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1 Introduction

Let B~ be the set of all hyperplénes in Euclidean space R”. The Radon transform for R”
is a mapping of a function / on R” to a function 7 on Eg», where 7 (&), & € B, is the value
of integration of  on &. S. Helgason [H] formulated the Radon transform in group-theoreti-
cally in more general settings. His formulation is as follows. Let G be a locally compact
unimodular group and X and E two left coset spaces of G by closed unimodular subgroups H
respectively: -

x and Hg

X=G/Hx, E=G/Hz.

Under some more assumptions, he considered the Radon transform for the double fibration:

G/(HxNHz)
v N
G/Hx G/Hz .

In the present paper we consider (n+1)-dimensional Minkowski space X . Let M (1, %) be
the affine motion group of X, i.e. the semidirect product of the proper Lorentz group SO, (1,
7n) with X. Then X == M (1, n)/S0,(1, n). Let E be the set of all hyperplanes in X . Then
E is not single homogeneous space of M (1, ») but is the union of three homogeneous spaces
of M(1, n). So this gives an example of more general situation than that of Helgason’s
formulation. However, the results are similar to those of Euclidean cases (cf. [L], [H]).
We get the inversion formula for Radon transform and the unitarity of the composition

opetator of Radon transform and a certain pseudo-differential operator.
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Euclidean space R” is the tangent space of a Riemannian symmetric space SO, (1, #)/SO
(n) at the origin. On the other hand Minkowski space X is the tangent space of a semisimple
symmetric sapce SO, (1, n+1)/80,(1, ) at the origin. Let (G, H) be a semisimple (i.e. an
afffine) symmetric pair and g:h—l—q be the corresponding Lie algebra decomposition. Then q
is a pseudo-Euclidean space whose metric is induced by the Killing form of q and whose affine
Cartan motion group is the semidirect product H with q. So our study is the first step of

reserches on such general cases.

2 Hyperplanes in Minkowski space

Let X be an n+1 dimensional real vector space with inner product < , > of signature (1,
n). We fix a Lorentzian orthonormal basis ¢, e, e, such that <e;, ep=—1(i=7=0),=
1(E=7>0),=00#/). Then <x, y>=—x3+x3 + -+ %9, for x =120+ 161+ + 2,0, and y =
Yoot e e Ynn. We denote by E the set of all hyperplanes in X. We assume that a

hyperplane & € E is given by an equation
Yo+ mx +Faw,=c

for a € R™'(a#0) and cER. If <a, a>#0, we put wy=ah/ | <a, a> | ,o;=a;// [<a, a> |
(G>0) and p=cA/ T<a, &> T. If <a, a>=0, we put wy=—a,/ | a, | ,w,=a,;/ | ao | (7>0) and
p=c/ | a | . Then & is given by

K, @2~ — %ot X0+ F X, =p,

where (@, w>=*1or{w, @>=0, w=+1. We denote by £=&(w, p). Note that &(w, p) =
E(—w, —p) and &(kw, 0)=&(w, 0) for wEX and kER.

Let Xt= {w€X, (o, @>=—1, @>0} and X = {wEX (o, @>=—1, w,<0}. X* are
the spaces of the timelike unit vectors. And we put X, = {wE€X; {w, w>=1}, Xi= {w<=X;
(@, @>=0, >0} and X;= {0€X; (@, @>=0, w<0}. X, is the space of spacelike unit
vectors and X§ are the spaces of lightlike vectors. And we consider subspaces S, = {w&X;

(@, @>=0, w=:=1}. A parameter space of B is X*U (X,/Z) US,, where Z,= {+1}.
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3 Action of the affine motion group

Let G=S0,(1, »n) be the proper Lorentz group, that is, the group of (#+1, »n+1) matrices
g=(g;), 0=<4, j<m, which leaves the indefinite inner product < , > and detg=1, go=1. Let
K be the subgroup of G of k= (k) satisfying ko, =1. Then ky;=k;=0, 7, 7=1,, n, and K
is isomorphic to SO (n) and is a maximal compact subgroup of G. Let H be the subgroup of
G of h=(h;;) satisfying &, =1. Then h;=h,=0, i, 7=0, 2,-+, n and H is isomorphic to SO,
(1, n—1). And we define the subgroups M, A and N as follows.

1 0 0 0
0 1 0 0
M=<m=1|0 0 meESO(n—1)
m
0 0
cosht sinht 0 -« 0
sinh¢ cosht 0 -+ 0
A=< a(f)= 0 0 JIER G,
Iy
0 0
and
1+4/2 —4/2 3 - v,
4/2  1=4/2 3 - .
N=1{n= Vs — 3 ;VER ¢
Ly
Yn “Yn

where 4 =yi+--+y%. We put P=MAN the minimal parabolic subgroup of G.

The group G acts on X by x—gx, where x =2 % x,¢; and (gx) ;=27 .g:%,. Then G acts on
X7 transitively and the subgroup fixing ¢, is K. So we can identify X with G/K : Xi=G/
K . Inthe same way, X-==G/K, X,=G/H , X{=X:>=G/MN and S, =S =S"'=G/P=K/

M as homogeneous spaces. And we have the following G-orbit space decomposition of X .
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X=(UxH U U Uy UxsUxs U (o).
>0 >0 t#0

Let M (1, ») be the affine motion group on X, i.e. the semidirect product of G with X .
The acticn of (g, 2)EM (1, »n) (g=(g;) EG, z2=ze+ze+ +2,6,EX) on X is (g, 2)x=
gx+2(x€X) . Then as a homogeneous space M (1, #)/G=X . We identify the subgroup {(g,
2)EM, n);g,=1, z=0} with M (1, n—1). And we also identify the subgroup {(g, z)E
M1, n),80=1, 2,=0} with the Euclidean motion group M (%) which is the semidirect product
of SO (n) with R™.

Let £=&(w, p)EE. For2&&(w, p) and (g, z) €M (1, n) we put y= (g, z)x. Then we

have

y, gw>=Xg™ 'y, wr=<{x+g 'z, w>
=<x, w>+<z, g>=p+<{z, gu.

Hence y€ & (gw, p+<%, gw>). Thus M (1, =) acts on X by
(g, ) é(w, p)=¢§(gw, p+<z, gw?).
Therefore, we have the following an M (1, #)-orbit decomposition.
B=M 1, n)&le, 0) U WMA, n&a, 0)U MU, wéata, 0).

If (g, 2)&(e, 0)=&(e, 0), then gey=¢, and <z, ¢>=0. Hence g&EK and z,=0. So the
isotropy subgroup of &(e,, 0) in M (1, n) is M(n). If (g, z)& (e, 0) =&(e, 0), then ge,= &
e and <z, e,>=0. Therefore, g€ H and z,=0. Hence the isotropy subgroup of &(e, 0) in
M1, ») is isomorphic to Z,*M (1, n—1). If (g, 2)&(e,+e, 0)=&(g+ea, 0), then gle,+
a)=(e+e) and <z, e+e>=0. Let g=ka(t)n(kEK, a(t)EA, nEN) be the Iwasawa
decomposition of g. Then n(e,+¢) = (e+e) and a(t) (e,+e)=ct(e+e). Hence etk (e, +
e)=(e+ea). So we have =0 and k=M. Thus we have gEMN and z,=z . If we identify
zeotze+ 26+ + 2,0, X with ze, +2,0,+ -+ 2,6, R”, the isotropy subgroup of &(eg+e;,
0) in M (1, ») is isomorphic to MN X R*,



On Radon transform for Minkowski space 143

Lemma 1. The space B of all hyperplanes in X is decomposed to M (1, n)-ovbils by

E=MQ, n)/Mxn) |\ UMQA, n)/(ZM(1, n—1))
UM, n)/(MNXR".

We define a coordinate system and an Euclidean measure on & by the following way. We
assume that w,=0.

(1) @ =wxSEX7T. There exists an element g, < G such that @ =g, ¢. Weput ,=gu €, 1=
1,+-, n. Then the system wx, »,*, 7. is a Lorentzian orthonormal system. It is easy to see
that <x, wx>=p if and only if there exist #,*, £, € R such that x= —pwx+ tm+ + tup,. We
write x=x(4,-+, t,). In this case <x, x>=—p*+2+--+1%. We give a Euclidean measure
dm=dmg on & by dm(x) =dhdt, for x=x(b,, L)EE.

(i) @=wxs=X,. There exists g, =G such that wn=g.e,. We put ;=806 and 7.=28«
¢, i=2,-, n. Then the system {#, wwu, 7,"*, 7.y is a Lorentzian orthonormal system in
this order. Then <{x, wx>=p if and only if there exist 4, %, -, £,E R such that x=pox+hHm+
byt + tayn. The measure on & is dm (x) = dmg (x) = dtdb - di, for x=x(t, .-+, ) EE.
In this case <x, x>=p?—t?+{§+---+12.

(iil) @w=wrEXE. We put x*=x—%¢, for x€X. Then {w*, @*>=1. There exists g, €K
such that wr*=gee. Weput :=go e, t=2,, n. Then #*;,=#,(i=2,+--, n) and the system

{@*, m, 5.} is orthonormal with respect to< , >. Clearly <w*, @>=<{m, w>=""=<pn,
w>=0. If <x,‘ w>=p, then %=<x, @*>—p. We write x *+ as a linear combination of @*,
B2y, it K= he* F byt b, Since <x, @*>=<x*, @*>, h=x%+p. Weput » =w. Thus
we have that <x, wpr>=p if and only if there exist 4 ,'-+, {,,€ R such that x=—pe,+ bt +--+

lan. The measure on & is dm (x) =dmg (m) =dh-db,.

Lemma 2. Let E€EE and xE&. If we put &=(g, 2)& and y=(g, 2)x for (g, 2)EM 1, =),

then we have
dmg (y) =dme (x).

Proor. We put
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&=(g, )¢ (w, p)
and
Y=y, b, ) =g, Dxlh, b, b).
(i) Since y€¢&(gw, p+<w, 20),

y=—(pHw, D)gwtt'ggoe+ 1880 en
=—(p+<o, D) gttt ggwat + 1L 80w en.

On the other hand,

y=gxtz=—pgowt+hegeet+ "+ hggeentz.
Hence (#', &',-, #/) is a translation in R” of (4, &,-, t). So we have the M (1, »)
-invariance of the measure dm : dmg (y) =dms (x).

(ii) Since

y=0p+w, 2)gwtt'ggoetbiggoet -+ t/gg,en
=pgwt+hgge et hegwert thglwent2,

we have dm g (y) =dmg (x) .

(iii) Since

y=—(pHw, 22)ath'gguat+bggoet -+t 28, en
=—pgethggoathegeet -+ hgg,entz,

we have dmg (y) =dmeg (x) .

Remark that in each case we have
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O, M, %) | _

et S b 8 |

1
and so dxodx, - dx, = dpdt -+ dt, .

4 Radon transform

We put @{w, p)=¢(&{w, p)) for any function ¢ on E. Let f be a function on X,
integrable on each hyperplane in X . As in the Euclidean space, we define the Radon transform

F=Rf of f by

7@ =1 (w, p)=(Rf) (&)

= [/ 6 dm ()
=, S @am)

:fxf(x)é‘(p-<x, @) dx,

where dm=dm; is the Euclidean measure on & and ¢ is Dirac’s delta function.
Let du_(w) and du. (@) be the G-invariant measures on X*U X and X,, respectively,

normalized so that

fX}‘(x)dx

:_/o‘oo./);tf(l‘w) dtdu_(w) -I—’/O‘Oo./};:f(tw) 1 dtdu_ () JFjO‘oof&f(lL&J)l‘"dl‘dm(m)
:f_(:,f&f(l‘w) | ¢] "dtd/z-(w)irf_ZfXIf(tm) | t | "dtdu. (@)

= [" [ ftw) | ¢ | rdtdu @)+ [ [ Fto) | ¢ ] dtdu, (o)
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zé {f_ZfX_f(tw) | ¢] "dtdﬂ_(m)Jrf_ZLf(m) | ¢ | "dtdp, ()}

Then

dﬂi(w):—l-*&l;—rdwo---dmimdwn

in a neibourhood where w;#0.
Let oX=X*UXZUX,US, US_, the ‘boundary’ of X. We define the measure du (@) on 89X
by

St @du@)= [ @) @)+ [ ¥ (@) du (@),

where <G, (8X).
We identify a function ¢ (&) on B with a function ¢ (@, ) on 8X X R satisfying ¢ (—w,
—p)=@(w, p). Then the measure du (&) defines a G-invariant measure do, on ¥= {&EE: &

Sx} by

f§9x¢(§)d6x(£):AX¢(w, x, @>)du(w).

Now we define the dual Radon transform @ =FK*¢ of an integrable function ¢ on E by

30 =(R9) 0= [ 0()don(8)= [ oo, &, ©)dulw).

Lemma 3.

(4.1 Jro®ema=[ 7 (RN (0, ole, pdulw)d
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for fin Co(X) and o< C(B).

Proor.

[ @) @, 9ol Bdu(w)dp
:faXﬁfof<x>§(?—<x, @) dip (@, p)du(w)dp

= [ [ (. <, oM dulw)ds.

Let 7z be the quasi-regular representation of M (1, n) on X : (z((g, 2)) /) (x) =/ ({g, 2) !
x)=f (g 'x—g'z). Moreover, we put (£((g, 2)) ) (&)= ((g, 2)7'&).

Lemma 4. For any (g, 2)EM (1, n) we have
Rn((g, 2))=#%((g, 2))R
and
R*z((g, 2))=n((g, 2))R*.

Proor.

(g, 2 /) (w, p)Zf'w>:ﬁf(g‘1x—g*’z)dm(x)

{x

:-/;gy, w>=p—<z, w).f(y) dm (y)

:]A((g”lw, p—<z, @)
=7 (g, 2)"'&(w, P))
=(7((g, 2N} (@, D).
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On the other hand,

(g, ) ) @)= [ #((g, D) p(w,<x, ©)du(w)
:[;XQ)(g"lw, <x, @>—<z, &>)du(w)
:f;x(p(w, x—z, gw)du(w)

= Jox® (@, <g,x—g7'2>) du(w)
=(z((g, 2)) @) (x).
This shows that both the Radon transform and the dual Radon transform are intertwining
operators between 7 and %.
We denote by 3; the differential operator 8/8x,.
Lemma 5. For fECS(X) we have

e, w>?apf(m, )= (8f) (@, p)

and

© He., p)=—1{(x, eportalix, e))f} w. b).

<€i, Ca)>awl

Proor. If t=<x, @>—p, then we have

3 __ (4 -
» {6x, w>—p)}= [dz‘é\]«x’ @>—p),

0:(8(Cx, wd—p)) =<ei, wd [%a](o«, @>—p)

and
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o
a&),’

(6(x, @>—p)) =<x, e [%a]«x, @>—p) |

We can get our results from these relations by integration by part.

Let (1= —0§+ 9%+ .-+ 0% be the pseudo-Laplacian on X. We define the operator L by

822§0 ](w, ).

(Lo) (@, p) =<w, w> [ap

Then

UA) @, p)=UH (e, p).

(L)~ (x)

2

o o2
=— X,aj)2¢(w’ {x, &)K>)d&)K+‘/);¥¢(w, {x, ww)dwn.

On the other hand [] (¢ (w, <x, @>))=<w, w>%;(p(m, {x, @>). Hence
(L) (x) =] () (x).
Thus we have the following proposition.
Proposition. We have
R[=LR and  R*L=[R*.

5 The Inversion formula

Let & (R™") be the usual Schwartz space of C* rapidly decreasing functions on X as
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Euclidean space R, Let Ff=F be the Fourier transform of f€ & (R*):
7 () :fX}‘(x)e"“"' wis(us X) .

We know that F is an isomorphism of & (R™!) onto &(R™"). If t€R and @€ 38X, then

f(t&)) :fo (X) e*il(x, @ Jy
=[7f @ e dpdm ()

= [ F(w, prerap.

Hence
(5.1) e, p) = [ 7] ) et

We denote by N the set of all non-negative integers. To consider the dual Radon transform
of 7 we set a condition of f so that f (@, <x, @>) is rapidly decreasing on 8X . Let & (X) be
a subspace of & (R”") of functions f which decrease rapidely at light cone too, i.e. of f&C*
(X)) satisfying the following condition: For any 2= (&, =, k) EN™, [=(},, -, L) EN™" and

mE N there exists a constant C7,>0 such that
(5.2) | xb-xhob - 0hf (x) | <CT | <x, x> |™ xEeX).

And we put & (X)=F (& (X)).
Let & (E) be the space of C* functions 4 on X X R such that
1) p(~w, — B =y(w, &)
(2) For any k=(ky, ", k) EN™' I=(l,, L)EN™! and m, a, bEN there exists a

constant C%.,>0 such that
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2 ] L) [ ° ] ' [ S J b
Roviipybnpa | -~ <Cn 2m
@t [8&)0 o, e Ylw, 1) | <CPlast

((w, )EBXXR).

We denote by & (E) the Fourier inverse image of & (B) with respect to £
& @ ={pw, p)=["v(o, e pcS@) )
’ 2m/ o ’ ’ ’

Lemma 6. If fES (X)), then FE S (B) .

Proor. By the relation (5.1) if €S, US., then / (w, p) =0. Hence we assume that @< X*
UX-UX,. We choose coordinate neibouhoods X* and N¥= {wE€X,; | w; | >1/vVn}. To

prove the smoothness it is enough to show that in each neibouhood where ;70

————

af @ )5 (8 J
d [8woJ [awj [

S ) s
b

so-] T ttw)

is integrable with respect to ¢ for any /EN™! g& N and 0<j<#. Since | (8w,;)/ (8w, | <

comst .| w; |, the absolute value of this function is dominated by a linear combination of such

functions as

| ol whewhis(0f04) (10) |

= | ¢ | e Bttt k2| (g0 hoes (fa0,) Bieee (Faog) B (Db~ DLF) () | .

Then the integrability is clear from the rapidly dicreasing property. Rapid decreasingness of

7 can be prove by the same way.

Lemma 7. For each f €& (X) the Radon transform f (e, D) satisfies the following homogeneity
property: For REN the integral
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[ 7, p)prdp

can be written as a k-1h degree homogeneous polynomial in ay, ", .

Proor. From

[ 7 pptap=[Tprap [ f@am)

:fxf(x)<x, w>kdx

we have the lemma immediately.
We denote by & u#(E) the subspce of Y& & (E) which satisfies the above homogeneity
property.

Treorem 1. The Radon transform f — 7 is a linear one-to-one mapping of &(X) onto & u(5) .

Proor. It is enough to prove that Radon transform is surjective. Let o E& 4 (E). We put
Yo, =] o, p)edp.

Then & & (8). We define a function F on X by
Fllw) =y (@, ).
When u& X is light vector, then F (#) =0, that is, it is identically zero on light cone. Hence
it is smooth and rapidly decreasing.

Next, we consider when « is a timelike vector. Let

u=tw (0wEXT, t€RN{0}).
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Suppose that £>0. By the condition of ¢ if #—0, then F—0 uniformly. We use the locally

coordinate system {w,,":,w,; on X*.

Then

uO:t(1+u%+"'+ui) ”2’ ulztwl,"', un:t&)n.

Then
o6, o
= <
aul zau, ey aul ot (0=7
and
acoj Uyl .
e <7<
EWRT (1<j<n),
Sw; 1 2t ) co
and
t
aa—%:(l+w§+"'+wi)1’2,
ot .
“a—;t“‘:*wi (1<i<n).
Hence

1< 2 .o
tZC“’fa Py

=1 @

%: (1+ @i+ F+wi)l?

2 .
—_ <1<
ous l‘aw, “”1[ 2%8@] J (1=i=n).
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Therefore, for any m& N and i=0,---, # there exist constants C% and C% such that

‘ 2

2P| <(Cri Ku, w] v+ CB) Ku, 1] 7.

This shows that

2.

8uiF(u) —(0

uniformly when <#, #>—0. By repeating the same method we can prove that all devivatives of
F(u) with respect to u,, -+, u, goes to zero uniformly when <z, #>—0. This holds also for
negative {. We can get the same conclusion on spacelike vectors by slight modifiations. Thus
we showed that F is smooth on X .

By the above we can easily prove the inequalities (5.2). Thus Fe& (X) . Finally, if f is

the function in & (X) whose Fourier transform is F, then f=¢ by (5.1).

Remark that Lemma 3 and Lemma 5 hold for f& & (X) .

Let fe& (X) . By the inversion formula of the Fourier transform we have the following.

f(x) :(27[;)’”_1/)(7(%) ei(.f, u)du
:W[Zf(ax) ) () e | ¢ |"dtdu (o)

1 o [c=IPN .
L L . Y | P ()

If » is even,
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SO =, )nﬂf faX)/zf [ ] Flw, p) ) e =% ) dpdtdy (o)

. axX)/ 2 [ai] Fe, D) ’,D:<x, wd,u(co)

2n) "/

(Zn) f [[zap] ](w x, @) dp (@)

“2aar | () 7).

Suppose # is odd. Let H be the Hilbert transform, which is, by definition,

F(p)

———=d
—b D .

(HE) (1) ==

Then

(HE) (s)=sgn s F(s)

(cf., [H] p. 114), where sgn s=1(s=0),=—1(s<0).

(27r)”“-[ faX)/zz [./mﬂp { ] Jlw, p)e ”"dp] 5, @ didy ()

1 "
(2x)" (aX)/ZZH [zap] Fe, p) Ip:u, m>d,u(w)

PN

:2(217[),![7-[1)1—5’5] fJ (w, {x, w>).

We define Ag by

155
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1

o \n
2027)" [55} p(w, p), foreven n,

(Ap) (w, p) =

1 o \n
2(2”);1&17 [E] @ (w, p),for odd #.

Then we have the following theorem.
Theorem 2. For any f&€ S (X) we have
(5.3) f=n".
As a special case of Theorem 2 we have the following corollary.

CoroLLary. We assume that n<4N. For any f€ &(X) we have

1

/= om )”Uwf)v 2o ) 55, )n(<D K2R

Since the operator A corresponds to multiplication of tha Fourier transform by (1/(2(2z)")

| |, Ais a positive symmetric operator. So we can associate an operator A defined by

~ 1 el
(VAR (7)——mlrl 2h (7).
If n is even, we have
1 (14"
(mh)(p)‘m[idpJ R(p) .

THeorem 3. For fE€ & (X) we have
L7 rae=[ 7] VA (@, p) | *dpdu (o).

Proor. Using (5.3) and (4.1), we have
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fxf (x)f (%) dx= fX (R*ARF) (x)f (x) dx
[ 7R (o, 5 TR w, B (o) i

= [ L1 VA (@, p) | *dpdu ().
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