3d 遷移金属の XANES

徳吉 哲夫・中井 生央 電気電子工学科

XANES of 3d transition metals Tetsuo TOKUYOSHI and Ikuo NAKAI Department of Electrical and Electronic Engineering Tottori University, Tottori, 680 Japan E-mail: nakai@ele.tottori-u.ac.jp

Abstract: We report X-ray absorption near edge structure (XANES) for 3d transition metals such as Ti, Cr, Mn, Fe, Co, Ni and Cu. The XANES spectrum has a pre-peak which corresponds to the 1s-4p transition. The more the nearest-neighbor atomic distance increases, the more the pre-peak grows.

Key words: XANES, 3d transition metals, pre-peak, nearest-neighbor distance, energy level, degeneracy

1. はじめに

物質の構造や電子状態を調べる手段として、X 線回折,電子顕微鏡,中性子散乱,光電子分光な ど数々の方法が用いられている.その中で特定の 構成元素の電子状態や局所構造(原子間距離,配 位数など)を知る方法として,XAFS(X-ray absorption fine structure)解析が近年注目されてい る.

XAFS 測定に有効な放射光(強力なX線)を発 生する国内の施設には、岡崎国立共同研究機構分 子科学研究所 UVSOR 研究施設(愛知県東岡崎 市)、高エネルギー加速器研究機構物質構造科学 研究所放射光研究施設(茨城県つくば市)などが ある.また、更に強力な第三世代の放射光施設と しては ESRF(フランス、グルノーブル)、APS(ア ルゴンヌ、アメリカ)、現在建設中の SPring-8(兵 庫県西播磨)があげられる.

我々は, XAFS の中でも電子状態を知ることが できる XANES(X-ray absorption near edge structure) に着目し, 3d 遷移金属について測定したので報 告する.

2. 原理

ここでは、X線を物質に照射したときに起こる 現象とそのときに得られる情報について説明す る.

2.1 X線の吸収

物質にX線を照射すると、それを構成する元素 固有のエネルギーのX線が吸収される.このX線 の吸収によって、内殻電子が電子の詰まっていな い空の軌道に励起される.図1に示すように、例 えば Fe 原子の場合、7112eVのX線を吸収して K 殻(1s軌道)の電子がN殻(4p軌道)に上がる.

図1 Fe 原子のK端X線吸収

このとき,空軌道のエネルギーやその電子分布 は、同じ原子でも酸化数,配位原子の種類,配位 の対称性などにより容易に変化する.そこで,X 線の吸収スペクトルを観測すると特定の原子の電 子状態やその周囲の局所構造を知ることができ る.

X線を試料に照射すると,一部は試料に吸収される.このため,試料を透過する前の入射X線強

度 L と透過後の X 線強度 I との間には次のような 関係がある。

$$\mu d = \ln \frac{I_0}{I} \tag{1}$$

ここで, μは吸収係数, d は試料の厚さ, μ d は X線の吸収量を示す.

2.2 XANES & EXAFS

図2がFe 原子について XAFS 測定を行った結 果である. 横軸が照射したX線のエネルギー (eV),縦軸が吸収量を表している. この XAFS 波形の吸収端と呼ばれる部分では,X線を吸収し て内殻電子が外殻空軌道に励起されるため,吸収 量が急激に増加している. XAFS はエネルギー範 囲の違いから,XANES と EXAFS (extended X- ray absorption fine structure)に分けられる. XANES は 吸収端付近の微細構造を示し,EXAFS は吸収端 から 50eV 以上の微細構造を指す. XANES 波形 を解析することにより選択した種類の原子での電 子状態がわかるのに対して,EXAFS 波形からは その原子周辺での局所構造がわかる.

1

娟

そ立

るう

次

6

6

5

起

に

電

方 表 n

り 1/2 ル と

 $\{n$

と

3. 実験方法

測定は、高エネルギー加速器研究機構物質構造 科学研究所放射光研究施設の実験ステーション BL-12C で行った[1]. 図 3 に測定系の概略を示す. シンクロトロン放射光蓄積リングから放射された

図3 実験ステーション BL-12C の構成[1] MBS:主ビームシャッタ, BBS:ブランチビームシャッタ, DDS:下流シャッタ

連続 X 線を Si(111) モノクロメータで単色化した 後,試料直前のスリットでビームサイズを 0.5 × 1mm² に成形し,試料に照射する.試料前後の X 線強度 *I* と *I* をイオンチェンバーで測定し,式(1) より吸収量を求める.試料は 3d 遷移金属薄膜で 厚さは 5~10 μm である.また試料の温度は 300K である.

4. 測定結果

図4に測定した 3d 遷移金属の XANES 波形を 示す.各元素で異なったエネルギーのX線を吸収 し、また試料の厚さなどの測定条件の違いによっ て、X線吸収量が異なる.そこで各波形を比較す るためにエネルギーは吸収端のエネルギー E_0 (eV)との差を示し、吸収量は1に規格化してあ る.なお吸収端のエネルギーは、各 XANES 波形 における最もエネルギーの低い変曲点での値とす る(表1).

5. 考察

XANES 測定結果を見ると、プレピーク(吸収 端付近に現れるS字状のピーク)が顕著なものと そうでないものがある.これは、内殻電子の外殻 空軌道へのつまり方が元素により異なるためであ ると考えられる.そこでまず吸収端のピークがは っきりとしている希土類元素 Gd について考え, 次に結晶構造の異なった酸化銅 Cu₂O, CuO につ いて考える.そして最後に 3d 遷移金属元素につ いて考察する.

5.1 電子の遷移条件

X線の吸収は原子での電子状態の変化を伴って 起こる.そこで、X線を照射したときの電子遷移 について詳しく知っておく必要がある.

原子内の電子はそれぞれの軌道を運動し、その 電子軌道は4つの量子数、すなわち主量子数 n、 方位量子数 l、磁気量子数 m、スピン量子数 s で 表される. 主量子数 n、方位量子数 l は整数で、 $n \ge l + 1$ 、磁気量子数 m $d - l \le m \le l$ でやは り整数値をとる. これに対しスピン量子数 s $d \pm 1/2$ という半整数をとる. 内殻電子はX線のエネ ルギーを吸収して外殻の空軌道に遷移する. この とき、内殻電子の初期状態における量子数を $\{n_0, l_0\}$,終状態における励起電子の量子数を $\{n, l\}$ とすると、次の選択則が成り立つ軌道に内殻電子

図4 3d 遷移金属の XANES 測定結果

表1 3d 遷移金属の K 吸収端のエネルギー E

元素	原子番号	$E_0(eV)$
Ti	22	4963.1
Cr	24	5984.5
Mn	25	6532.1
Fe	26	7104.6
Co	27	7705.8
Ni	28	8322.1
Cu	29	8970.0

が励起される.

上述の選択則より,離散軌道へ遷移する場合は 線スペクトルになり,イオン化準位以上の連続帯 へ遷移する場合には鋭い吸収端を持つ連続スペク トルになる.X線の吸収によりK殻の電子が連続 帯に遷移するのがK吸収であり,L殻の電子が関 与する場合はL吸収と呼ばれる.また、L吸収に は3つの吸収があり、エネルギーの低い順にL_I, L_{II},L_{II}と呼ばれ、M殻の場合には $I \sim V$ まで 5つある.連続帯はあらゆる角運動量を持つ部分 の和に展開できるため、どの準位からでも連続帯 への遷移は可能である.こうした特性吸収端のエ ネルギーは各元素に特有であり、原子番号順に高 くなる(表1).

5.2 Gd の吸収端

図5は希土類元素 Gd の L 吸収端での XAFS で ある. 図からわかるように3つの吸収端(L_I, L_{II}, L_{III})が現れている.

図5 希土類金属 Gd の XAFS

表2 Gd の電子配置

原子番号	電子配置	
64	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 4f ⁷ 5s ² 5p ⁶ 5d ¹ 6s ²	
L _Ⅰ 吸収端:2s 電子 → 6p 軌道		

-					1
LII	吸収端	:	2p電子	>	5d軌道
LⅢ	吸収端	:	2p電子	\rightarrow	5d軌道

Gd の電子配置(表 2)と式(2)の選択則を考慮 すると、 L_{I} 、 L_{II} 、 L_{II} の電子は図6に示すよう に励起される. L_{III} 吸収端と L_{II} 吸収端の鋭いピ ークは 2p 電子が 5d 軌道に励起されるときに現れ

図6 選択則に基づく Gd の電子遷移

る. これには、外殻空軌道に入ることのできる電子の数が関係している. 外殻空軌道の 5d 軌道に はすでに1個の電子が入っているが、この軌道に は更に9個の電子が入ることができる空席がある. よって、p 軌道の6個の電子は容易に 5d 軌 道に遷移するので吸収量が大きくなる. しかしピ ークの大きさには違いが見られ、L III ピークの方 が L II ピークに比べて大きい. これは、励起され る電子の数に違いがあるためである. L III からは4 個の電子が、L II からは 2 個の電子がそれぞれ励 起される. したがって、電子の数が多い方が吸収 量が大きくなる. L III と L II の吸収量の大きさを 比較する(実際には、面積で比較する方がよい) とLⅢがLⅡの約2倍になっていることがわかる (図5).これは、励起された電子数の割合と一 致している.したがって、吸収端でのピークは外 殻空軌道の状態と励起される電子の数に関係して いる.

5.3 酸化鍋 Cu₂O, CuOの XANES

Cu の酸化物には Cu₂O (酸化第一銅) と CuO (酸 化第二銅) があるが,その結晶構造は図7に示す ように異なっている.Cu₂O の場合,O²イオンに ついては正4面体型の4配位,Cu⁴イオンについ ては平面の2配位であり,クリストバライト (cristobalite)型の構造である.CuO の場合,O²イ オンについてはCu₂O の場合と同様の配位で,Cu² イオンのまわりの結合は正方形である.Cu²イオ ンについては平面型の4配位である.Cu² イオンの距離は 1.95 Åで共有結合性が大きいこと を示している.

この Cu₂O と CuO についての K 吸収端付近の XANES は図 8 のようになる[2]. Cu の電子配置 は 3d¹⁰4s¹ であるから,空軌道は 1 価の銅の場合 4s と 4p であり,2 価の銅の場合にはそれに加えて 3d も空軌道となる.このとき 1s 電子は式(2)の 選択則より 4p 軌道へのみ励起される.孤立原子 の 4p 軌道は 3 重に縮退しているが,結晶構造が 異なった Cu₂O と CuO では配位の違いなどにより 4p 軌道は分裂し,特徴的な微細構造が現れる.

図8 (a)CuOと(b)Cu₂Oの XANES (文献[2]より引用)

ここではこの酸化銅の微細構造のうちプレピー クに注目し、原子間距離との関係を調べる. Cu₂O と CuO の原子間距離は表 3 のようになる[3, 4].

表3 酸化銅の各原子間距離[3, 4]

	格子定数 (Å)	Cu-O距離 (Å)	Cu-Cu距離 (Å)
Cu ₂ O	4.2696	1.84	3.01
CuO	—	1.95	2.76

これを見ると, プレピークが現れている Cu₂O の 方が CuO に比べて, Cu-Cu 原子間距離が大きい. このことから, プレピークが現れる一つの原因と して, 原子間距離の大きさが考えられる.

5.4 3d 遷移金属の XANES

3d 遷移金属における原子間距離とプレピークの関係について調べるために、図4の XANES 波形を表4に示す最隣接原子間距離の大きさの順に

	原子		最隣接原子
元素	番号	結晶構造	間距離(Å)
Ti	22	hcp	2.89
Cr	24	bcc	2.50
Mn	25	cubic complex	2.24
Fe	26	bcc	2.48
Co	27	hcp	2.50
Ni	28	fcc	2.49
Cu	29	fcc	2.56

表4 3d 遷移金属の構造と原子間距離[5]

図9 3d遷移金属のXANES (原子間距離での比較)

並べてみる. 図9から分かるように原子間距離の 大きなものほど,矢印で示した吸収端付近により 大きなプレピークが現れる傾向がある. これは, 5.3で述べた酸化銅 Cu₂O, CuO と同様の傾向で ある. 言い換えると原子間距離の大きいものにプ レピークが顕著に現れる.

遷移金属の XANES 波形を Gd の波形と比較す ると,遷移金属での吸収量は Gd ほど急激に増加 していない.そこで、1s 電子が外殻空軌道の 4p 軌道に励起される場合について考えてみる.遷移 金属の電子遷移は電子配置(表5)と式(2)の選 択則を考慮すると図10のようになる.プレピー クが顕著なものの場合,プレピーク後の吸収(15 ~20eV付近)に比べてプレピークでの吸収が急 激に増加している.したがって、ここでは 1s 電 子が比較的 4p 軌道に入りやすくなっている.す なわち図11に示すように,まず縮退している軌 道(4個の電子の空席)に 1s 電子が励起されプ レピークを示す.その後,X線エネルギーの増加 に伴って,1s 電子がより高いエネルギーの 4p 軌 道(2個の電子の空席)に励起されてプレピーク 後の吸収が観測される.

表5 3d 遷移金属の電子配置

	原子	
元素	番号	電子配置
Ti	22	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ²
Cr	24	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹
Mn	25	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ²
Fe	26	1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁶ 4s²
Co	27	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ²
Ni	28	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ²
Cu	29	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹

図10 3d 遷移金属の電子遷移

方位量子数 l=2 をもつ 3d 軌道は軌道角運動量 の z 成分 $L_2=mh/2\pi$ ($m=0,\pm 1,\pm 2$) に対応して5 つあるが,自由原子ではこれらの5つの状態は縮 退している.しかし,金属内においては周りの原 子が作る結晶場の影響で 3d 軌道の縮退が解けて, 軌道角運動量の z 成分の期待値はほとんどゼロと なる[6]. これと同様のことが 4p 軌道にもあては まるとすると,3d 遷移金属の結晶場は原子間距 離の増加に伴って減少し,その結果,図11に示 すように 4p 軌道が縮退しプレピークとなって現 れると考えられる.

図11 プレピークの現れる原因

5.5 対称性の影響

表4に示すように、各金属元素は結晶構造,配 位数など対称性が大きく異なっている.系の対称 性が電子軌道の縮退と分裂に影響することはよく 知られている.

そこで対称性とプレピークの関係を見るため, 図4の XANES 波形を対称性の順に並べて整理し たのが図12である.これを見ると対称性の最も 低い Mn においては,確かに4p 軌道は分裂しプ レピークが最も小さくなっている.しかし,同じ hcp 軌道の Co と Ti, あるいは同じ fcc 構造の Ni と Cu を比較すると,同じ対称性であってもプレ ピークの現れ方は大きく異なっている.また対称 性の高い bcc 構造の Fe と Cr においてもプレピー クは小さく,4p 軌道は縮退していない.このように3d 遷移金属では結晶構造の対称性は4p 軌道 の分裂に大きく寄与しているとは考えられない.

図12 3d 遷移金属の XANES (対称性での比較)

6.まとめ

3d 遷移金属の XANES 波形のピークに着目し, それと原子間距離との関係を調べた. 図13に模 式的に示すように,顕著なプレピークは最隣接原 子間距離の大きな金属で観測される. これより原 子間距離の大きなものほど結晶場の影響が少ない ため,4p 軌道は縮退し,プレピークがより顕著 になると結論される.

図13 3d 遷移金属と酸化銅における隣接金属原子間距離[5]とプレピークの関係

謝辞

本研究は大内伊助氏(徳島文理大学工学部), 前田裕宣氏(岡山大学理学部)との共同研究の一 部である. XANES 実験は高エネルギー加速器研 究機構放射光研究施設 Advisory Committee の承認 (Proposal No. 95G022)の下に行われた.

参考文献

 [1] M. Nomura and A. Koyama: KEK Report 95-15, pp. 1-21, 1996.

- [2] 宇田川康夫: X線吸収微細構造 XAFS の 測定と解析-, 日本分光学会測定法シリーズ 26,(株)学会出版社センター, pp. 8-10, 1993.
- [3] 田部浩三, 清山哲朗, 笛木和雄: 金属酸化物と 複合酸化物, (株) 講談社, pp. 1-2, 1978.
- [4] F.S. ガラッソー:ファインセラミックスの結 晶化学,(株)アグネ技術センター, pp. 49-87, 1984.
- [5] C. Kittel: Introduction to Solid State Physics, 7th ed., John Willy & Sons, Inc., pp. 23-24,1996.
- [6] 水谷宇一郎: 材料工学シリーズ 金属電子論 (下),(株)内田老鶴圃, pp. 382-384, 1996.

(受理 平成9年8月25日)