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The Navier-Stokes equations were numerically solved on the flow around a
rotating circular cylinder in a uniform flow for various rotating speeds at the
Reynolds number of 80. The aerodynamic forces on the cylinder, stream lines and

vorticity distributions around it were determined.



2

Fumio YOSHINO, Tsutomu HAYASHI, Ryoji WAKA and Tatsuo HAYASHI : The Numerical
Solution of Flow around a Rotating Circular Cylinder in a Uniform Flow

1. Introduction

The history of the research on a rotating cylinder is long. The flow a-
round a rotating cylinder in a uniform flow has been analysed theoretically by

Mooreﬁ”

and experimented by Tanaka et al‘’’ near the transition Reynolds number.
Okajima et al!®? made a research on a circular and an elliptic cylinder vi-
brating circumferentially in a uniform flow. From these researches, it is seen
that the flow pattern around a cylinder changes drastically with the rotating
speed. For instance, Okajima et alf® found that vortex streets are formed even
at the Reynolds number of 40 when the ratio of surface speed of a cylinder to
velocity of a uniform flow is 0.2. At this low Reynolds number, the flow is
steady and vortex streets are not formed when the cylinder is not rotating.
These results, however, are those of analysis of flow at a relatively low ro-
tating speed in a uniform flow, and did reveal neither the mechanism how such
a transition occurs nor the interrelation between the rotation of a cylinder
and the aerodynamic force on it.

This motivated the authors to calculate a more general case, thatis, a
flow around a rotating circular cylinder in a uniform shear flow although only
the result of a cylinder in a uniform flow is presented here. The finite dif-
ference method was made use of to solve the Navier-Stokes equations at a rela-

tively low Reynolds number such as 80.

2. Nomenclature

a : radius of the circular cylinder
agy distance from the center of the cylinder to the stagnation
point
Cl and Cd lift and drag coefficients, respectively
Clp and Cdp : pressure components of C1 and Cd, respectively
ClS and Cds : shear stress components of Cl and Cd’ respectively
Cp(n) and CT(n) : coefficients of pressure and shear stress on the cylinder
surface
(r ,0) : cylindrical coordinates (Fig.l)
Str : the Strouhal number ( =2af/Uc)
T and AT : dimensionless time and time step, respectively
u_ and Uc : velocity, and that on x axis, at infinitely’far upstream,
respectively (Fig.l)
V0 : rotational speed ratio of the cylinder
( = circumferential speed of the cylinder/Uc)
Vo : y component of velocity at infinitely far upstream (Fig.l)
VE and Vn : £ and n components of velocity, respectively

(x,y) : rectangular coordinates (Fig.l)
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€ : dimensionless ve-
locity gradient Um=&ﬁtﬁ%4
(vorticity) of the

y
!

uniform shear flow
(=a/Ucaum/3y)
4 : vorticity
(&,mn) : orthogonal curvi-
linear coordinates
(Fig.1)
Y ¢ stream function

The symbols - and ~ on respective

items above indicate time mean value

and amplitude of periodic fluctuation Fig.l The coordinate systems
of a related physical or field quantity, and nomenclature
respectively.

3. Fundamental Equations and Boundary Conditions

It is assumed that the flow is two-dimensional and incompressible. The
coordinate system as indicated in Fig.1l is used to give a magnified view par-
ticularly of a complicated flow near the cylinder. The relations of the co-
ordinates (£,n) to (r,9) and (x,y) are as follows;

log(r/a) X = aegcosn

¥y
]

n =298 y = aeE sinn (1),

where the scale factors hy (=/(3x/35)> + (9y/9E)?) and h (=/(3x/3m)% + (ay/on)?)
are such that hg =}%]=h==aeg. The vorticity transport equation and relation of
the stream function to vorticity are represented in (£,n) coordinates, using
vorticity, stream function, time, pressure and scale factor nondimensionalized

by a and Uc such as

*
= c(a/Uc) , = ‘P/(aUC) , T = T(Uc/a)

*
z vy

* 3
P = P/(pUc) ’ h = h/a

The expressions are as follows;

230, 3¥Dr _ Bvar _ 2 2%, a’c

T T agan‘Re(agz+anz) (2),
_ 1 3%y g2y

;= —EE.(BEZ + gﬁg) (3),

where Re is the Reynolds number and the superscript * to show a dimensionless
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quantity is dropped for simplicity hereafter.
The no-slip condition on the surface of the cylinder results in the fol-

lowing boundary conditions;
Y Y

v, =2 =0 , VvV =-2L -y

g an n 33 0 @

where the rotational speed ratio V0 is the ratio of circumferential speed of
the cylinder to UC. The uniform shear flow infinitely far from the cylinder is

expressed as follows;

- Y -
u, = U (1 +el) , v, =0 (5),
where ¢ is dimensionless vorticity and means a dimensionless velocity gradient

of the uniform shear flow.
4., Method of Calculation

4.1 Finite difference equations

The domain (Fig.l) was divided into N equal parts in the n direction
( subscript j) starting from the trailing edge of the cylinder and with the
interval § (=2n/N), equal to that in the n direction, in the £ direction
( subscript i). A forward difference was used for the time at each grid point
while a central difference approximated by the average of the values at the
times T and T + AT being used for (& ,n) coordinates. The finite difference

approximations of Egs.(2) and (3) are as follows;

%(cffg\T— t; 40 =

= Re%{(cfrl,j + Ci—l,j + Ci,j+l + ci,j-—l _4Ci,j )T+

ST T T O BT FU BRI R LS )Ty 4

+ 8%“2‘ Y 0,5 - \yi—l,j)T( 5,441 Ci,j—l)T +

Y, 7 Vi, T 1,541 T Ci,j—l)TJrAT}—

SR TREIE S L P R

POV a1 T Y5 T Si+1,5 T %i-1,5 )T (6),
vo=v_ + ¥ , v = (e - 1/e%) sinn

P
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where oy is a relaxation factor and m is number of iterations.
The boundary conditions on the surface of the cylinder are approximated by

1,3

.3 _
1,5 7 TERg S Y25 st

Z, . h, .
) ——%;l-(HEL%)Z 8),

vV h
0
1,3

.S
1,3
considering Eq.(4)(§) Although there exists a problem such as determining a
level of the stream function since the equations in infinite domain are nu-
merically solved in finite domain, the value of ¥ on the surface of the cyl-
inder is made equal to zero. This will not introduce any large error since the
domain of calculation is taken wide enough as r_>100a. Then Eq.(5) for the
outer boundary of this domain results in the following relations;

g 28

_ o, €
‘Foo’j = e s1nnj + e (1 - cosan)

L= = 9).

Cos, 5 € (9)

Two kinds of initial values were used in order to solve Egs. (6) and (7)
under the boundary conditions (8) and (9). The inviscid solution™ of the flow

around a still cylinder in a uniform shear flow, i.e.,

l1’..=(e‘g—i)sirm+E{e2g(l—c052n)+&ﬂ—l}
i,J [ 4 2¢
e e
Ci,j=_€ (10)

was employed as the initial value of the case of X0 and VOEEO. In the case of
€=0 and VO % 0, the result of computation at VO was employed as the initial
value for the computation of the next larger VO' The result of computation was
concluded to have converged when the residuals of iteration of respective V¥
and § at a time T became less than *1% and ¥53% of S3, respectively.
4.2 Aerodynamic and stress coefficients

The solutions ¥ and ¢ at a time T obtained by iterative computation can
be used to calculate the pressure and shear stress distributions on the sur-
face of the cylinder. Rewriting the fundamental equations by making use of
Egs. (4) on the surface yields the relative pressure at a point of n to that at
the trailing edge of the cylinder (n=0) in a dimensionless form (divided by
PUL/2),

- - 4 judg
Co(n) = ¢ () Re{»(ag)a':od” (11).
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The shear stress is easily obtained to give .

4 BVn Vn
T r_ ‘Rz " m) (12) .

The condition that Eq. (ll) should give zero at n =271 is not always satisfiedm
in real computation due to an error in the calculation. Hence, the pressures
at n=1%2r1 were averaged to give the value at n=0.

The pressure ( subscript p) and shear stress ( subscript s) components of

the 1lift and drag coefficients (Cl and C respectively) are obtained from the

dl
following integration;

= -1 ; = -1
Clp = 5 ﬁCp(n)s1nn dn R Cdp 5 ﬁcp(n)cosn dn
C = 535 C_(n)cosn dn c = —lf C_(n)sinn dn
1s 2 T ’ ds 2 T
Cc, =C + C ; cC, =2¢C + C (13).

1 1p 1s d dp ds

The definition of the Strouhal number Str is as follows;

g _ 2af

tr U
o]

(14),
where £ is the frequency of the fluctuating 1lift.

The computation was made using M-200 of Data Processing Center of Kyoto
University.

5. Results and Discussion

Figure 2 compares the relation of Experimental data

the drag coefficient to the Reynolds 25k an;:c::t::lu((:ns
number of a still cylinder in a uniform ° ' O : Okajima et al.®!
[ o} £ T Tamura et al (5!
flow, obtained by the present calcula- ¢ O : Present cal.
. . , 20
tion, with the results of calculation
and experiment by the other research- g
ers. The values of the parameters used 15F
for the present computation are as fol- g
lows: $=2m/40, AT=0.01, o, =1.84, r _%95a 1.0
when Re= 20 and S=27T/60, AT=0.05, 0=
1.60, r,=5111.3a, T2100.0 when R = 80. U
L ' e 20 40 6080
The figure shows a good agreement of the R
e
present calculation with those by the
others(sj’,m’(e) which implies that the Fig.2 Dependency of drag coefficient

present calculation can well be applied on the Reynolds number
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to the case of a rotating cylinder in uniform and uniform shear flows. The fol-
lowing computations were made with the values of the parameters given above at
Re= 80.

Figures 3 and 4 show the time-dependent 1ift and drag coefficients, re-
spectively, of the rotating cylinder in a uniform flow, in which the rota-
tional speed ratio V0 was changed from 0 to -5.5. That VO<O indicates that the
cylinder rotates in the counter arrow direction of Fig.l. The figure shows
that values of Cl and Cd attain those of a stationary state for T > 50, from

which the time mean values C, and C., are the averages of C, and Cq for T>50, re-

1 d 1
spectively. Figure 3 indicates that value of Cl increases with IVOI and
reaches a maximum of about 6.8 at V0= -4. The amplitude of the periodic fluc-
o=0 though Cl

fluctuates periodically at this VO’ in-

tuation is too small to distinguish from the T axis when V surely

creases with |V0|, and becomes larger

) L at VO= =1 than 10 times that at V()=O'
- |- The fluctuation, however, dampens with
6 a further increase of IVOI, and dies

" out for IV0| 22, which implies that
L there can exist a steady flow when IVOI
- is large even at such a Reynolds num-
2k ber of 80 that Kdrmdn's vortex street
o Vo= 0 is formed behind a still cylinder. As

| 1 ! [} [ 1 1 1 | !

0 20 0 50 80 100 éhown in Fig.4, the value of Cd too

1 .increases with IVOI, and the rate of
increase is particularly large near VO
Fig.3 Variation of lift coefficient

with time

e
Vo=-5.5
8 | !
- L Vg:‘s
& e
6 V[):“[»
- =3
L
- Voz—z
3 R T
il 1 [ [ VP:IUI

Fig.5 Relation of 1ift and drag
Fig.4 variation of drag coefficient coefficients to rotational

with time speed ratio
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= -3, The amplitude of the fluctuation of Cd has the same tendency as that of
17 Cd together with the pressure and
0 and confirms what was mentioned
above about Cl and Cd. The figure also indicates that the pressure components

Elp and Edp account, broadly speaking, for 90% of El and Ed’ respectively, at

any V.

Cy, but is smaller. Figure 5 indicates C

shear stress components of them against V

The stream lines and equi-vorticity lines in the flow field are shown in
Figs.6 and 7, respectively. The figures (a) and (b) correspond to the cases of
(VO =-1, T=96.0) and (V0 =-4), respectively. The value of Cl is about minimum
when T=96.0 at V0 =-1 (Figs.(a)). Figure 6 shows that the wake deflects down-
wards of the figure as [V0| increases. This downward deflection is considered
to be due to the fact that the total vorticity in the wake becomes positive by
addition of positive vorticity generated by the rotation of the cylinder. For
example, the positive vorticity near the'lower surface of the cylinder is car-
ried toward the upper side, in the rotational direction and into the wake by
convection and diffusion (Figs.7(a) and (b)). The vorticity is in fact posi-
tive anywhere in the wake at V,=-4. This positive vorticity in the wake in-

0
duces a downward velocity which in turn deflects the wake downwards and gen-

(8) Re=80, Vo= —1.e=0, T=960 (8) Re=80.Vo==1.en0.7 =960

(b) Re=80, Vo= —4,e=0, T=100.0 (b) Re=80, Vo= —4,e=0, T=100.0

Fig.6 Stream lines around the Fig.7 Equi-vorticity lines around
rotating cylinder the rotating cylinder
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Fig.8 Distance from the stagnation
point to the center of the
cylinder

irrespective of VO as seen from Figs.6(a) and (b),

erates an induced drag on the cylinder
to increase Ed with |VO| (different in
origin from that of a finite span wing) .
That is,
is considered to be mainly due to the

the increase of Cd with ]V |

increase of induced drag. The increase

of Ed with lvol

case of a cylinder rotating at a rela-

is observed in the

tively higher speed in a high Reynolds
number flow!? Figure 8 indicates the

distance to the upstream stagnation
point from the center of the cylinder
obtained from stream line distribution.
The stagnation point is not on the sur-
face of the cylinder when vo’-:o and

moves farther away from the cylinder

as IVOI increases. The angular posi-
tion of the point stays near 0 & 220°

which 1is considered to be

due to cancellation of the change of 6 due to the increase of circulation with

|V0l by that due to the increase of intensity of downwash.

6. Conclusions

Numerical solutions for Re==80 were obtained on the flows around a circu-

lar cylinder with the rotational speed ratio VO of 0Vv-5.5 in a uniform flow

(e=0).
(1) 61 increases with ]V |

thereafter. C, increases with v,

1 and Cd,

(2) Cl reaches a maximum for [V |<2,

count for most of C

The following are conclusions.
reaches a maximum (% 6.8) at V0=—4,

and is nearly

and decreases

The pressure components Clp and Cdp ac-

respectively.

> ~o
zero for fv0| 22. Cg

shows the same tendency as Cl though the former is smaller than the latter.
(3) The wake deflects downwards due to the rotation (V < 0) of the cylinder,

that is,
larger when [V | is larger.

due to the induced velocity in such a way that the deflection is
The stagnation point moves away from the cylinder

as IVOf increases. The angular position of the point approaches, first, rapidly

6 %220°, but stays about there even if [VOI increases further.
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