaga et al., 2003). 

In general, the snow ablation period is March, coinciding with that observed at similar 

latitudes in other parts of Eurasia (Shinoda, 2001). In mid-March, snow depth decreases 

rapidly when the daily mean air temperature exceeded 0°C (Figure 2.2). 

The climatological seasonal changes in the 1 0-day plant-available soil moisture in 

the upper 0-50 em layer of soil during the warm season are shown in Figure 2. During 

winter, we assumed that soil water was frozen, thus giving a constant value as shown by 

the dashed line. This assumption is based on the estimations of the depth of soil freezing 

(1.6-1.7 m for the Gobi Desert and 3.2-3.5 m for the forest steppe) during the mid 

October-early April (Jambaajamts, 1989). The increase in spring soil moisture was 

related not only to the melting of frozen water stored in the soil in the preceding autumn, 

but also to the snowpack accumulated over winter. Soil moisture appeared to increase 

slightly during early spring (early April) relatively to that at the time of soil freezing in 

autumn (late October). This increase (7.0 mm) coincided generally with the snowmelt 

water (9.0 mm), if we assumed the Mongolian average snow-density was 0.20 g/cm3 

(Badarch, 1987). These two factors (frozen soil water and snowpack) act as a soil 

moisture 'memory' during the cold season and when they thaw the retained soil moisture 

forms an initial condition for the following warm season (Shinoda, 2001; Shinoda, 2005). 

Subsequently, the soil moisture was directly affected by rainfall and evaporation during 

the warm season. The seasonal soil moisture change was small (:::::; 10 mm), although the 

interannual variation was large as shown by the standard deviation (Figure 2.2). 

There were three seasonal phases of soil moisture: the spring drying (Phase 1), the 

summer recharge (Phase II), and autumn drying (Phase III). The physical processes that 

govern the soil moisture changes at each phase are examined in the following. 
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Figure 2.2 The climatological (1986-2005) seasonal changes of 1 0-day precipitation, 
temperature, soil moisture, and snow depth, averaged over 26 stations in Mongolia. The left and 
right axes of the upper panel correspond to precipitation (bars) and temperature (line) and 
phenological phenomena (vertical dashed lines, Em to Ss), respectively. The left axis and thick 
line of the bottom panel correspond to plant-available soil moisture in the 0-50-cm layer (20-
year average with standard deviation), along with three soil moisture phases (I-III). The right 
axis and bars correspond to snow depth. They-axis on the left (soil moisture) corresponds to that 
on the right (snow depth) with an assumption of snow density of 0.20 g/cm3 (Badarch, 1987). 

Phase I was between April (when daily air temperature was> 0°C) and May, and this 

trend continued until the onset of the rainy season. During this period, increased 

temperature leads to enhanced evaporation and hence depletion of soil moisture. This 

decrease in soil moisture will be further examined by using the soil moisture modeling 

(Section 2.3.3). Phase II occurred between late May and late July. This phase coincided 

with the replenished soil moisture from summer precipitation, with the seasonal 

maximum of soil moisture in late July. It was clear that in summer the variability of soil 

moisture was about twice (SD;:::::: 20 mm) that during the other seasons (SD;:::::: 12 mm at 
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the beginning of April, and SD ~ 10 mm at the end of October). Shinoda et al. (2007) 

showed that the break of rainy season caused a similar reduction in soil moisture around 

mid-July in Mongolia. However, this was not clearly shown on a country-wide scale, 

probably because the averaging procedure over 20 years and 26 stations masked a clear 

timing of the break as seen in the zone scale (Section 2.3.2). Phase III was in August­

October (prior to soil freezing), and was characterized by decreased soil moisture due to 

decreased precipitation. 

In general, the beginning of plant emergence and senescence occurred in early May 

and late September, respectively (Figures 2.2 and 2.4). Phase I corresponds to the pre­

growth period of Stipa spp. The emergence stage of Stipa spp. occurred during the 

transition from Phases I to II, that is, the emergence coincided with the change in trend of 

soil moisture from decrease to increase with a background of an increasing temperature 

trend (Figure 2.2). This is consistent with the findings of Shinoda et al. (2007), who 

highlighted the role of the onset of the rainy season in the emergence. The heading 

occurred at the end of Phase II, when the available soil moisture reached a value near the 

yearly-maximum due to the increased precipitation. As explained by Shinoda et al. 

(2007), the occurrence of the break or end of the rainy season may trigger a switch of the 

phenological phase from the vegetative growth to reproductive phase (i.e., seed 

production). The plant maturity and senescence occurred during Phase III when the soil 

moisture declined. 

2.3.2 Spatial variations in soil moisture 

The climatological (1986--2005) distributions of temperature, precipitation and soil 

moisture based on the 26 stations during the warm season are shown in Figure 2.3. There 

was a latitudinal gradient in soil moisture, with the southwestern (Gobi Desert) soils drier 

than the northeastern (forest steppe and steppe) soils. This soil moisture gradient roughly 

corresponded to the temperature and precipitation gradients. With the spatial patterns of 

precipitation/temperature and soil moisture in mind, we characterized the seasonal 

changes of soil moisture and their relationships to the phenological timings of Stipa spp. 

for the three zones (Figure 2.4). In this case, three stations representing climatological 

characteristics were selected in each zone (Table 2.1 ). Although the three typical phases 

of soil moisture were observed in all the three zones, the phases differed somewhat in 

timing and length between zones. There were some systematic differences in soil 
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moisture phases among the three zones (Figure 2.4d). Since the forest steppe zone was 

characterized by higher precipitation and lower evapotranspiration than the steppe and 

Gobi Desert zones, the Phase II was longer and the drying phases (Phases I and III) were 

shorter than those in the other two zones. 

On a climatological basis, soil moisture values differed significantly (p < 0.05) between 

the three zones, as the result of the significant difference in precipitation and temperature 

(Table 2.2). Soil moisture in the forest steppe zone ( 46 mm and 48% of Wrc) was higher 

than the Mongolian mean (30 mm and 33% of Wrc); however, in the steppe zone, soil 

moisture was very near to the Mongolian mean. In the Gobi Desert zone, soil moisture 

(16 mm and 22% of Wrc) was below the Mongolian mean and close to the wilting point 

(water stressed conditions for plants) throughout the year. The soil moisture (and its 

standard deviation) in the forest steppe was greater than that in the steppe and Gobi 

Desert zones (Figure 2.4 ). Over the three zones, the soil moisture content at the yearly 

maximum in July depended strongly upon the summer precipitation, whereas the 

secondary maximum in early April depended on the yearly maximum snow depth in 

January. The early spring increases in soil moisture (7.0, 5.0, and 3.0 mm) were almost 

equal to the respective snowmelt water amounts (8.0, 6.0, and 4.0 mm) when a snow 

density of 0.20 g/cm3 (Badarch, 1987) was assumed. As shown in Figure 2.4, in 

conjunction with the seasonal evolution of Phase II (earlier in the forest steppe), the 

occurrences of each phenological stage in the steppe and Gobi Desert zones lagged 

behind that in the forest steppe zone by approximately 5 and 10 days, respectively. This 

southward time lag in the timings is related to the phenological phenomenon that the 

lengths of two periods from emergence to heading (approximately 61 days), and from the 

emergence to the maturity (approximately 108 days) coincide roughly with each other. 

This may be a common physiological and phenological feature of the same genus. The 

emergence tends to occur around the transition from Phase I to II in all the zones (earlier 

in the forest steppe and later in the Gobi Desert). On the other hand, the timings of the 

heading exhibit a southward shift from the end of Phase I to the transition from Phase I to 

II. Going into the details for the steppe and the Gobi Desert zones, it is possible that Stipa 

spp. has naturally adapted to such a rainy season's pattern by completing the vegetative 

growth in the rainy season near its break around mid-July, and shifting to the 

reproductive phase as pointed out by Shinoda et al. (2007). The rain break, 

climatologically phase-locked around mid-July over Mongolia, is associated with a 

barotropic ridge embedded in the stationary Rossby wave of the westerlies (Iwasaki and 
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Nii, 2006). This break was not found in the forest steppe zone probably due to the 

procedure of averaging the three stations for each zone. 

Table 2.2. Average (AVG) and standard deviations (SD) of temperature, precipitation and soil 
moisture over the entire Mongolia and in three natural zones during the warm season (April­
October) during 1986-2005. 

Temperature eC) 

Zone (no. of stations) 
AVG SD 

Over Mongolia (26) 11.4 6.6 
Forest steppe (3) 10.3 6.1 

Steppe (3) 12 6.7 

Desert steppe (3) 14.2 6.7 

(a) Temperature 

l:OO,. 

Precipitation (mm) 

AVG SD 

200 7 
271 10 

199 8 

118 4 

Soil moisture (mm) 

AVG 

29.8 
45.8 

25.7 

16.1 

<20.0mm 
20.1 - 30.0 mm 
30.1 - 40.0 mm 
40.1 - 50.0 mm 

>50.1 mm 

SD 

3.2 

5.7 

3.5 

2.9 

150-200mi 
<150 ffil 

Figure 2.3 Spatial patterns of climatological (1986-2005) temperature, precipitation and the plant­
available soil moisture averaged during the warm season. The patterns of precipitation and air 
temperature were based on the 26 stations data during the warm season (April to October) of 1986-
2005. 
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Figure 2.4 The same as in Figure 2.2 with the exception for each of the natural zones: forest steppe 
(a), steppe (b) and Gobi Desert (c). Figure 2.4d shows a comparison of soil moisture during April­
October among the three zones. 

2.3.3 Soil moisture estimation 

In general, the soil moisture model performed reasonably well in simulating the 

seasonal and interseasonal variations in soil moisture. The correlation coefficient between 

the estimated and observed soil moisture was 0.75, and was statistically significant (p < 

0.05), with the root-mean-square error (RMSE) of2.4 mm (Figure 2.5). 
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Figure 2.5 Scatter diagram between the observed 1 0-day soil moisture 
and estimated soil moisture by the water balance model for 26 stations 

during 1986-2005. 

The seasonal cycles of temperature and each water balance variable, i.e. precipitation, 

observed and estimated soil moisture, potential and actual evapotranspiration, for the 

entire Mongolia and three vegetation zones are presented in Figure 2.6. Three stations 

were selected for each of the three zones (Table 2.1 ). In Section 2.1, we identified the 

three seasonal phases of soil moisture during the warm season; these three phases were 

clearly simulated (Figure 2.6). Generally, the annual precipitation (215 mm) was almost 

exactly matched by the annual evapotranspiration (208 mm) in Mongolia, about 95% of 

the total water was evapotransporated from the 0-50 em soil layer which is consistent 

with the studies of Robock et al. (2000), Zhang et al. (2005) and Li et al. (2006). That is, 

precipitation in the warm season is likely to evaporate quickly due to the high evaporative 

potential. The estimated soil moisture slightly increased in early spring (early April) due 

to spring snowmelt when daily maximum temperature was > 0°C. The snow depth in 

Mongolia was small (Figure 2.2), and had a minor influence on the spring increase in soil 

moisture (4.0 mm). During Phase I, the estimated soil moisture decreased rapidly until the 

onset of the rainy season (late May) because evapotranspiration exceeded precipitation. 

During Phase II (from early June), soil moisture continued to increase and reached a peak 
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between late July and early August because precipitation exceeded evapotranspiration. 

Phase III occurred when precipitation was smaller than evapotranspiration from late 

August to mid-October. After mid-October, soil moisture was assumed constant when the 

daily mean temperature was < 0°C. The correlation coefficients between the observed and 

estimated soil moisture were for the forest steppe 0.59, for the steppe 0.81, and for the 

Gobi Desert 0.73, respectively, with their RMSEs of 4.8 mm, 2.2 mm, and 2.0 mm. The 

model simulated the observed soil moisture variations reasonably well for the steppe and 

Gobi Desert zones. As for the forest steppe zone, a densely vegetated area, there were 

some underestimates and overestimates by the model depending on the seasonal phases; 

the underestimates were found from the end of Phase I to Phase II, whereas the 

overestimates were seen in Phase III. This probably resulted from the model formulation 

that did not explicitly include the vegetation effect on soil moisture. 

2.4 DISCUSSION AND CONCLUSIONS 

In the present study, we comprehensively analyzed climatological seasonal changes 

in root-zone plant available soil moisture for the entire Mongolia and three vegetation 

zones. The long-term, quality-controlled soil moisture data enabled us to document three 

phase of soil moisture during the warm season; spring drying, summer recharge, and 

autumn drying. Moreover, to examine the underlying mechanisms that created the three 

phases, we modified a simple water balance model for arid and cold region such as 

Mongolia by considering the soil freezing and snow melting. In general, there was a 

latitudinal gradient in soil moisture, with the southwestern soils drier than northeastern 

soils. The seasonal change in soil moisture was small(~ 10 mm), which is consistent with 

the studies ofRobock et al. (2000) and Ni-Meister et al. (2005). 

The seasonal pattern was similar throughout Mongolia. Moreover, we documented 

three distinct phases and their relationships to plant phenological phenomena of Stipa spp. 

that represents the dominant species in the Mongolian steppe. The three phases were 

simulated by soil moisture modeling during the warm season; these phases of the 

seasonal change were produced by a subtle precipitation-evapotranspiration balance, 

although each phase differed somewhat in timing and length between zones. In the 

northernmost forest steppe zone, the recharge phase was longer than in the southern 
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Figure 2.6 The seasonal changes of 10-day air temperature (1) and water balance variables: 
precipitation (P), the observed (circle) and estimated (solid line) soil moisture (W), potential (PET) 
and actual (E) evapotranspiration averaged over all26 stations of Mongolia (a) and three stations for 
each of the vegetation zones (b-d) during 1986-2005. Three soil moisture phases (I-III) are 
denoted. The daily soil moisture estimations were averaged over 1 0-day intervals. 

steppe and Gobi Desert zones, whereas the two drying phases were shorter in the forest 

steppe. Over Mongolia, the available soil moisture was about 30% of the soil field 

capacity during the warm season, while in the Gobi Desert zone, the available soil 

moisture was close to the wilting point throughout the year. This difference is likely to 

have a significant effect on the vegetation cover between the three zones as mentioned 

below. It has been found that soil moisture condition in the early growth stage impacts 
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critically on the plant phenology in Mongolia (Shinoda et al., 2007). In the present study, 

we showed that the plant (Stipa spp.) emergence and heading timings occurred around the 

transition from Phase I to II and the end of Phase II, respectively. That is, the emergence 

coincided with the change in trend of soil moisture from decrease to increase with a 

background of an increasing trend in temperature. The heading occurred at the end of 

Phase II, when the available soil moisture reached a value near the yearly-maximum due 

to the increased precipitation. The yearly-maximum vegetation cover, observed at the end 

of the growing season (Phase III) ranges from 15% (for the Gobi Desert) to 53% (for the 

forest steppe) (Gunin et a/., 1999). Zhang et a/. (2005) estimated that the partition of 

transpiration in evapotraspiration was 22% in the Mongolian grassland with vegetation 

cover ranging from 38-60% during the grass growth. This result implies that the 

evaporation from the soil is likely a determinant factor contributing to the total 

evapotranspiration and the influence of transpiration is relatively small in this sparsely 

vegetated area. 

In general, our model simulated the seasonal and interannual variations in the 

observed soil moisture reasonably well (r = 0.75, p < 0.05), providing a basic method for 

the agricultural drought monitoring in Mongolia. The advantage of the model proposed in 

this study is a simple calculation that uses daily data (such as precipitation and 

temperature) observed operationally for long-term spans. Future studies should 

investigate interannual variations of soil moisture using the water balance model in this 

regwn. 
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CHAPTER3----------------------------

Abstract 

Multi-decadal Trend and Memory of Modeled Soil 
Moisture* 

Drought has become widespread since the middle 1950s throughout the Northern 
Hemisphere, affecting the Mongolian steppe and pastureland used for livestock. This 
situation has motivated us to assess multi-decadal trends and memory of soil moisture in 
Mongolia, which plays a crucial role in determine vegetation activity. We estimated 
daily soil moisture during 1961-2006 for three vegetation zones (forest steppe, steppe, 
and desert steppe) using a water balance model. The model performed reasonably well in 
simulating seasonal and interannual variations in observed soil moisture; and on an 
interannual basis, the modeled soil moisture was more strongly correlated with the 
observed soil moisture (r = 0.91, p < 0.05) than the Palmer Drought Severity Index (r = 

0.65, p < 0.05). All three vegetation zones showed a decreasing trend in soil moisture 
during 1961-2006 due to decreased precipitation and increased potential 
evapotranspiration, although the drying trend was significant (p < 0.05) only in the forest 
steppe. In conjunction with this trend, the summer phase of recharging soil moisture was 
shortened in all zones during the analysis period, whereas the spring and autumn drying 
phases were prolonged. A comparison between years with wet and dry soil revealed that 
soil moisture anomalies were most manifested during June-August due to large 
precipitation and evapotranspiration anomalies, which were maintained throughout the 
freezing of winter into spring. In addition, autocorrelation analysis of Wm for the forest 
steppe zone showed that during the autumn and winter, the temporal scales was 6-7 
months, larger than during spring and summer (1.8-3 months). These findings indicate 
that in cold, arid regions such as Mongolia, W m acts as an efficient memory of P 

anomalies via freezing of the soil. 

*This chapter is edited version of: 
Nandintsesteg Band Shinoda M. 2010. Multi-decadal trend and memory of modeled soil moisture in 
Mongolia. submitted to Journal of Arid Environments. 
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3.1 INTRODUCTION 

A strong drying trend has been observed over land areas in the Northern Hemisphere 

since the middle 1950s, especially over northern Africa, Canada, Alaska, and Eurasia, 

including Mongolia (Dai et al., 2004; IPCC, 2007). Traditional Mongolian animal 

husbandry is closely associated with a nomadic pastoralism with seasonal migrations 

dependent on natural climate conditions. In Mongolia, the increased frequency of drought 

has led to problems in the farming of livestock and pasturing (e.g., Natsagd01j, 2003). 

The arid continental climate in Mongolia has led to the development of an extensive area 

of pastureland that is the main source of forage for livestock. The livestock industry has 

always been affected by climatic variability, such as summertime drought and severe 

winters (Natsagdorj, 2003). 

Soil moisture plays an important role in many complex land-surface processes and 

their interactions with the atmosphere, acting as a bridge between deficits in precipitation 

(meteorological drought) and failures of plant growth (agricultural drought). The amount 

of soil moisture in the root zone is a governing factor of vegetative growth via the 

availability of water for transpiration; thus, it could be used as a direct indicator of 

agricultural and pasture drought (Keyantash and Dracup, 2002). A deficit in soil moisture 

limits plant growth in arid regions such as Mongolia, where drought originates from 

persistent large-scale circulation anomalies and resulting below-average precipitation. 

Meteorological drought (a deficit in precipitation) may lead to soil moisture deficiency in 

the root zone and ultimately to plant (physiological) drought (Shinoda and Morinaga, 

2005). The effects of drought on Mongolian grasslands have been both quantitative, such 

as decreases in phytomass (e.g., Miyazaki et al., 2004), and qualitative, such as changes 

in phenology (Shinoda et al., 2007) and species composition (Shinoda et al., 2010). 

Therefore, it is vital to provide timely and reliable assessments of soil moisture in 

Mongolia to assist in pasture management. 

Drought can be classified based on its severity, frequency, duration, and spatial 

extent in terms of a region- or application-specific index. Although a number of drought 

indices have been proposed and applied in various parts of the world (Wilhite et al., 

2000), few studies have used ground-observed soil moisture as an indicator of drought, 

due to a lack of relevant observation data (Robock et al., 2000). Given this background, 

we investigated the multi-decadal trend in modeled soil moisture in Mongolia during 
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1961-2006, as validated using 20-year (1986-2005) observations. These unique long­

term observations available for Mongolia proved to be invaluable in the present analysis. 

We modified a water balance model proposed for arid and cold regions such as Mongolia 

by taking into account soil freezing and snowmelt. The model is designed to simulate 

daily soil moisture content based on widely available daily meteorological data. The 

analysis focused on three vegetation zones in Mongolia; forest steppe, steppe, and desert 

steppe. 

3.2 DATA AND METHODS 

3.2.1 Datasets 

The soil moisture dataset used in this study was obtained from the Institute of 

Meteorology and Hydrology of Mongolia (IMH). We analyzed data collected at nine 

stations distributed widely across the Mongolian steppe, including within the major 

vegetation zones of forest steppe, steppe, and desert steppe (Figure 3.1 and Table 3.1). At 

each station, observations of soil moisture (W0 ) were conducted on the 8th, 18th, and 28th 

of each month during the warm season (April-October) using the gravimetric method. 

Soil moisture was not measured in winter (November-March) because the soil was frozen. 

Soil moisture data were collected from the upper 50-cm of the soil layer in fenced, 

ungrazed pastures. This soil layer includes the major rooting zone of the grasses that 

dominate grasslands in Mongolia. 

Table 3.1 Nine soil moisture observation stations with information on location, elevation, soil 
type, wilting point (Wwp), and field capacity (Wrc) of the 0-50 em soil layer. The stations are listed 
in order from north to south and west to east. The stations are also shown in Figure 3.1. 

Lat. Long. Elev. Wwp Wrc 
Station Natural zone Soil type 

CON) COE) (m) (mm) (mm) 

Tsetserleg 47.45 101.47 1695 Forest steppe Dark-brown, medium silt 19 89 

Murun 49.63 100.17 1288 Forest steppe Dark-brown, medium silt 19 89 

Khutag 49.37 102.70 938 Forest steppe Dark-brown, medium silt 25 129 

Choibalsan 48.07 114.60 759 Steppe Dark-brown, sandy 15 79 

Arvaikheer 46.27 102.78 1831 Steppe Brown, coarse silt 17 80 

Baruun-Urt 46.68 113.28 986 Steppe Dark-brown, sandy 25 79 

Mandalgobi 45.77 106.28 1398 Desert steppe Light-brown, sandy 16 79 

Sainshand 44.90 110.12 915 Desert steppe Desert- brown, sandy 13 80 

Dalanzadgad 43.58 104.42 1469 Desert steppe Desert- brown, sandy 13 59 
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Figure 3.1 Locations of nine stations at which the soil moisture was measured, 
and vegetation zones in Mongolia. 

The soil texture at the stations is characterized by medium silt and sandy soil (Table 3.1). 

We also used wilting point and field capacity data, as provided by the IMH. The W0 is 

expressed as plant-available soil moisture (mm) in the upper 50-cm soil layer and was 

calculated as the actual total soil moisture minus the moisture content at the wilting point. 

Daily precipitation (P) and air temperature (T) data provided by the IMH were used to 

calculate the soil moisture content and PDSI. In addition, we used a 25-year (1981-2005) 

monthly 1 o x 1° grid of NDVI data from the semi-monthly 8-km-resolution Global 

Inventory Modeling and Mapping Studies dataset (GIMMS) produced by Tucker et al. 

(2005). The GIMMS NDVI data sets were generated from the National Oceanic and 

Atmospheric Administration/ Advanced Very High Resolution Radiometer 

(NOAA/ A VHRR), which includes corrections for NDVI variations arising from 

calibration, view geometry, volcanic aerosols, and other factors unrelated to vegetation 

change (Pinzon et al., 2002; Tucker et al., 2005). 

3.2.2 Palmer Drought Severity Index 

In recent years, the PDSI has been one of the most widely used drought indices 

(Palmer, 1965; Alley, 1984). The PDSI is derived based on the supply-and-demand 

concept of the water balance equation using monthly P and T and as well as the available 

soil moisture content. The monthly index values range between -4 and +4. Negative 
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(positive) PDSI values indicate dry (wet) conditions, while a value of zero indicates a 

state close to the average. 

Dai et al. (2004) found that PDSI shows a significant correlation (r =0.5-0.7) with 

observed soil moisture content within the top 1-m depth during the warm season in 

Mongolia, Illinois, and parts of China and the former Soviet Union. Recently the PDSI 

has been applied by the IMH as a standard drought index (Bayarjargal et al., 2006). In the 

present study, monthly PDSI values from 1961 to 2006 are derived using P and T data. 

Wm values, calculated daily, are compared with monthly PDSI values during this period 

to examine the efficiency of the two indices. 

3.2.3 Water Balance Model 

We modified an existing one-layer water balance model developed for low-latitude 

arid regions (Yamaguchi and Shinoda, 2002) to represent the extratropical characteristics 

of winter soil freezing and spring snowmelt in Mongolia (Chapter 2). This type of water 

balance model has been widely used for drought monitoring and climate change studies 

in many regions of the world (e.g., Kunkel, 1990; Robock et al., 1995; Ponceaand Shetty, 

1995; Huang et al., 1996; Shinoda and Yamaguchi, 2002; Dai et al., 2004). Our model 

calculates absolute plant-available soil moisture content using only P and T data with a 

limited number of measured soil parameters (e.g., soil wilting point and soil moisture 

storage capacity), as expressed by the following equation: 

dVi"m (t) = Pr 
dt 

- E(t) -R(t) (3.1) 

where Wm is plant-available soil moisture in the upper 50-cm soil layer, tis time (days), 

Pr is daily rainfall (mm), M is snowmelt (mm) when air temperature is below 0°C (i.e., 

the snow water equivalent to an accumulated until timet), E is evapotranspiration (mm), 

and R is runoff (mm). In this study, we applied the model in calculating daily Wm during 

the period of 1961-2006. Wm values, calculated daily using the one-layer water balance 

model, are compared with monthly PDSI values during the period of 1961-2006 to 

examine the efficiency of these two indices. 
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3.2.4 Temporal Autocorrelation 

The temporal autocorrelation function of soil moisture was employed to examine the 

soil moisture memory using monthly Wm anomaly time-series during 1961-2006. 

Delworth and Manabe (1988) developed a theory that soil moisture temporal variations 

correspond to the combination of a first-order Markov process signal and additive white 

noise by analyzing results from the Geophysical Fluid Dynamics Laboratory GCM. They 

assumed that the autocorrelation coefficient r a has an exponential form: 

(-... 
(3.2) 

where tis time lag and Tm is scale of temporal autocorrelation, decay time scale (i.e. lag 

at which autocorrelation function equal to lie). The theory was successfully applied for 

analyzing the temporal scales of observed soil moisture by Vinnikov and Y eserkepova, 

(1990), Vinnikov et al., (1996), and Entin eta/., (2000). In this study, the climatological 

seasonal cycles of soil moisture were first subtracted from the monthly values to create 

interannual anomalies, with which the autocorrelation functions were calculated for each 

month. 

3.3 RESULTS 

3.3.1 Model performance 

The water balance model was run using daily meteorological data from the nine 

stations during 1961-2006. Model performance was validated using 10-day soil moisture 

observations during April to October for the period of 1986-2005 (20-year), for which 

continuous observation data are available. The model performed reasonably well in 

simulating seasonal and interannual variations in soil moisture over the three zones of 

interest (Chapter 1 ). In general, the soil moisture model performed reasonably well in 

simulating the seasonal (r = 0.75,p < 0.05) and interannual variations (r = 0.91,p < 0.05) 

in soil moisture with the root-mean-square error (RMSE) of2.8 and 2.1 mm, respectively. 

The correlation coefficients between the Wm and Wo were for the forest steppe 0.71, for 

the steppe 0.81, and for the desert steppe 0.73, with their RMSEs of3.8 mm, 2.2 mm, and 

2.0 mm (Figure 3.2), respectively. The model simulated the observed soil moisture 
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Figure 2.2 Scatter diagram between the observed 1 0-day soil moisture (Wo) and estimated soil 
moisture (Wm) by the water balance model for three vegetation zones during 1986--2005. 

variations reasonably well for the steppe and desert steppe zones. As for the forest steppe 

zone, a densely vegetated area, there were some underestimates and overestimates by the 

model depending on the seasonal changes; the underestimates were found during spring, 

whereas the overestimates were seen in autumn. This probably resulted from the model 

formulation that did not explicitly include the vegetation effect on soil moisture. 

3.3.2 Seasonal variations in modeled soil moisture 

The seasonal cycles of temperature and each water balance variable, i.e. P, W0 and 

Wm, PET and E, and monthly NDVI for the three vegetation zones are presented in Fig. 3. 

The climatological air temperature (1986-2005) averaged over the nine stations revealed 

a substantial seasonal change, from approximately 12.0°C during the warm season to 

approximately -12.5°C during the cold season. The average annual precipitation is about 

200 mm. About 80% of the total precipitation occurs during April-September. There is 

snow cover from mid-October until the end of April. Over Mongolia, the yearly 

maximum snow depth (3.4 em) is seen in January (Morinaga et al., 2003) and snow 

ablation occurs during March, coinciding with that observed at similar latitudes in other 

parts of Eurasia (Shinoda, 2001). On a climatological basis, soil moisture values differed 

significantly (p < 0.05) between the three zones. The soil moisture in the forest steppe 

was greater than that in the steppe and desert steppe zones. We identified three seasonal 

phases of W m; spring drying (Phase I), summer recharging (Phase II), and autumn drying 

(Phase III) (Chapter 1). Wm showed a slight increase in early spring (early April) 

36 



30 60 30 60 

s ""' ::: 
5 ~ ,_ ,_ 

0 
(;.., 

30~ 
~ (;.., 

0 30 ~ 

-30 
90 

5 60 = r--_, 

0 
0.6 

0.4 

~ 
~ 

-30 
90 

/">. 60 = - -
> = 

~ 
~ 

~ 

0 
0.6 

0.4 
tJ. C. 

F5 A Cl'-" 
0.2:z ~ 30 0.2 :z 

-..::.· 
~ 30 

0 0 0 ~~~~~~~~~~~~~ 

J F M A M J J A S 0 N D J F M A M J J A S 0 N D 
30 ~-~~----~~~--~------~ 

e-..0 

6 

-30 
YU 

60 

~ 30 

0 

II 

J F M A M J J A S 0 N D 
~1ontll 

60 

s 
5 
f-. 

30 5: 

0 
U.4 

OJ 

~ 
1>;) 

~ 

-
0.2 F5 

:z 
0.1 

0 

Figure 3.3 Seasonal changes in 10-day precipitation (P), air temperature (1), actual 
evapotranspiration (E), potential evapotranspiration (PET), observed soil moisture (W0), modeled 
soil moisture content (Wm), and monthly NDVI, also showing the timing of three soil moisture 
phases (I-III) averaged over three stations for each of three vegetation zones in Mongolia during 
1986-2005. The daily soil moisture estimation was averaged over 10-day intervals. 

0 

due to the spring snowmelt when daily T > 0°C. It is possible that the small snow depth 

might have had an influence on Wm. During Phase I, Wm decreased rapidly until the onset 

of the rainy season (late May), as E exceeded P. In spring, during the emergence stage, 

NDVI increased with increasing Wm due to the onset of the rainy season in late May. 

During Phase II (from early June), Wm continued to increase and reached a peak between 

late July and early August, when P exceeded E. During Phase II, NDVI continued to 

increase, reaching a peak in August due to the maximum in Wm. Phase III occurred during 
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late August to mid-October as a result of a deficit in the water balance (P < E). This water 

balance model was matched by decreasing NDVI (Figure 3.3). This result shows that Wm 

was generally controlled by the subtle balance between P and E. We found a stronger 

correlation between NDVI and Wm (r = 0.91, p < 0.05) than between NDVI and P (r = 

0.65, p < 0.05). The soil moisture gradient roughly corresponded to the vegetation 

activity, with high NDVI in the forest steppe and low NDVI in the desert steppe (Figure 

3.3). Although the three typical phases of soil moisture were observed in all the three 

zones, the phases differed somewhat in timing and length between zones. There were 

some systematic differences in soil moisture phases among the three zones (Figure 3.3). 

Since the forest steppe zone was characterized by higher P and lower E than the steppe 

and desert steppe zones, the Phase II was longer and the drying phases (Phases I and III) 

were shorter than those in other two zones. 

3.3.3 Multi-decadal trend in modeled soil moisture 

Table 3.2 lists the linear trend coefficients for Wm, P, T, PET, and three seasonal 

phases (I, II, and III) of W m for the three zones of interest during the warm season in the 

period of 1961-2006. In general, a decreasing trend in Wm is found in the three zones, in 

conjunction with a decreasing trend in P and increasing trend in PET (driven by increased 

1). A statistically significant decreasing trend in Wm (p < 0.05) is observed in the forest 

steppe, but not in the steppe and desert steppe (Table 3.2). For all three zones, these 

changes in Wm are strongly correlated with both the decreasing trend in P (r = 0.85, p < 

0.05) and increasing trend in PET (r = 0.65, p < 0.05). In addition, P and PET show a 

high correlation with each other (r = 0.61,p < 0.05), probably due in part to variations in 

sensible heating at the ground surface and/or the albedo effect of rain-bearing clouds. As 

mentioned above, the forest steppe zone experienced the most significantly (p < 0.05) 

pronounced multi-decadal trends of decreasing P, increasing PET (Table 3.2), and 

resultant decrease in Wm (see Figure 3.4a and 3.4b). The T trend (0.42°Cidecade) is 

consistent with the temperature trend (0.5°C/decade) observed in northern Mongolia (the 

forest steppe) during the period of 1963-2002 (Nandintsetseg et al., 2007). Figure 3.4b 

compares a time series of Wm anomaly with that of PDSI. Although the Wm anomaly is 

generally in phase with PDSI on an interdecadal timescale, W0 is more strongly correlated 

with Wm (r = 0.91, p < 0.05) than with PDSI (r = 0.65, p < 0.05). This result clearly 

demonstrates the efficiency of the present model. 
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Figure 3.4 Interannual time series (1961-2006) of precipitation (P) and potential 
evapotranspiration (PET) anomalies (a), the modeled (Wm) and observed (Wo) soil moisture 
contents, and Palmer Drought Severity Index (PDSI) (b), and the timing of three soil moisture 
phases (I-III) during the warm season in the forest steppe zone (c). Circles and triangles in (Figure 
3.4b) indicate years with wet and dry soils, respectively, which were used for the composite 
analysis in Figure 3.3. 
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Table 3.2 Linear trend coefficients of the modeled soil moisture (Wm), precipitation (P), air 
temperature (1), potential evapotranspiration (PET), and three phases changes (Phases I, II, and 
III) of Wmper decade over three zones (forest steppe, steppe, and desert steppe) during the period 
of 1961-2006. 

Phase I Phase II Phase III 
Zone Wm(mm) P(mm) T(OC) PET(mm) 

(days) (days) (days) 

Forest steppe -2.5* -13.5* 0.42* -11.1 * +4* -4* +3* 

Steppe -1.2 -7.3 0.3* -10.0* +1 -4 +1 

Desert steppe -0.6 -4.4 0.3* -10.0* +3* -1 +1 

*Significant at 5% level 

Climatologically, three seasonal phases of soil moisture are identified in Mongolia 

(Figure 3.4c). On the multi-decadal scale, Phase II was shortened over time in all three 

zones and Phases I and III were prolonged (Table 3.2). Figure 3.4c shows the interannual 

time series of the three phases of W m for the forest steppe. Phase II showed a significant 

(p < 0.05) shortening of 4 days per decade, while Phases I and III showed a significant (p 

< 0.05) lengthening of 4 and 3 days per decade, respectively. PET showed a significant 

increase during Phase II, particularly after 1995, as P decreased (data not shown). The 

combined effects of these two trends may account for the rapid shortening of Phase II 

during recent decades. 

3.3.4 Comparison between wet and dry years 

Interestingly, an interdecadal fluctuation is superimposed on the multi-decadal trend 

during 1961-2006 (Figure 3.4b); that is, wet conditions occurred during 1961-1975 and 

1980-1995, while dry conditions occurred during 1976-1980 and 1996-2006. To 

examine the mechanism of Wm anomaly that occurs on an interdecadal scale and that is 

formed and maintained during the course of season, we analyzed wet and dry years upon 

the forest steppe, where the dominant trends were observed (Figure 3.4b). The wet and 

dry years were selected so as to be concentrated during the periods of 1980-1995 and 

1996-2006, respectively, for examining interdecadal changes. 

Figure 3.5 compares 10-day Wm, P, and E between years with wet and dry soils for 

the forest steppe zone. Based on Figure 3.4b, the wet years and dry years of the past two 

decades were selected to enable an interdecadal comparison between the extreme years. 

Phase II was longer during wet years than during dry years, whereas Phases I and III were 

shorter during wet years. It should be noted that differences in Wm between years with 
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Figure 3.5 Seasonal changes in the precipitation (P), modeled soil moisture content 
(Wm), and actual evapotranspiration (E) (10-day data are plotted) showing three phases 
of soil moisture content (a and b), and comparison between the composites of 1989, 
1990, 1993, and 1994 (wet soil years) and 1996, 2000, 2001, and 2002 (dry soil years) 
(see Figure 3.4b), as well as their differences (c). Squares, circles, and triangles 
indicate differences between wet and dry years in terms of Wm, P, and E, respectively, 
significant at 5% level. 
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wet and dry soils are significant throughout the year (Figure 3.5a and 3.5c). These 

differences were enhanced in conjunction with a significant increase in the differences 

between P and E during June-August. In terms of the calendar year, the last substantial 

difference in P occurred in mid-September, whereas the difference in Wm remained from 

this time until the following spring. 

3.3.5 Temporal scales of soil moisture 

The temporal autocorrelation function of soil moisture was employed to examine the soil 

moisture memory using monthly Wm anomaly time-series during 1961-2006. Figure 3.6 

presented the autocorrelation functions of the Wm time series for the forest steppe zone. 

There are two major barriers in September and July where the interseasonal memory was 

interrupted. During the spring (March-May) and summer (June-August), the temporal 

scales are small (3 and 1.8 months), respectively, depending on a disturbance by P and 

PET. During the autumn (September-November) and winter (December-February), the 

scales are larger (6 and 7 months) due to the soil freezing (Jambaajamts, 1989) and also 

due to the drop in the potential evapotranspiration. This strongly suggests that Wm in the 

root zone retained as a memory of the P anomaly via soil freezing and as an initial 

moisture condition for the subsequent summer land-surface. Furthermore, a difference in 

Wm (between years with wet and dry soil) existed prior to the warm rainy season; this 

difference became more pronounced during and after the rainy season. These findings 

indicate that the soil moisture memory was accumulated over multiple years. 

3.4 DISCUSSION AND CONCLUSIONS 

In the present study, we modified an existing, simple soil-moisture model for 

application in cold, arid regions such as Mongolia, by considering soil freezing and snow 

melting. Model performance was validated by comparison with long-term observations 

available for Mongolia, thereby demonstrating its efficiency compared with the widely 

used PDSI. Moreover, the present model has an advantage in identifying abrupt changes 

on a shorter timescale in response toP (such as the onset of the rainy season). 

We estimated daily W m during the period of 1961-2006 for three vegetation zones: 

forest steppe, steppe, and desert steppe. Vegetation activity (NDVI) was more strongly 
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Figure 3.6 Temporal autocorrelation values of the time series of the monthly modeled soil 
moisture (Wm) for the forest steppe zone for each month (from April (A) to the following 
year March (M)). 

correlated with soil moisture than with precipitation, suggesting that soil moisture plays 

an important and immediate role in controlling vegetation activity. For all three zones, we 

found a decreasing trend in Wm during 1961-2006 due to decreasing P and increasing 

PET; and this drying trend was only statistically significant upon the forest steppe. In 

conjunction with this trend, the summer phase of recharging soil moisture was shortened 

in all zones. 

A comparison between wet and dry decades revealed that soil moisture anomalies 

were most manifested during June-August due to large P and E anomalies, and were 

subsequently maintained throughout the freezing winter until spring. Autocorrelation 

analysis of Wm for the forest steppe zone showed that during the autumn and winter, the 

soil moisture memory scales ( 6-7 months) are longer than during the spring and summer 

(3-1.8 months). These findings indicate that in cold, arid regions such as Mongolia, soil 

moisture retains as a memory of P anomalies during the freezing season and as an initial 

moisture condition for the subsequent summer land-surface. 

The memory during the spring (3 months) is longer than that seen in the cold, arid 

region of central Eurasia, which is located at latitudes similar to the present study area, 

but has deeper snowpack and shallower soil freezing (Shinoda, 2001). The drying-up 

period after rainy season is much longer in Mongolia ( 6 months) than that for soil 
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moisture in the root zone seen in the tropical semiarid Sahel (1.5 months) (Shinoda and 

Yamaguchi, 2003) and the general decay timescale of2-3 months (related to atmospheric 

forcing) for soil moisture in the top 1 m reported in the extratropics (Vinnikov et al., 

1996; Entin et al., 2000). Thus, it is evident that soil freezing in Mongolia acts to prolong 

the timescale of soil moisture memory. In this context, further research is required on 

land-atmosphere interactions to explore the mechanisms by which root-zone soil 

moisture directly affects the multi-year persistence of drought in Mongolia (as evident in 

the 2000s) via soil moisture content/precipitation recycling. Furthermore, the soil 

moisture memory may be accompanied by a vegetation memory, as reported for this area 

by Shinoda et al. (2010). This represents another interesting topic for future study. 

In terms of practical applications, the present model is a useful tool for a reliable and 

timely monitoring of pasture drought, thereby providing valuable information for 

decision-makers and herders. The advantage of this model is the use of a simple 

calculation that derives daily soil moisture from operationally observed daily data and its 

wide applicability to cold, arid regions throughout the world. 
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CHAPTER4--------------------------

Abstract 

Relationship between Soil Moisture and 
Vegetation Activity* 

Drought has become widespread throughout the Northern Hemisphere since the mid-
1950s, affecting the Mongolian steppe and pastureland used for livestock. Given this 
background, we investigated the relationship between modeled root-zone soil moisture 
(Wm) and vegetation activity based on Normalized Difference Vegetation Index (NDVI) 
data for the Mongolian steppe during the period 1982-2005. In general, interannual 
change in NDVI coincided with that in Wm. NDVI showed a stronger correlation with 
Wm (r = 0.91) than with precipitation (P) (r = 0.65). A strong positive correlation was 
found between seasonal changes in NDVI and above-ground biomass (r = 0.94). 

A comparison between years with high and low NDVI revealed that the significant 
difference in Pled to a significant time-lagged (about a half month) difference in Wm and 
finally to that in NDVI with time lags of about one month. In addition, the yearly­
maximum NDVI (NDVImax) value of a given year was correlated with the Wm value for 
the current year (r2

= 0.53), and was more strongly correlated with the combination ofthe 
current year Wm and the preceding year NDVImax of (r2 = 0.55). This result suggests that 
on the interannual basis, the vegetation activity is primarily controlled by the current year 
soil moisture and slightly affected by underground structures stored in the root system. 

*This chapter is edited version of: 
Nandintsetseg B, Shinoda M, Kimura R, and Ibaraki Y. 2010. Relationship between soil moisture and 
vegetation activity in the Mongolian steppe. SOLA, 6: 062-032. 
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4.1 INTRODUCTION 

A strong drying trend has been observed over land areas in the Northern Hemisphere 

since the mid-1950s, especially over northern Eurasia, including Mongolia (Dai et al., 

2004). The arid continental climate in Mongolia has created an extensive area of 

pastureland that is the main source of forage for livestock farming, which is a major 

industry in the country's economy. In the Mongolian steppe, the increasing frequency of 

drought has led to problems in the farming of livestock and pasturing (e.g., Natsagdorj, 

2003). This situation motivated us to assess the temporal trend in vegetation conditions in 

the Mongolian steppe. 

Soil moisture deficit is commonly the most important stress factor for vegetation 

activity, especially in arid and semi-arid regions. Soil moisture deficits limit the growth 

of pasture in Mongolia (Miyazaki et al., 2004; Zhang et al., 2005; Nakano et al., 2008; 

Shinoda et al., 2010). Previous studies have examined the relationships between seasonal 

and interannual climate parameters and vegetation activity, especially between 

precipitation and the remotely sensed Normalized Difference Vegetation Index (NDVI), 

which generally increases with increasing precipitation (e.g., Shinoda, 1995; Suzuki et al., 

2003; Iwasaki, 2006). However, a limited numbers of studies have examined the 

relationship between soil moisture and NDVI for various vegetation types (Farrar et al., 

1994; Yang et al., 1997; Adegoke and Carlenton, 2002; Mendez-Barroso et al., 2009). 

Soil moisture is widely recognized as a key parameter that links precipitation and 

vegetation. In the present study, we investigated the effect of modeled root-zone soil 

moisture on vegetation activity in the Mongolian steppe, based on remotely sensed NDVI 

data for seasonal and interannual periods during 1982-2005. 

4.2 DATA AND METHODOLOGY 

4.2.1 NDVI data 

We investigated seasonal and interannual variations in monthly NDVI data and 

assessed their relationships with root-zone soil moisture. We used a 21-year (1982-2002) 

monthly 1° x 1 o grid of NDVI data from the semi-monthly 8-km-resolution Global 

Inventory Modeling and Mapping Studies dataset (GIMMS) produced by Tucker et al. 

46 



(2005). The GIMMS NDVI data sets were generated from the National Oceanic and 

Atmospheric Administration/ Advanced Very High Resolution Radiometer 

(NOAA/ A VHRR), which includes corrections for NDVI variations arising from 

calibration, view geometry, volcanic aerosols, and other factors unrelated to vegetation 

change (Pinzon, 2002; Tucker et al., 2005). For the period 2003-2005, we derived 

monthly 1 ox 1° grids ofNDVI data from the semimonthly 8-km-resolution data; namely, 

the monthly data were composited by choosing the higher NDVI between two 15-day 

datasets for each month. These NDVI data are used in climate models and 

biogeochemical models to calculate the photosynthesis, exchange of C02 between the 

atmosphere and the land surface, land-surface evapotranspiration, and the absorption and 

release of energy by the land surface. 

4.2.2 Observed data 

We analyzed data collected at nine stations distributed widely across the Mongolian 

steppe, including within the major vegetation zones of forest steppe, steppe, and desert 

steppe (Figure 4.1). Above-ground biomass (AGB) data for the period 1986-2005 were 

obtained from the Institute of Meteorology and Hydrology of Mongolia (IMH). At the 

nine stations, AGB observations of a fenced pasture, representing the naturally occurring 

species above ground, were conducted on the 4th, 14th, and 24th of each month during the 

growing season (May-September). During these observations, the canopy height of the 

pasture exceeded 1 em. The pasture AGB, which is considered an available source for 

livestock in this area, was not influenced by grazing. 

4.2.3 Modeled data 

To represent the extratropical characteristics of winter soil freezing and spring 

snowmelt in Mongolia, we used daily model-estimated soil moisture (Wm) data 

(Nandintsetseg and Shinoda, 2010a). This model is a version of the one-layer water 

balance model developed by Yamaguchi and Shinoda (2002) for low-latitude arid regions. 

This kind of water balance model has been widely used for operational monitoring of soil 

moisture in many regions of the world (e.g., Huang et al., 1996; Dai et al., 2004). This 

model calculates absolute plant-available Wm based on precipitation (P) and air 

temperature (T) data with a limited number of measured soil parameters (e.g., soil wilting 
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Figure 4.1 Locations of nine stations at which soil moisture was measured and 
vegetation zones in Mongolia. 

point and field capacity). Potential evapotranspiration (PET) was calculated with the 

method proposed by Thomthwaite (1948). 

Model performance was validated using soil moisture (10-day observations) (r = 0.91, p 

< 0.05) during April to October for the period 1986-2005, as measured at the nine 

stations (Chapters 2 and 3). The data was expressed as plant-available soil moisture (mm) 

in the upper 50 em soil layer and were calculated as the actual total soil moisture minus 

the moisture content at the wilting point. This soil layer represents the major rooting zone 

of the grasses that dominate most of the Mongolian steppe. It is important to note that our 

aim was to explore the general relationships between vegetation activity and soil 

moisture at a regional scale (over the Mongolian steppe); therefore, the parameters 

considered in this study were averaged (P, Wm, AGB, and NDVI) over the nine stations. 

4.2.4 Statistical analysis 

To study interannual variations in NDVI, we considered up to five variables as 

parameters to explain the residuals of the temporal relationship between the current-year 

maximum NDVI (NDVImax) and summer Wm (June-August). A Stepwise multiple­

regression model was run by using 24-year data sets (1982-2005) of NDVImax and W m 

(Table 4.1). The five variables, which were used in this analysis, are Wm of the current 

year, Wm and NDVImax of the first and second preceding years. At first, the current year 

Wm and then following the preceding year NDVImax during 1982-2005 were considered, 
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and then followed by the association effect of Wm for the first and second preceding years. 

Finally, we applied all five variables, including NDVImax of the two preceding years. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Seasonal variations in NDVI and W m 

Figure 4.2 shows seasonal changes in monthly NDVI and 1 0-day AGB during the 

growing season, and P and Wm in the 0-50 ern soil layer averaged over the nine stations 

with their standard deviations during the period 1982-2005. In the previous study, we 

found a latitudinal gradient in W m, with soil being drier in the southeast. This gradient is 

approximately consistent with the distribution of vegetation cover in the Mongolian 

steppe (Chapter 1). Wm and NDVI revealed a large spatial variance compared to that of P 

during the study period. In early spring, Wm showed a slight increase (about 5 rnrn) due to 

the spring snowmelt when daily T > 0°C. The timings of snow disappearance over the 

three zones were found within a 1 0-day period, likely having a minor influence on the 

timings of snowmelt-derived increase in Wm. The changes in Wm may have in turn 

affected on the vegetation activity in the Mongolian steppe. It has been reported that the 

beginning of plant emergence and senescence of Stipa spp. generally occur in early May 

and late September, respectively, in the Mongolian steppe (Shinoda et al., 2007). In 

spring, during the emergence stage, NDVI increased with increasing Wm due to the 

snowmelt and mostly as a result of the onset of the rainy season in late May. NDVI 

continued to increase, reaching a peak in August, which is the plant maturity stage (and 

which coincides with the maximum (36 rnrn) in Wm). Subsequently, NDVI decreased 

during the senescence stage in autumn (September), matching by the decrease in Wm. 

After mid-October, soil moisture was assumed constant (as soil water was frozen) when 

the daily mean temperature was < 0°C. The dormancy season of NDVI occurs in winter 

(October-April). The present results reveal a strong correlation between seasonal changes 

in NDVI and those in AGB (r = 0.94, p < 0.05) during the growing season. Thus, NDVI 

was selected as a vegetation activity parameter in analyzing the relationship between soil 

moisture and vegetation activity. We also found a stronger correlation between NDVI 

and Wm (r = 0.91,p < 0.05) than between NDVI and P (r = 0.65,p < 0.05). An additional 

analysis showed that W m and NDVI for each of the three zones exhibited significant 

correlation as mentioned above (at a regional scale). 
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Figure 4.2 Seasonal changes in 10-day (a) precipitation (P), soil moisture (Wm), the timings of 
snow disappearance (vertical arrows) for the three zones (F: forest steppe, S: steppe, and D: 
desert steppe), and (b) 1 0-day above-ground biomass (AGB) and monthly NDVI averaged over 
nine stations with their standard deviations (vertical dashed bars) in the Mongolian steppe 
during 1982-2005. 

4.3.2 Interannual variations in NDVI and Wm 

Figure 4.3 shows the NDVImax and summer Wm anomalies averaged over the nine 

stations for the period 1982-2005. NDVImax showed a stronger correlation with summer 

(June- August) Wm (r = 0.76, p < 0.05) than with summer P (r = 0.69, p < 0.05). In 

general, a slight decreasing trend in NDVImax was found, in conjunction with the 

decreasing trend in Wm and it was significantly (p < 0.05) decreased particularly after 

1995, reflecting a significant decreasing trend in Wm and an increasing trend in PET. The 

combined effects of these two latter trends may account for the rapid decreasing trend in 

NDVImax during recent decades. To examine the mechanism of the NDVImax anomaly 

that occurs on an interdecadal scale and that is formed and maintained during the course 

of the year, we analyzed years with high and low NDVImax values over the Mongolian 

steppe (Figure 4.3). Figure 4.4 shows 10-day Wm, P, and monthly NDVI for years 

characterized by high and low NDVImax values. 

so 



-80~~-~--;-----:----;----.....,..--~~ E (a) , , -80 
~ ' ' 

..::::> "" ,~ ' ...-.. " ~~' ' ' ~ 
~ ' -..$ • ' : ,-- E ~ ' \ ' 1 -..;...; 
- 0 : , : , ~ 
0 . ' ' / ----1 ~ ,. 0 ~ 
~ ; ~ . @ 

E-< 
r:il 
0.. 

--P 
80 I ----- PET 80 

-25 . 
(b) 

~-~-~--------~-------. -0.1 

,......._ 
E 
~ -..::;. 

~ 
~ ol"7\ '- ~.o,..n Y/ "" Y \ ' I o Q ' I : · Y , ~- ~ 

c 
c.! 

t£ - Wm 
- NDVImax . 

25 ; 0.1 

1982 1985 1988 1991 1994 1997 2000 2003 
Year 

~ 
~ 
0 
c 
t>:! 

~ 
~ 
:> 
~ 

Figure 4.3 Interannual (1982-2005) anomalies (a) of precipitation (P), potential 
evapotranspiration (PET), and (b) soil moisture (Wm) for the period June-August, and 
maximum NDVI (NDVImax) averaged over nine stations in the Mongolian steppe 
(values are in reverse order). Triangles and circles indicate years with high and low 
values ofNDVImax, respectively. 

Based on Figure 4.3, two composites for years with high and low NDVImax over the past 

two decades were selected for an interdecadal comparison of extreme years. As shown in 

Figure 4.4, seasonal changes in NDVI consistently followed those in Wm during years 

with both high and low NDVImax values. We found no significant difference between 

high and low NDVImax years in terms of NDVI during the early growth period (May­

June). However, a clear difference in NDVI was observed in July, reflecting a difference 

in Wm; differences between the two composites are observed in August and September. 

These differences resulted from the leading significant differences in P and Wm from July 

to August. This result shows that the significant difference in P led to a time-lagged 

(about a half month) significant difference in Wm, finally to that in NDVI with time lags 

of approximately one month. The substantial difference in W m, which occurred in 

September, was maintained during winter. This indicates that Wm acted as a memory of 

the P anomaly via soil freezing and as an initial moisture condition for vegetation activity 

in the subsequent year. 
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Figure 4.4 Seasonal changes in 10-day (a) precipitation (P), modeled soil moisture (Wm), 
and monthly NDVI, comparing the composites for 1993, 1994, 1996, and 1998 (h-NDVI is 
high-NDVImax years) with those for 1999, 2000, 2001, and 2004 (I_NDVI is low-NDVImax 
years) (Figure 4.3), (b) as well as their differences. Triangles, circles, and squares indicate 
differences between high- and low-NDVImax years in terms of P, Wm, and NDVI, 
respectively, significant at the 5% level. 

4.3.3 A Stepwise multiple-regression modeling 

To gain a better understanding of interannual variations in NDVImax, we proposed 

five parameters; Wm of the current, the first and second preceding years, and NDVImax of 

the first and second preceding years as predictive variables during 1982-2005 (Table 4.1 ). 

The coefficient (r2
) of determination for NDVImax with Wm of the current year was 0.53. 

The addition of NDVImax for the first preceding year resulted in a slight increase in the 

proportion of explained variance, from 0.53 to 0.55 with the same level of statistical 
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Table 4.1 Models that account for interannual variation in current-year maximum NDVI for the 
Mongolian steppe. The rows correspond to stepwise multiple regressions with different sets of 
variables during 1982-2005. Wm indicates soil moisture during June-August; N is yearly-maximum 
NDVI. The models include variables with a significant effect, in which (t), (t-1 ), and (t-2) indicate 
the current, first, and second preceding years, respectively. 

I 
I 

n Possible variables Model ,z 
I 

p I 
! 

I 

1 Wm(t) 
Nct)=.27 + .004 Wm(t) 0.53 

I 
<0.001 

I l 
2 Wm (t), Net-I) Nct)=.3 + .004 Wm(t)+.06N(t-.:t) I 0.55 I <0.001 

! I 

Wm(t), i 

I I 
Wm(t-1), Nct)=.26+ .004Wm(t)+.0003Wm<t-l)+ I 0.57 I <0.005 

3 I 
I 

Wm(t-2), +. 0009 W m(t-2) I I I 
I I I 

Wm(t), I 
I 4 Wm (t-1), Nu-t), N(t)=.23+.004 W m(t)+ .0004 W m(t-1)+ I 0.60 <0.008 

W m (t-2), N(t-2) +.14N(t-1)+.0002Wmct-2)+.19 N(t-2) I 
I I I 
I 

significance (p < 0.001), whereas an addition of the other variables resulted in a reduction 

of the significance level. 

4.4 CONCLUSIONS 

We investigated the relationship between modeled root-zone soil moisture and 

vegetation activity based on remotely sensed NDVI data, focusing on the Mongolian 

steppe during 1982-2005. On both seasonal and interannual time-scales, NDVI was more 

strongly correlated with soil moisture than with precipitation, suggesting that soil 

moisture plays an important and immediate role in controlling vegetation activity. This 

result is consiste~t with the findings of Yang et al. (1997), Adegoke and Carlenton 

(2002), and Mendez-Barroso et al. (2009). 

A comparison between years with high and low NDVI revealed that a significant 

difference in Pled to a half-monthly time-lagged significant difference in Wm, finally a 

difference in vegetation activity, with time lags of about one month. Soil moisture 

anomalies were maintained throughout the following freezing winter. This implies that 

soil moisture acted as a memory via soil freezing and as an initial soil moisture condition 
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for the vegetation activity in the subsequent year. This coincides with the results of 

Shinoda. (2005). 

Interannual fluctuations in NDVI were strongly dependent on W m of the current year 

and even more strongly dependent on a combination of the current year W m and NDVI of 

the preceding year. This result suggests that vegetation anomalies were likely stored as 

underground structures in the root system. To the best of our knowledge, this is the first 

study in Mongolia to point to the combination of soil moisture and root memories as 

predictor of vegetation. Several previous studies have reported that the current and 

preceding year's precipitation have a strong influence on NDVI of the current year in 

Africa (Martiny eta!., 2009) and North America (Wang et a!., 2003). Iwasaki (2006) 

examined the potential of predicting NDVI using the leading winter and spring 

precipitation and air temperature in Mongolia, revealing that NDVI is influenced by June 

precipitation with the additional influence of December precipitation. This relationship 

can be explained by the status of soil moisture content in the root zone as described in 

our study. 

NDVI for a given year showed a weak dependence on the preceding year's NDVI. 

Shinoda eta!. (2010) reported that in the Mongolian steppe, manipulated soil moisture 

deficit resulted in a marked reduction in above-ground phytomass but did not 

substantially affect below-ground phytomass (which was several times greater than 

above-ground phytomass ). The effect of snow mass memory as seen in Central Eurasia 

(Shinoda, 2001), was not dominant in Mongolia, because the yearly-maximum snow 

depth is only 3.4 em in this region (Morinaga eta!., 2003). Therefore, it is likely that the 

large root system provided a basis for rapid recovery of above-ground phytomass, 

leading to a weak carry-over of vegetation anomalies, as revealed by NDVI in the present 

analysis. In future applications, the concepts of soil moisture and root memory presented 

in the present study would provide a useful basis for an early warning system of reduced 

pasture production during drought. 
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CHAPTERS----------------------------

Soil Moisture and Vegetation Memories* 

Abstract 

Continental climate is established as a result of a complex interplay between the 
atmosphere and various land-surface systems such as the biosphere, soil, hydrosphere, 
and cryosphere. These systems function as climate memory, allowing the maintenance 
of interannual atmospheric anomalies. In this paper, we present new observational 
evidence of an interseasonal moisture memory mechanism mediated by the land surface 
that is manifested in the coupled cold and arid climate of Mongolia. Interannual 
anomalies of soil moisture and vegetation due to rainfall during a given summer are 
maintained through the freezing winter months to the spring, acting as an initial 
condition for subsequent summer land-surface and rainfall conditions. The cold-season 
climate with low evapotranspiration and strong soil freezing acts to prolong the decay 
time scale of autumn soil moisture anomalies to 7.6 months that is among the longest in 
the world. The vegetation also has a memory of the ~imilar time scale, likely because the 
large root system of the perennial plants dominant in the Mongolian steppe may remain 
alive and retain under-ground biomass anomalies during the winter. 

*This chapter is edited version of: 
Shinoda M and Nandintsesteg B. 2010. Moisture and Vegetation Memories in a Cold, Arid Climate. 
Submitted to the Journal of Geophysical Research, Atmospheres. 
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5.1 INTRODUCTION 

Across the world's widest continent, Eurasia, especially at middle-to-high latitudes, 

soil moisture acts as an efficient memory storage device for interannual precipitation 

anomalies due to its low potential evapotranspiration (Delworth and Manabe, 1988; 

Vinnikov and Yeserkepova, 1991). The interseasonally persistent hydrological effects of 

melted snow, simulated in general circulation models (e.g., Barnett et al., 1989; Yasunari 

et al., 1991), has also been considered as a potential memory mechanism and explains the 

apparent correlation between Eurasian snow cover and subsequent Indian summer 

monsoon rainfall (e.g., Hahn and Shukla, 1976). On the other hand, subsequent 

observational studies have shown that the hydrological effect of melted snow is limited in 

region and season (Shinoda, 2001; Shinoda et al., 2001; Ueda et al., 2003; Iijima et al., 

2007). Mongolia is located over mid-latitude highlands in the far eastern continent and 

has a cold, arid climate with soil freezing and small snowpack in the winter (Shinoda and 

Morinaga, 2005; Morinaga et al., 2003). These climate conditions are considered to have 

a specific impact on the soil moisture memory that is highlighted in the present study. 

A large drying trend has been observed in a soil moisture index over land areas in the 

Northern Hemisphere since the middle 1950s, especially over northern Africa, Canada, 

Alaska, and Eurasia, including Mongolia (Dai et al., 2004). In particular, below-normal 

precipitation in the Northern Hemisphere during 1999-2002 appears to have led to 

extensive decreases in vegetation activity over Eurasia and North America as revealed by 

the satellite-estimated Normalized Difference Vegetation Index (NDVI) (Lotsch et al., 

2005). These facts strongly suggest that soil moisture acts as a bridge between deficits in 

precipitation (meteorological drought) and failures of plant growth (agricultural or 

vegetation drought). In fact, this phenomenon has recently been explored for Mongolia 

that is highlighted here (e.g., Shinoda et al., 2007; Nandintsetseg et al., 2010). 

Historical records of soil moisture content measured in situ are available for few 

regions in the world and often represent very short periods (Robock et al., 2000); 

however, a unique long-term, quality-controlled dataset has recently been established for 

Mongolia (Nandintsetseg and Shinoda, 2010a). Given this background, we focused on 

this area to explore the processes of how the interseasonal moisture memory operates in 

the soil-vegetation system under such markedly drying climate conditions. 
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5.2 DATA AND METHODS 

5.2.1 Observed soil moisture 

The soil moisture (W) dataset used in this paper was obtained from that produced by 

Nandintsetseg and Shinoda (2010a), so-called the Mongolian Soil Moisture Climatology 

Dataset and the original data were derived from the Institute of Meteorology and 

Hydrology of Mongolia (IMH). The dataset has 26 stations in grass-covered fields over 

Mongolia for the entire period of 1986-2005, while the periods of available soil moisture 

data differed from station to station. To study natural conditions of soil moisture on a 

consistent basis, only data collected at grass-covered field sites were included in the 

dataset. In general, the dominant soil texture in the top 50-cm layer at the selected 

stations was sandy. 

At all stations, soil moisture observations were conducted on the 8, 18, and 28 of 

each month during the warm season (April-October) using the gravimetric method. Soil 

moisture was not measured in winter (November-March) as the soil was frozen. Soil 

moisture was measured in 11 vertical layers; 5-cm layers from 0 to 10 em and 1 0-cm 

layers from 10 to 100 em. Most of the stations had no observations beneath 50 em depth, 

and thus only data for the 0-50 em soil layer were included in the dataset. This soil layer 

includes the major rooting zone of the grasses that dominate most of the Mongolian 

steppe. The data are expressed as plant-available soil moisture (mm) in the upper 0-50 

em soil layer and were calculated as the actual total soil moisture minus the moisture 

content at the wilting point. We also used data of soil hydraulic properties such as wilting 

point (Wwp) and field capacity (Wfc) from the IMH. In addition, precipitation (P), air 

temperature (T), and snow depth (SD) data for the 26 stations from IMH were used to 

investigate the soil moisture dynamics. In the following analysis, the monthly anomalies 

were defined as the deviations from the corresponding monthly values averaged over the 

period from 1986 to 2005. 

At the Underkhaan station in eastern Mongolia, special observations of soil 

moisture as well as soil temperature (Tg) were also carried out at the depths of 20, 50, 100, 

and 150 em on an hourly interval from September 2002 to June 2006 by the time-domain 

reflectometry (TDR) method. This provided a source for a detailed analysis of the soil 

moisture memory. 
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5.2.2 Modeled soil moisture 

To fill in gaps of the soil moisture observations during the winter, we used daily 

model-estimated soil moisture (Wm) data (Chapter 2). This model is a version of the one­

layer water balance model developed by Yamaguchi and Shinoda (2002) for low-latitude 

arid regions and it was modified to represent the extratropical characteristics of winter 

soil freezing and spring snowmelt in Mongolia (Chapters 1 and 2). This kind of water 

balance model has been widely used for operational monitoring or climate change studies 

of soil moisture in many regions of the world (e.g., Huang et al., 1996; Shinoda and 

Yamaguchi, 2003, Dai et al., 2004). In accordance with the observed data (W0 ), this 

model calculates absolute plant-available Wm based on precipitation (P) and air 

temperature (1) data in the upper 50 em soil layer with a limited number of measured soil 

parameters (e.g., soil wilting point and field capacity). 

5.2.3 NDVI data 

We used a 21-year (1982-2002) monthly 1° x 1° grid of NDVI data from the 

bimonthly 8-km-resolution Global Inventory Modeling and Mapping Studies dataset 

(GIMMS) produced by Tucker et al. (2005). The GIMMS NDVI data sets were generated 

from the National Oceanic and Atmospheric Administration/Advanced Very High 

Resolution Radiometer (NOAA/AVHRR), which includes corrections for NDVI 

variations arising from calibration, view geometry, volcanic aerosols, and other factors 

unrelated to vegetation change (Pinzon, 2002; Tucker et al., 2005). For the period 

2003-2005, we derived monthly 1° x 1° grids ofNDVI data from the semimonthly 8-km­

resolution data; namely, the monthly data were composited by choosing the higher NDVI 

between two 15-day datasets for each month. 

5.3 RESULTS AND DISCCUSSION 

5.3.1 Climatological patterns 

Figure 5.1 illustrates the climatological patterns of important hydrometeorological 

elements in Mongolia. In general, the annual P ranges from over 400 mm in the northern 

mountains to below 100 mm in the south (Batima and Dagvadorj, 2000), and is 

concentrated in the summer months from June to September (Figure 5.1b). Thus, the 

winter P comprises only a small portion of the annual total. The monthly T falls below 
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ooc from November to March. Thus, the snow depth during January, when the yearly 

maximum SD value is observed over most of Mongolia, ranges from over 100 mm in the 

northern mountains to below 10 mm in the south (Morinaga et al., 2003). During the late 

summer and spring, W in the top 50-em-deep layer and the NDVI both exhibit south­

southwestward decreasing patterns (Figures 6.1c and 1d), similar to that observed for 

summer P. The absolute level of W is also the same between the two seasons, but that of 

the NVDI is reduced substantially in the spring, due to the beginning of the growing 

season (data not shown). 

5.3.2 Correlation patterns 

The correlations among major hydrometeorological elements were examined in a 

time series from the summer of one year to that of the following year (Figure 5.2). 

Significant correlations between summer (June-September) P (P6_9) and time-lagged 

(August-September) W (Ws-9) anomalies are widespread in zones throughout the northern 

latitudes of Mongolia, including Underkhaan (Figure 5.2a). The period from August to 

September was chosen because W for this period was most highly correlated with P for 

the entire rainy season (June-September). Interestingly, over the central zone, the W8_9 

anomaly was most highly correlated with anomalies in spring (April-May) W (W4_5) in 

the following year (Figure 5.2b). Over the entire region of Mongolia (including 

Underkhaan) except for its northern periphery, significant correlations were found 

between June-July P (P6-s) and September NDVI (NDVI9) (Figure 5.2c). A complicated 

pattern with a maximum axis in the latitudes near 47-49~ (including Underkhaan) is 

seen in the correlation between NDVI9 in one year and NDVI5 in the subsequent year 

(Figure 5.2d), although in general, positive correlations are widespread over Mongolia. 

The complicity manifested in the west may be owing to the existence of the Khangai and 

Altai Mountains in the area (Figure 5.1a) which affect climate and thus vegetation 

activity. It should be noted that the zone near Underkhaan exhibits high correlations in 

both W and NDVI between the late summer or autumn and the corresponding values in 

the following spring; however, SD for January has no significant correlation with the 

subsequent W4_5 anomaly in Mongolia (not shown), due to low SD levels (Morinaga et al., 

2003). This is not the case for central Eurasia, where the yearly maximum snow depth 

results in sufficient melting to influence the spring W (Shinoda, 2001 ). 

59 



p6-9 

Ws-9 

NDVI9 

120E 

Figure 5.1 (a) Topography and climatological patterns of the following parameters: (b) 
summer (June-September) P (mm/month) (P6_9); (c) late summer (August-September) 
Win the top 50cm-deep layer (mm) (Ws-9); and (d) NOAA-derived NDVI for the 
autumn (September) (NDVI9). Climatological values are averaged over the period from 
1986 to 2005. VB and UK indicate the locations of Ulaanbaatar and Underkhaan, 
respectively. The circles indicate the observational stations. 
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Figure 5.2 Maps of the following correlations: (a) between the P6.9 and W8•9 anomalies for 
the same year; (b) between the W8.9 anomaly for one year and the W 4_5 anomaly for the 
following year; (c) between the P6-8 and NDVI9 anomalies for the same year; and (d) 
between the NDVI9 anomaly for one year and the NDVI5 anomaly for the following year. 
The correlation coefficients are expressed as values multiplied by 100. Stippling indicates 
values exceeding 40 at the 5 % significance level. 
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In general, W 4-5 is positively but weakly correlated with anomalies of P in the following 

June of the same year (P 6) (data not shown). This suggests that the P 6 anomaly may result 

not only from land-surface/atmosphere interaction, but also from external atmospheric 

forcing events, such as extratropical disturbances. 

5.2.3 Autocorrelations 

Based on the patterns observed in Figure 5.2, the Underkhaan station was selected 

for the following time series analysis, because it exhibits pronounced persistence in W 

and NDVI memory. This station, located in the eastern area of Mongolia, is characterized 

by relatively high P and W (Figure 5.1 ), and by steppe vegetation and brown sandy soil 

(Nandintsetseg and Shinoda, 2010). Figure 5.3a illustrates the seasonal changes in W0 , 

NDVI, and SD for Underkhaan. On a climatological basis, the W level is at a yearly 

maximum during the summer months, from July to August, due to the water budget that 

Pis larger than evapotranspiration during the preceding months (Chapter 1). The April 

W is only slightly higher than that of October, implying the addition of snowmelt water. 

In addition to this, the SD reaches a yearly maximum of only 77 mm during February. 

This corresponds to about 15 mm of water, which is only a small portion of the normal W 

level, assuming a reasonable snow density of 0.20 g/cm3 (Badarch, 1987). These facts 

indicate that the spring snowmelt does not have a substantial influence on the spring W 

due to the small amount of snowpack accumulation. 

As mentioned in Section 5.2, we mainly used the modeled soil moisture instead of 

the observed one to fill in the gaps during the soil freezing winter months (November­

March). W m is constant during the winter because there is no addition of snowmelt water 

and negligible evapotranspiration when T is equal to or below 0°C as assumed in the 

model. Figures 5.3b and c show the individual autocorrelations of Wm and NDVI values 

for Underkhaan. It is clearly seen that the Wm anomaly once established in September or 

later is maintained until May. Similar correlations are found for the W0 , although no 

observation is available in the winter. In general, there are two barriers of the soil 

moisture memory between August and September and between June and July of the 

following year. On the other hand, the autocorrelation of NDVI from September (also 

from October) drops abruptly during the winter (Figure 5.3b), probably because snow 
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Figure 5.3 (a) Climatological (1986-2005) seasonal changes in W0 , NDVI, and SD for 
Underkhaan and autocorrelations of (a) W0 (only for the reference of September, circle) and 
Wm, and (b) NDVI using each month as references. The red line indicates autocorrelations of 
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the 5% significance level. 
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cover masks the anomalies (Figure 5.3a). Thus, we call this hidden memory. Then, the 

autocorrelation recovers during May and June of the following year, namely, the onset of 

the growing season, in conjunction with the snow disappearance. Such persistence was 

not found for the autocorrelations with references starting from October to March, likely 

because the NDVI reflects characteristics of snow cover without such persistence. In 

general, there is a barrier of the NDVI memory between July and August. In brief, the 

NDVI memory over the winter months suggests that the large root system of the 

perennial plants dominant in the Mongolian steppe may remain alive and retain as a 

memory of under-ground biomass anomalies under the thin snow cover and in the frozen 

soil, as reported by Shinoda et al. (2010a). 

5.2.4 Comparison between wet and dry years 

Figure 5.4 illustrates the year-to-year (1986-2005) time series of Ws-9 (mm) and 

NDVI9 for Underkhaan station selected the four wettest (1987/1993/1998/2003) and 

driest (1988/1989/1991/2004) soil years during the observational period for a composite 

analysis (Figure 5.5). Water balance with a larger summer P, along with a lower summer 

T, namely, a possible lower E (Figure Sa), led to a higher autumn W value (Figure 5.5b 

and 5c), whereas a smaller summer P (Figure 5.5a) corresponded to a lower autumn W 

(Figure 5.5b). These W differences ofthe same sign were transferred from the autumn to 

the spring; a similar transfer was observed as an NDVI difference (Figure 5.5c). A 

comparison between the wet and dry composites indicates that the growth of perennial 

grasses (predominant in the steppe region) is substantially influenced by the amount of 

root-zone, plant-available soil water during the summer growing season. The above­

ground biomass produced then may be transferred to underground structures in the root 

system during the autumn and winter, providing an initial condition for the following 

spring plant growth. The effect of T on the NDVI appears to be negligibly small during 

the initial growing season (April-May) (Figure 5.5a). Interestingly, the W4 and NDVI5 

anomalies preceded P6 anomaly in the second year, implying that the P6 anomaly may 

result from land-surface/atmosphere interaction. Note that the differences (that IS, 

anomalies) in Wand NDVI persisted from the growing period through the decaying 
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(mm), and NDVI9 for Underkhaan. Triangles and circles indicate years with three highest and 
lowest values of W8.9 used for the composite analysis in Figure 5.5, respectively. 

period nearly for a year. However, the sign of the anomaly was switched to the opposite 

in August. This mechanism remains unsolved. 

The detailed W observations indicated that the levels in the springs for both the dry 

and wet soil years were almost the same as those in the corresponding antecedent 

autumns (Figure 5.6). The Tg at the 20cm depth for the winter months (November­

March) was below 0°C (W not shown during this period in Figure 5.6), indicating soil 

freezing to this depth (even reaching a depth of 150 em; not shown). These results 

strongly suggest that the wintertime carryover of W anomalies was owing to the freezing 

of soil water. In addition, because of the small amount of snow accumulation, the spring 

snowmelt was small and did not have even a small impact on the W level at the 20 em 

depth (and below this) just after the snowmelt (Figure 5.6). This combination of winter 

soil freezing and small snow depth resulted in a strong linkage between the autumn and 

spring W anomalies (Figures 5.2b and 5.3b). 

In contrast, the southern drier region did not show such a significant relationship. 

This is likely due to smaller P and W levels (Figures 5.1b and lc, Figures 5.7b and 7c) 

and thus smaller their anomalies; that is, the W8.9 level is near Wwp, below which it cannot 

fall at Mandalgovi and Dalanzadgad (desert steppe, Figure 5.7a). Also, at Darkhan 

(steppe), W8•9 is relatively small, compared with Underkhaan and lowest Ws tend to 

bottom out at the Wwp level (see the range of W8.9 ± cr in Figure 5.7c); thus lower-than-
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normal anomalies tend to be weakened. On the other hand, at Underkhaan (steppe), Ws-9 

reveals a value near the center in the range between Wwp and Wrc; thus, both the lower­

and higher-than-normal anomalies tend to remain. The larger Wr was established under 

the relatively well developed vegetation (as revealed by NDVI; Figure 5.7d). 

Furthermore, deeper (probably longer) soil freezing at this station is considered to allow 

W anomalies maintained for a longer period (Figure 5.7e). In this context, the Wand 

NDVI anomalies of the same sign persisted through the spring, even until June (Figures 

5 .2b, 2d, and 5 .5b ), although the sign of the anomalies were switched to the opposite in 

August due toP anomalies of the opposite sign (Figure 5.5b). 

Figure 5.8 depicts the correlations among the summer P, late summer W (or NDVI), 

and following spring W (or NDVI) for three Steppe stations which exhibited the marked 

land-surface memory. This shows that the P forcing effectively led to land-surface (i.e., 

W and NDVI) anomalies of the same sign and the anomalies acted as an interseasonal 

memory, whereas the feedback from the land-surface anomalies to summer Pis too weak 

to produce a persistent moisture anomaly in the atmosphere-land surface system. These 

results strongly suggest that the summer P anomalies tend to be determined substantially 

by the stochastic process of rain-bearing disturbances that are activated over this area 

during the summer, but not by the feedback from the land-surface. 
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5.4 CONCLUSIONS 

In this study, we have revealed significant carryover of summer rainfall anomalies to 

subsequent years, mediated by the soil moisture-vegetation system. Namely, changes in 

rainfall led to time-lagged, directly correlated changes in Wand plant production. During 

the following winter, anomalies in W were maintained in the frozen soil and biomass 

anomalies may have been stored as underground structures in the root system. Even 

though these land-surface anomalies are maintained through to the spring, they were 

shown only to have had a weak effect on early summer P. Instead, the W anomalies 

tended to be disturbed by large-scale atmospheric variations during the summer, 

producing subsequent anomalies in P, T, and E. The biomass anomalies may also have 

been disturbed by a similar mechanism, causing a change in plant-available W. 

The autocorrelation analysis of decay time scale (i.e. lag at which autocorrelation 

function equals to 11 e) showed that in the forest steppe zone, the soil moisture memory 

scales during the autumn and winter (6.0-7.0 months) are longer than during the spring 

and summer (3.0-1.8 months) (Nandintsetseg and Shinoda, 2010b). These timescales are 

comparable to those observed at Underkhaan that is located in the typical steppe; 7.6-6.0 

months for the autumn and winter and 2.2-3.0 months for the spring and summer. The 

memory during the spring (2.2 months) is slightly longer than that seen in the cold, arid 

region of central Eurasia, which is located at latitudes similar to the present study area, 

but has deeper snowpack and shallower soil freezing (Shinoda, 2001 ). The drying-up 

period after rainy season is much longer in Mongolia (7.6 months) than that for soil 

moisture in the root zone seen in the tropical semiarid Sahel (1.5 months) (Shinoda and 

Yamaguchi, 2003) and the general decay timescale of2-3 months (related to atmospheric 

forcing) for soil moisture in the top 1 m reported in the extratropics (Vinnikov et al., 

1996; Entin et al., 2000). Thus, it is evident that soil freezing in Mongolia acts to prolong 

the timescale of soil moisture memory. It should be noted that the NDVI, as an indicator 

of vegetation activity, exhibited a longer memory from September of a given year to the 

following July (9 months) through the period of the hidden memory due to the winter 

snow cover (Figure 5 .3c ). The large root system of the perennial plants dominant in the 

Mongolian steppe may remain alive and retain as a memory of under-ground biomass 

anomalies during the winter. 
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In this context, further research is required on land-atmosphere interactions to 

explore the mechanisms by which root-zone soil-vegetation system directly affects the 

drying trend over Eurasia (as mentioned in the introduction) via soil 

moisture/precipitation recycling. Furthermore, the present study pointed to the existence 

of soil moisture and vegetation memories that were maintained in the Mongolian steppe 

from the late summer to subsequent spring when dust emission frequently occurs. The 

concept of the memories will enable us to predict dust emission conditions half year in 

advance, by monitoring and assessing the detailed time course of the soil-vegetation 

system on the ground and by satellite (e.g., Shinoda et al., 2010b; Kimura and Shinoda, 

2010). This approach is challenging, but potentially very useful for the establishment of 

an early warning system for dust storm. 
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CHAPTER6----------------------------

General Conclusions and Future Tasks 

The present study investigated soil moisture dynamics and modeling, its 

relationships with climate and vegetation activity, and soil moisture-vegetation memories 

in the cold, arid climate of Mongolia, with a focus on three vegetation zones: forest 

steppe, steppe and desert steppe. A unique long-term, quality-controlled soil moisture 

datasets across Mongolia have been used in this study. A simple water balance model 

was developed for application in the cold, arid regions such as Mongolia, by considering 

soil freezing and snow melting. The model was validated by comparison with long-term 

observations available for the region, thereby demonstrating its efficiency compared with 

the widely used PDSI. Moreover, the present model has an advantage in identifying 

abrupt changes on a shorter timescale in response to precipitation. This study is the first 

comprehensive analysis on soil moisture dynamics in Mongolia and moreover, it was 

revealed the memory processes of soil moisture and vegetation in the cold, arid climate. 

In terms of practical applications, the present study is essential for improving the future 

real-time drought monitoring system and its early warning system in Mongolia, thereby 

providing valuable information for decision-makers and herder. Furthermore, the 

advantage of this model is the use of a simple calculation that derives daily soil moisture 

from operationally observed daily data and its wide applicability to the cold, arid regions 

throughout the world. 

Climatological seasonal and spatial changes in observed root-zone available soil 

moisture were comprehensively analyzed for the entire Mongolia in Chapter 2. The 

results showed that the soil moisture varies seasonally, depending not only on the balance 

of precipitation and evapotranspiration but also on winter soil-freezing and spring 

snowmelt. We documented that there were three distinct phases; spring drying, summer 

recharge, and autumn drying of which the plant phenological phenomena of Stipa spp. 

were related to. 

Chapter 3 describes multi-decadal trend in soil moisture and memory based on 

estimated daily soil moisture during 1961-2006 for this region by using the water 
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balance model. On the interannual basis, all three vegetation zones showed a decreasing 

trend in soil moisture and shortening in the summer recharge phase during the study 

period due to decreased precipitation and increased potential evapotranspiration, although 

these drying and shortening trends were significant (p < 0.05) only in the forest steppe. 

In chapter 4, the effect of root-zone soil moisture on vegetation activity was 

examined. Vegetation activity was more strongly correlated with soil moisture than with 

precipitation, suggesting that soil moisture plays an immediate role in controlling 

vegetation activity on seasonal and interannual timescale. A comparison between years 

with high and low vegetation revealed that a significant difference in precipitation led to 

a half-monthly time-lagged significant difference in soil moisture, finally a difference in 

vegetation activity, with time lags of about one month. 

Soil moisture and vegetation memories were comprehensively investigated and 

highlighted in Chapters 4 and 5. A new observational evidence of a half year-long 

moisture memory mechanism mediated by the soil moisture-vegetation system was 

found over Mongolia. The analysis result shows that interannual anomalies of soil 

moisture and vegetation due to rainfall during a given summer are maintained through 

the freezing winter months to the spring, acting as an initial condition for subsequent 

summer land-surface and rainfall conditions. Vegetation anomalies were likely stored as 

underground structures in the root system. To the best of our knowledge, this is the first 

study to point to the combination of soil moisture and root memories as predictor of 

vegetation in Mongolia. 

Several previous studies have reported that the current and preceding year's 

precipitation have a strong influence on NDVI of the current year in Africa (Martiny et 

a!., 2009) and North America (Wang et al., 2003). Iwasaki (2006) examined the potential 

of predicting NDVI using the leading winter and spring precipitation and air temperature 

in Mongolia, revealing that NDVI is influenced by June precipitation with the additional 

influence of December precipitation. This relationship can be explained by the duration 

period of soil moisture memory remaining in the root zone as described in Chapter 4. 

In the earth system, time scales of land (snow cover- 3 months, NDVI- 4 months) 

and ocean (sea surface temperature - 5.5 months and sea ice - 4.5 months) surface 

anomalies are considerably longer than those of atmospheric fluctuations (Walsh et al., 

1985; Shinoda and Garno, 2000; Shinoda eta!., 2003). The autocorrelation analysis of 

decay time scale of soil moisture (i.e. lag at which autocorrelation function equals to lie) 

presented in Chapters 4 and 5. The cold-season climate with low evapotranspiration and 

73 



strong soil freezing acts to prolong the decay time scale of autumn soil moisture 

anomalies to 6-7.6 months that is among the longest in the world. The memory during 

the spring (1.8-2.2 months) in Northern Mongolia (forest steppe and steppe zones) is 

slightly longer than that seen in the cold, arid region of central Eurasia, which is located 

at similar latitudes to the present study area, but has deeper snowpack and shallower soil 

freezing (Shinoda, 2001 ). The drying-up period after rainy season is much longer in 

Northern Mongolia (6-7.6 months) than that for soil moisture in the root zone seen in the 

tropical semiarid Sahel (1.5 months) (Shinoda and Yamaguchi, 2003) and the general 

decay timescale of 2-3 months (related to atmospheric forcing) for soil moisture in the 

top 1 m reported in the extratropics (Vinnikov et al., 1996; Entin et al., 2000). Thus, it is 

evident that soil freezing in Northern Mongolia acts to prolong the timescale of soil 

moisture memory. 

In Chapter 4, NDVI for a given year showed a weak dependence on the preceding 

year's NDVI. Shinoda et al. (2010) reported that in the Mongolian steppe, manipulated 

soil moisture deficit resulted in a marked reduction in above-ground phytomass but did 

not substantially affect below-ground phytomass (which was several times greater than 

above-ground phytomass ). The effect of snow mass memory as seen in Central Eurasia 

(Shinoda 2001), was not dominant in Mongolia, because the yearly-maximum snow 

depth is only 3.4 em in this region (Morinaga et al., 2003). Therefore, it is likely that the 

large root system provided a basis for rapid recovery of above-ground phytomass, 

leading to a weak carry-over of vegetation anomalies, as revealed by NDVI in the present 

analysis. The concepts of soil moisture and root memory presented in the present study 

would provide a useful basis for an early warning system of reduced pasture production 

during drought. 

This thesis results open many routes for future research in the cold, arid region such 

as Mongolia. Further research is required on land-surface and atmosphere interactions, 

particularly on the mechanisms of land-surface (soil moisture and vegetation) feedback 

and its effect on drought. Our present result on extreme years suggested that such an 

interaction could possibly act to prolong the drought conditions. Indeed, further 

investigation should be made of how this interaction influences the recent drying trend in 

this area. 

Furthermore, the present study pointed to the existence of soil moisture and 

vegetation memories that were maintained in the Mongolian steppe from the late summer 

to subsequent spring. These soil moisture and vegetation root memories are most likely to 
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affect dust emission. Severe dust events occur frequently during the spring in arid regions 

of East Asia, particularly in Mongolia and China (e.g., Kurosaki and Mikami, 2005). 

Therefore, further research is required on the mechanisms of vegetation/soil moisture 

memory and aeolian processes. This approach will enable us to predict dust emission 

conditions half year in advance, by monitoring and assessing the detailed time course of 

the soil moisture and vegetation system on the ground and by satellite. 
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SUMMARY 

Soil moisture plays a central role in the global water cycle and climate system by 

controlling the partitioning of water and energy between the land-surface and the 

atmosphere. Soil moisture acts as a memory of anomalies in the water cycle, in turn, it 

has a delayed and durable influence on the overlying atmosphere through land-surface 

fluxes of heat and moisture and plays as a bridge between meteorological drought 

(deficits in precipitation) and agricultural drought (failures of plant growth). A number of 

drought indices have been proposed and applied to quantify drought conditions, although, 

presently very few studies have used ground-observed soil moisture as an indicator of 

agricultural drought in the world. A large drying trend has been observed in a soil 

moisture index over land areas in the Northern Hemisphere since the middle 1950s, 

including Mongolia, affecting the pastureland that is used for livestock. It has been found 

that soil moisture deficits limit the growth of pasture in Mongolia. Hence, accurate 

extensive assessment and modeling of soil moisture dynamics in this pastureland is 

required for reliable and timely monitoring of agricultural drought. This thesis 

represented recent advances in the observation and modeling of soil moisture dynamics 

and in analyses of its relationships with climate and vegetation activity in the cold, arid 

climate of Mongolia with a focus on three vegetation zones; forest steppe, steppe, and 

desert steppe. This study is the first comprehensive analysis on soil moisture dynamics in 

Mongolia and moreover, it was revealed the memory processes of soil moisture and 

vegetation in the cold, arid climate. 

Firstly, the seasonal and spatial changes of soil moisture and its climatology and 

modeling were demonstrated. In this analysis, a unique long-term, updated soil moisture 

and meteorological datasets for 26 stations during 1986--2005 were used. The results 

showed that the soil moisture varies seasonally, depending not only on the balance of 

precipitation and evapotranspiration but also on winter soil-freezing and spring snowmelt. 

In general, there was a latitudinal gradient in soil moisture content, with the southwestern 

soils drier than the northeastern soils. The seasonal change in soil moisture was small and 

the seasonal pattern was similar throughout Mongolia. We documented three distinct 

seasonal phases; the spring drying, summer recharge, and autumn drying and their 
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relationships to plant phenological phenomena of Stipa spp. that represents the dominant 

species in the Mongolian steppe. Over Mongolia, the available soil moisture was about 

30% of the soil field capacity, while in the desert steppe; soil moisture was close to the 

wilting point throughout the year. A simple water balance model was developed for 

application in the cold, arid regions such as Mongolia, by considering soil freezing and 

snow melting. The model simulated the observed seasonal and interannual soil moisture 

variations reasonably well (r = 0.75,p < 0.05). This model will provide a useful tool for a 

reliable and timely monitoring of agricultural drought for decision-making and herding 

management in Mongolia. 

Secondly, multi-decadal trends and memory of soil moisture were assessed in three 

vegetation zones using the modeled daily soil moisture during 1961-2006. On an 

interannual basis, the modeled soil moisture was more strongly correlated with the 

observed soil moisture (r = 0.91,p < 0.05) than the widely used Palmer Drought Severity 

Index (r = 0.65, p < 0.05). All three vegetation zones showed a decreasing trend in soil 

moisture and shortening in the summer recharge phase due to decreased precipitation and 

increased potential evapotranspiration. Although only in the forest steppe revealed 

significant (p < 0.05) drying trend due to significantly decreased precipitation. Soil 

moisture memory analysis showed that the decay temporal scales of soil moisture 

anomalies were 6-7 months in the autumn and winter, which is larger than that in spring 

and summer of 1.8-3 months in the forest steppe. This indicates that soil moisture acts as 

an efficient memory of precipitation anomalies via the soil freezing and as an initial soil 

moisture condition for the subsequent summer land-surface. 

Thirdly, the relationship between root-zone soil moisture and vegetation activity in 

the Mongolian steppe was analyzed based on remotely sensed NDVI data for seasonal 

and interannual periods during 1982-2005. Vegetation activity was more strongly 

correlated with soil moisture than with precipitation, suggesting that soil moisture plays 

an important and immediate role in controlling vegetation activity. A comparison 

between years with high and low vegetation revealed that that a significant difference in 

precipitation led to a half-monthly time-lagged significant difference in soil moisture, 

finally a difference in vegetation, with time lags of about one month. Interannual 

fluctuations in vegetation were strongly dependent on soil moisture of the current year (r2 

= 0.53) and even more strongly dependent on a combination of the current year soil 

moisture and vegetation of the preceding year (r2 
= 0.55). This result suggests that 

vegetation anomalies are likely stored as underground structures in the root system. To 
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the best of our knowledge, this is the first study in Mongolia to point to the combination 

of soil moisture and root memories as predicting parameter for vegetation activity. 

Fourthly, new observational evidence of a half year-long moisture memory 

mechanism mediated by the land surface that is manifested in the cold, arid climate of 

Mongolia was found. The analysis result showed that significant carryover of summer 

rainfall anomalies to subsequent years, mediated by the soil moisture-vegetation system. 

Namely, changes in precipitation led to time-lagged, directly correlated changes in soil 

moisture and plant production. During the following winter, anomalies in soil moisture 

were maintained in the frozen soil and biomass anomalies may have been stored as 

underground structures in the root system. Even though these land-surface anomalies are 

maintained through to the spring, they were shown only to have had a weak effect on 

early summer precipitation. Instead, the soil moisture anomalies tended to be disturbed 

by large-scale atmospheric variations during the summer, producing subsequent 

anomalies in precipitation, temperature, and evapotranspiration. The cold-season climate 

with low evapotranspiration and strong soil freezing acts to prolong the decay time scale 

of autumn soil moisture anomalies to 7.6 months in the steppe, which is the longest in 

Mongolia and among the longest in the world. In future applications, the concepts of soil 

moisture and vegetation memories presented in the present study would provide a useful 

basis for an early warning system of reduced pasture production during drought. 
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SU島'[1¥佐ARYIN JAPANESE 

土壌水分は、地表面と大気の間の水・エネルギーの分配を通して、世界の水

循環と気候システムの形成に大きく関与している。土壌水分は、水循環の異常

を保持する働き(メモリ効果)があり、熱・水の地表面フラックスを通して、

時差をもって大気に持続的な影響を及ぼす。干ばつ指標の多くは干ばつ状態を

定量化するため提案されてきたが、現在のところ、地上観測の土壌水分を農業

干ばつの指標として用いている研究は世界でもごくわずかである。 1950年代の

中頃から、北半球の広域で顕著な土壌の乾燥化が観測されており、モンゴノレの

放牧地にも影響を及ぼしている。この農業干ばつをタイムリーに信頼できるモ

ニタリングをするために、放牧地の土壌水分動態の正確な広域的評価とモデリ

ングが必要である。本論文は、モンゴノレの寒冷で、乾燥した気候における(とく

に、 3つの植生帯に注目して)、土壌水分動態の観測・モデリングと、土壌水分

と気候・植物活動との関係の解析において、新知見を提示した。本研究は、モ

ンゴルにおいて土壌水分動態を包括的に解析した最初の研究であり、寒冷・乾

燥気候下における土壌水分と植生のメモリ動態を解明している。

本論文では、第 1に、土壌水分の季節的・地域的変化とその気候的特性を龍

ベ、そのモデリングを行った。本解析では、他に類のない長期間の土壌水分・

気象データセットを用いた。その結果、土壌水分は蜂水と蒸発散の微妙なバラ

ンスばかりでなく、冬の土壌凍結と春の融雪に影響を受けながら、季節的に変

動していることがわかった。一般的に、土壌水分には南北経度があり、南西で

小さく北東で大きい。モンゴノレ全域にわたって、その季節変化は小さく類似し

ているが、 3つの季節、すなわち、春の乾燥化季、夏の湿潤化季、春の乾燥化季

に区分することがでた。また、モンゴ、ノレ草原の優占種で、ある Stipaspp.の植物季

節との関係もみられた。モンゴルでは、闘場容水量のおよそ 30%しか土壌水分

がなく、砂漠ステップでは、一年を通じてしおれ点に近い。モンゴノレのような

寒冷・乾燥気候に適用できる、土壌凍結と融雪を考慮した単純な土壌水分モデ

ノレを開発し、実測値の季節・経年変化をうまく再現した。このモデルは、政策
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決定や家畜管理のための、農業干ばつの信頼性のあるタイムリーなモニタリン

グに役立つものと考えられる。

第 2に、土壌水分モデルを用いて、 3つの植生帯における土壌水分の数十年

規模の傾向 (1961・2006年)とメモリを調べた。経年変化において、モデルによ

る推定値は、世界で広く使われているパノレマー干ばつ強度指数よりも観測値と

高相関を示した。長期的傾向に関しては、 3つの植生帯ともに、降水の減少と可

能蒸発散の増加により、土壌水分が減少し、夏の湿潤化季が短くなったが、土

壌水分の減少傾向は森林ステップのみで有意であった。森林ステップにおいて、

秋・冬の土壌水分偏差の減衰時間スケーノレは 6""7ヶ丹で、春・夏の1.8""3ヶ月

より大きい。このように、凍結を通して土壌水分が降水偏差の有効なメモリと

して働き、翌夏の土壌水分の初期状態となっている。

第 3に、モンゴル草原における根閣の土壌水分と衛星による植生活動の季節

的・経年的な関係を解析した。植生活動は降水よりも土壌水分に強い相関があ

り、土壌水分は降水と植生活動の変化の仲立ちをしているものと考えられる。

植生の多い年と少ない年の比較から、降水偏差は土壌水分偏差に約半丹遅れで

影響し、植生偏差に約 1ヶ月遅れで影響することがわかった。棟生の経年変動

は同年の土壌水分だけより、前年の植生との組み合わせのほうに高相関を示す

が、これは根系が植生鋪差を保持することを示唆している。このような土壌水

分・根系メモリの組み合わせで植生活動を予測する試みは本研究が初めてであ

る。

第 4に、寒冷・乾燥気候下において、半年にわたる地表面(土壌水分・植

生)の水分メモリについて新事実を示した。すなわち、夏の降水鏑差が、時差

をもって、土壌水分と植物生産の偏差を引き起こし、続く冬には、それぞれの

儲差が凍結水と根系として保持された。しかし、その地表面偏差は大規模な大

気擾乱で撹乱され保持されず、初夏の降水へ影響は小さい。寒候季の顕著な土

壌凍結と小さい蒸発散により、草原における秋の土壌水分偏差の減衰時間スケ

ーノレは 7.6月とそンゴ、ノレ国内で、最も大きく、世界的にみても最も大きい部類には

いる。本研究で明らかになった土壌水分・植生メモリの概念は、将来、干ばつ

時の牧草生産の減少を予測する早期警戒システムに応用することが可能であろ

つ。
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