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The problem of loading through a rigid strip footing on a elastic soil ground are

analyzed with the finite element method Effects Of the number of I)OF on the

load‐ displacement are investigated Two ways for increasing the number of DOF in

the systeni lvere examined:one is to increase the number Of elements and another is

to increase the number of nodes per element,

It is ShOwn that, more the number 9f degrees of freedona is, lower the load at a

particular displacement is.The load reduction effect associated with the increase in

iocal degrees of freedom is slight、 vhen a fine mesh is used.For the probleni treated

here the use of small elements of low order, for instance lnear, is recommended

accordingly.
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1. Introduction

The solution for an unknown in finite e■ ement analysis is expected to be

improved with the increase in the number Of degrees of freedom (DOF)with

respect to the unknown. The increase in the number of DOF can be achieved

in two ways: one ■s to ェncrease the number of elements and the other is to

increase the number of nodes per element. In the former way the number of

DOF is increased globally but not locally. In the latter way it is

increased locally and therefore gioba■ ly.

It will be discussed which is better to use fine meshes of ■ow order

elements or to use relatively coarse meshes of high order elementS in the

examined prob■ em.

In this study, the problem that the load is applied through a rigid

strip footing to an elastic so■ ■ ground is treated. on applying two ways
mentioned above, the results w■ ■l be discussed through ■oad― disp■ acement

re■ ations obtained from finite elements analyses.

Elements of high orders up to 4 are used in this study. The difficulty

in the formulation of interpolation functions and the numerica■  integration

increases as the order of interpolation functions increases. It will be

shown that the difficu■ ty can be overcome by applying approved techniques

in literatures.1]f2],3]

2. Method for analysis

2.呵  Elements

Four types of e■ ements were used to investigate the effeCtS Of loca■

degrees of freedom on the results (see Table l and Fig。 1)。  All the types of

e■ ements are trianぢ 七lar and geometrica■ ■y ■inear, interpolation functions

are consisted of complete polynom■ als.

2。 2 1nterpolation functions

Area― coordinates (Ll L2 L3)Were adOpted

convenience of the numerical integration.

interpolation functions for each type of

order elements, In facts for T3 e■ ements

approx■ mation:

u = くN〉 {こ }

for local coordinates for the

The aご  rloc fOrmulation of

e■ ement is possible for lower

we have the fo■ lowing nodal
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Fig.ユ : Element types used in this study.

Table l: Ele“ ent types and characteristics for

・ nterPolation and numerical integFation.

Elenent type T3  T6  T10  T15

Numb―er oF geometrical iOdes         3
0rdeF of interp91atio■  functiOns    l
Nunber of interpOlation nodes       3
0rder Of integrands                 O

in the stiffness matrilx
Nuttber oこ  sam,■ 1■g points           l
for aunerical integration

Note: On■ y .T3 e■eJents are is。 larametrict othere are
subparanetric.

where

くN> = (Nl N2 N3> 市ith lNl=Ll, N2=L2' and Ne=L3

and

t還〕 = (垣1 重2 垣3〉 T

Nis (1‐刊,2,3)dre interpo■ ation functions for ■inear noda■ appFbl文 imation.
モu~〕  is the―  vectOr of noSaI ▼alues of the unknOwn u.
For higher order elements we can asopl the methOdP sh― Own by

ZienkiewicZl], for the formuiation of interpo■ ation funCtions. Referring to
I「 ig.2′  thO problem is to find Nl(n+1)when Ni(n)is giVen, where Ni(・ )is
the interpOlation function corresponding to the l_th nosё  in n― th Order
e■ements(n>=呵 ). To solve the pr。 ゎ■em wo use the following propertiee: for
an i―th nOde, being on the sider say, 12 of the element Of (nキ 呵)。rder,

i)Ni(n)´ = 1' and Nj(n)= O  for 〕≠i

and
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Tr■angie of order
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m(=2)

上
3

Ill =  Number of ■ayers

Fig.2: Explanation for the formulation
of interPOlation functions for high
order tr■ angular elements.

ii)Ll(n+1)=m/(n+1)

where m is the number of layers lying under the ■―th node.

We can obtain the interpolation functions for i― th node such as:

Ni(n+1)= c.Ll(n+1).Ni(n), c = (n+η )/m ――――…………………………………………(2)

If the node 主 主s on the side 13′  Ll Sh6uld be read as L2′  and if on

the side 23′  Ll S10uld be changed to L3′  reSpeCtiVely in the Eq.(3). By

this way we obtain interpolation functions for T6, T10 and T15 e■ ements.

They are listed in the appendix。

2.3 Numerical integration

ln ca■ culating a stiffness matrix′  the integration over an element must be
performed. The ■ntegratiOn ■s simply done in the analytica■  way for linear

and quadratic elements, however for higher order elements it is rather

comp■ icated. For such elements the element of reference should be used for

the s■ mplicity of the expressions and numerical integration techniques

shou■ d be used instead of the analytical way.

A tr■angular reference element can be made in the space composed of

two independent variables, say Ll and L2' °f three area― coordinates

(Ll,L2'L3)°  A transfbrmation from (Ll,L2′ L3)t°  g10bal coordinates tx,y)

will realize the transformation of integration in real space to that in the

reference elemento When the transformation ■S linear, we have

秘
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X = くLl L2 L3〉 〔兵〕
' y = 

くLl L2 L3〉 〔▼〕 ――――――――――――――――――――(3)

with

〔更〕=《又1 貢2 買3〉
T' (7}=《 y1 72 73〉 T

where {又 }and (7}are values of x and y coordinates of geometrical nodes.
For the numerical integration we can use some quadrature formulas. The

formulas in which the symmetry of the configuration of sampling points as

well as the prescribed accuracy are assured must be used, In this study the

formulas presented by cowper2]and Laursen and cellert3]were used.

The ■east number of integration or sampling po■ nts can be determined

by accounting for the highest order of polynom■ a■s appearing in integrands
in elements of the stiffness matr■ x. The order can be simply determined

when the geometrical transformation is linear as Eq.(3)becauSe the

determinant of the 」acobian matrュ x becomes constant in this case. The least

number of samp■ ■ng points weFe determined according to Laursen and

Gellert3]. The correspondence between the types of element and the number

of sampling points is given in Table l. Values of area coordinates of

sampling points and corresponding weights are listed in ■iterature3].

S6 mesh

Fig。 3: Small model and

Unit itt            S8 皿eSh

elements configurations used.

S16 111esh S32 mesh

Ridid strip footing

Fig,4: Large model and e■ ements configurations used.

L24 111esh
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2.4 Model ground fOr ana■yses

The plane stra■ n condition was assumed. Two types of model grounds shown in

Figs.3 and 4 were ana■yzed. The domain of the first type of ground is small

because those model tests were supposed in which load wou■ d be applied
through a rigid footing. This type of mode■  wil■ be ca■ led the s model. The
second is fOr realizing a more rea■ istic condition in which a sand layer is
spread infinitely and tle depth Of the layer is finite. The mode■  will be
called the L model.

For each type of mode■  ground′ different mesh configurations were used
ェn which the total number of elements is different. The numbGrS Of elements

are 6′ 8, 16 and 32 for the S model ground. The mesh configurations are

distinguished by the notation S6, S8, S16 and S32 for 6. 8, 呵6 and 32
elements. similar■ y′  for the L mOdel, two types of mesh were ana■ yzed: L18
and L24 meshes.

In an ana■ ysls on each type of mesh configurations′  4 typeS of
e■ements described above were used. The number of analysis runs becomes 16

for the S model and 8 for the L mode■ .

2.5 Constitutive model of the soil

The soil of the model ground was assumed to be linearly elastic. Elastic

constants were not var■ ed. The va■ ues for elastic constants and

some parameters used in analyses are ■isted in Table 2.

Tab■e 2: Values Of Parameters used in analyses

Youngis modu■ us E (tf/m2)         3x103

:【 ::S子ととshと
a:iosば
il γ (tf/m3) 
イ
   !iを

7

Pressure coeffic■ ent at rest K0   0.55

3. Results

3.l Load― displacement re■ ation。

Load―displacement relations resulted from finite element ana■ yses wil■  be
shown and discussed. Figs.5 and 6 show examples of the results for the s

model and for the L model, respectively. In each figure′  the effects of
the number of nodes in an element are investigated. we see that load―

displacement curves are steeper and accordingly the lond at a particular

displacement is larger as the number of nodes per e■ ement is less.
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0         0.5 1,0 0           5           10

Disp■ acement (lo~3m)

Fig.6: Load― disPlacement relations for L
model of 18 elementsH

Disp■ acement (10~3m)

Fig.5: Load― displacement relations for S
model of 16 elements.
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Fig。 7: Load at the displacement of lmln vs,
total number of elements for the S model.

3.2 Effects of local DOF

In Fig,7′  the load at the displacement of lmm is plotted against the number
of elements for the s model. we can see in this figure that′  for any type
of mesh′  i.e. for any number of elements, more the number of nodes per
element is, smaller the load iso such an effect of the local number of

degrees of freedom tends to be ■ess with the increase in the number of
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200
TOtai nullber of DOF

Fig。 8: Load at the disPlacement of lmm vs. total
number of degrees of freedom for the S model.

0        100      200      500      400      500

Total aumber of DOF

Fig.9: Load at the disPlacement of 10mm vs. total
number Of degrees of freedom fOr the L model.

elements, for instance, when the number of elements is 32′  the effect is
slight and the load for Tη O elements can be even less than that for T15

elements.

3,3 Effects of total number of DOF

In Figs.8 and 9, the load at a particular va■ ue of the displaceement is

plotted against the total number of degrees of freedom in the system for

the S model and for the L modeと , respective■y. The particular values of

displacement are lmm for the s mode■  and 10mm for the L model.

We can see in these figures the effects of global degrees of freedom.
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The load is reduced by approximately 50を  for the s model and 30を  for the L
model as the number of degrees of freedom increases up to the examined
maximum value.

Figs.8 and 9 also show that the effect of the ■oad reduction can be
made tO the almost same extent by using higher order elenents and by

increasing the number of elements.

4. Discuss■ on

ln the design of bearing capacity of a strip footing on a sand layer, a

safe or conservative design is such that a smaller bearing capacity is

estimated. If the bearing capacity is overestimated, the design wil■  be
unsafe. From this point of v■ ew, we can say with the consideration of
results shown in Figs.8 and 9 that the so■ ution can be ■mprOved by
increasing the total number of degrees of freedom in finite element

analyses.

In two ways for increasing the total number of degrees of freedom in

the system′  the way in which the number Of e■ ements is increased is
effective because the load reduction effect associated with the higher

order e■ ements ls less for finer meshes.

5. Conc■ us■ons

The problem of ■oading through a rigid strip footing On a elastic soil
ground was ana■ yzed with the finite element method. Effects of the number

of DOF on the ■oad―displacement were investigated. Two ways for increasェ ng
the number Of DOF in the system were examined: 。ne is to increase the
number of e■ements and another is to ■ncrease the number of nodes per
element。

For a particular number of elements, the increase in the number of

nodes per element resulted in lower values of ■oad at a certain
displacemento sim■ larly′  for a particu■ ar type of element, the ■oad became
lower when the number of e■ ements was increased.  The load reduction effect
assoc■ ated with the increase in the number of nodes per element was less

than that assoc■ ated with the increase in the number of elementso ln other

words, the load reduction effect when the order of an element is made

higher is slight for fine meshes.

It is accordingly concとuded that, for the problem treated in this
study, the use of small e■ements of low order is recOmmended. It is also

supported because of the sュmplicity of programing and the accuracy in
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integration.

The errors essentially contained in finite element solutions was not

treated in this paper. The estimation and eva■ uation of the errors and

improvement of the solutions have been an important subject in the field of

FE analyses. An approach is developed by the first author e■ sewhere4].
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Appendix: Interpolation functions for higher order elements

(1)T6 element
Nl=Ll(2Ll― ¬) N2■ L2(2L2~1) N3=L3(2L3~1) N4=4LlL2  N5=4L2L3

N6=4Ll L3

(2)T10 element
Nl=(3Ll-1)(3Ll-2)L1/2  N2=(3L2~1)(3L2~2)L2/2 N3=(3L3~1)(3L3~2)L3/2

N4=9Ll L2(3Lη -1)/2      N5g9Ll L2(3L2~1)/2     N6=9L2L3(3L2~1)/2

N7=9L2L3(3L3~1)/2      N8=9L3Ll(3L3~呵 )/2     N9‐ 9Ll L3(3Ll-1)/2

N10=27LlL2L3

(3)T15 element
Nl=Ll(4Lη -1)(4Lη -2)(4Ll-3)  N2=L2(4L2~1)(4L2=2)(4L2~3)

N3=L3(4L3~1)(4L3~2)(4L3~3)  N4=8Ll(4L呵 -1)(4Ll-2)L2/3

N5=4Ll L2(4Ll-1)(4L2~呵 )       N6=8Ll.(4L2~4)(4L2~2)L2/3

N7〓 8L2(4L2~呵 )(4L2~2)L3/3     N8=4L2L3(4L2~1)(4L3~1)

N9=8L2(4L3~1)(4L3~2)L3/3     N10=8L3(4L3~1)(4L3~2)L1/3

Nll=4L3Ll(4L3~1)(4Ll-1)      N12=8L3(4L4~1)(4Ll-2)L呵 /3

N13=32LlL2L3(4Ll-1)         N14=32Ll L2L3(4L2~1)

N15=32LlL2L3(4L3~1)


