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Abstract

A theoretical formulation of governing equations for one-dimensional consolidation
of saturated soils is developed based on the continuum mechanics. Small deformation
is not assumed but large deformation is considered and inviscid but non-linear
constitutive properties of soils are taken into account. A formulation of solving the
governing equations by the FEM is also developed with the weighted residual method
and Galerkin method.
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1. Introduction

Major factors that make it difficult to mechanically
treat the consolidation phenomenon of soils are that:
1. soils are two-phase materials,

2. constitutive relations of soils are non-linear;

3. constitutive properties are essentially viscid or time-
depending; and

4. deformation that occurs in the consolidation is not
small but large.

Thus, we have to treat problems in which finite
deformation occurs in time-depending and non-linear
materials.

The theoretical constitution of the system of
the governning equations for the consolidation of soils
are similar to that for common problems in solid
mechanics. Indeed, the differential equations that
governs consolidation of soils are
1.equations for the equilibrium of stresses,
2.equations for the mass balance of solid soil particles
and liquid pore water, and
3.constitutive laws for the soil of interest.

However, particular attentions have to be paid because
of some difficulties cited in the above. In particular,
we note that the balance of mass, both for soilid soil
particles and for liquid pore water, has to be
implemented.

Some finite deformation theories for one-
dimensional consolidation of soils and solutions to
them have been proposed in which field and
constitutive equations are combined to derive one
differential equation containning one unknown
function (e.g., Mikasa(1967), Gibson et al. (1967)). In
such an approach, some kinds of assumptions have to
be made for the developement of those theories; the
first kind of assumptions are concerned with the
simplification or linearization of the equation; the
other concemned with the simplification of the
constitutive laws of soils. Some of these assumptions
restrict the applicability of the solutions, e.g., the
deformation is small; constitutive properties are
constant in the process of the consolidation, including
the assumption of constant coeffiecient of
consolidation. Therefore we can not expect full
understanding of the consolidation phenomenon, even
in one-dimensional consolidation, on the basis of such
analytical solutions.

In some cases such as in the determination of
consolidation properties from conventional or other
types of consolidation tests, an analytical solution is

required. However in some cases such as the
prediction of ground settlement due to the
consolidation of soil layers, analytical solutions will
not always provide correct prediction because of the
assumptions as mentioned above. Further, as the
Authors have pointed out, theories for determining
consolidation properties from CRS consolidation tests
can be examined only by using the test resuits on soils
of which constitutive relations are known. In the last
example, a numerical procedure such as the Finite
Element Method (FEM) is required in which
constitutive relations should have been given.

The author analyzed the ground settlement
caused by the consolidation of soft clay layers with the
assumption of small strain (Shimizu, 1991). As for the
large deformation analyses, they obtained numerical
solutions for the ground settlement by instantaneous
loading and the constant-rate-of-strain consolidation
tests (Shimizu et al., 1994). However in those analyses
the equation for the mass balance of soils were
simplified.

The objective of this study is to develope a
method by which we can obtain numerical solutions,
by the FEM, to the governning equations, in which
small deformation is not assumed but finite
deformation is considered without any linearization
assumption.

In this paper, firstly, the governing equations
are derived based on the continuum mechanics; large
deformation is considered with a non-linear
constitutive law. Secondly, the method of solving the
system of the governing equations by the FEM is
described. Rigorous analysis of the derived system has
not yet been made.

2. Governing equations

Governing equations for the one-dimensional
consolidation of soils are formulated. They are
1. the equation for the equilibrium of stresses,

2. equations for the mass balance,

3. constitutive laws for the soil of interest, and
4. the flow law of pore water.

The first two are field equations.

One-dimensional consolidation of soils is
described by the vertical movement of a horizontal
plane with time; the plane is idealized to one that has
no thickness but consists of soil grains and pore water.
We define the movement of the plane by the
movement of the soil grains that the plane contains; in



EWMAFT2HFREBREH 25 %

other words pore water particles that the plane
contains can be different at different instances.

Any physical or mechanical quantity, ¢,
associated with material particles is a function of
spatial and time variables when the particles move and
the body deforms. We distinguish, to avoid confusion,
the spatial change of ¢ at a particular time, denoted
by A¢, and the change during a time duration 5t for a
particular material particle, 5¢.

The saturated soil is a two-phase material that
consists of solid soil particles and liquid pore water,
whose movement is different each other. In what
follows the suffix 's' denotes quantities associated with
soil particles and 'w' those with pore water.

2.1 Deformation

(1) Motion
Using a coordinate axis, denoted by &, that is fixed in
the space, we specify the position of soil particles and
pore water particles in the soil by the value of £ (see
Fig.1 and also Appendix 1).

Motions of soil particles and pore water are
different: for the motion of soil particles

z=y%4(2,1) @1
and for that of pore water
z=xu(Z.1). (22)

These equations state that soil particles and pore water
particles locating at Z at a reference time 1y move to z
attime 1.

(2) Strain of the element (average strain)

Consider a soil element that occupies the spatial
domain Z <€ < Z + AZ at a reference time fg We
describe the deformation of the element by the motion
of the soil particles contained in the element. The soil
particles move to another domain z <& <z+Azata
time ¢, and the thickness of the element changes from
AZ, at the reference time, to Az, at the time ¢, and to
Az, at a subsequent time r+5¢, where

Az =y, (Z+AZ,t)-y,(Z,1) (2.3)

A= (Z+AZ 1 +50) -3 (Z,1+81) (2.4)

to t test

3 el ement/

Fig.1: Definition of the spatial coordinate: Time ¢ is
the reference time; and the element drawn in the figure
consists of the same soil particles.

Referring to Fig. 1, we define the average
strains of the element at the time ¢ and the subsequent
time ¢+5¢ as:

- Az—AZ

()=~ — 2.5)
and

- A7-AZ

S(f +8t) = —T (26)

respectively. The strain was defined to be zero at the
reference configuration. The increment of the average
strain during the time increment 8¢ becomes

e =a(r+81)-3(0) = - 25 @7
Following relations will be used later:
Az=(1-5(t))az, (2.8)
and

A= (1-¢(r+80))AZ. (2.9)

(3) Strain field

At the limits of AZ—0 and therefore Az—0 and Az'—0,
the average strain and average strain increment of the
element lead to the strain and strain increment,
respectively, at the upper end of the element as:

o(e0)= lim 0= Z-1)

lim — (2.10)
5

e(z',0+80)= [im E(1+51)=-(%—1) @11

AZ—0

189
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o' oz
de(z,1;80) =elz',t +8t)—¢lz,t) = | ———
(s = ol +80)-o(a) = { - Z )
2.12)
The following relation will be used later:
Qz_zg_z_a_z=l~e(z,1+51) @.13)
oz 0z  1-¢lz,0)

The strain and strain increment at the upper end of the
element give their current fields because the element
having so far been considered is quite arbitrary; Z and
therefore z or z' are arbitrary.

The strain rate can be defined as

é= lim Se(z,t;St)

2.14
81—0 ot ( )

(4) Velocity gradient
Current velocities of soil particles at &=z and z+Az
are defined, according to eqgs.(2.1) and (2.2), as

Llzirs)-x(z0)}) @15

vs(z,0)= lim = 5
5i-»0

and

ve(z+Az,0) = lim — {xsZ+AZt+81) 1s(Z+ A0}
t—>05
(2.16)

The velocity gradient at the current configuration is
defines as

ov (z /)
0z

= lim {nGraz0-v@0)  @17)
Az—0

Using the definitions for the velocity , eqgs.(2.15) and
(2.16), we can express the current gradient of velocity
as:

oz, I)‘ lim *{hm (A2~ AZ)}
oz Az—>04Az 51——)0

= Jim { T AZ)}
6!—-)06t Az—~)0

i 8¢ z,t,Sr)
5112105’ 1-e(z,0)
é(z,1)

=- (2.18)

or

(1) = —{l—e(z,t)}%. (2.18)

Eqgs.(2.3) to (2.14) were used.

2.2 Equilibrium of stresses

It is preferable to express the equilibrium of stresses in
an incremental form because the soil has non-linear -
constitutive properties. To derive the incremental form
of equation for the equilibrium of stresses, we consider
two configurations at a time f and a subsequent time
1+5¢.

In finite element analyses, the configuration at
the time £+8¢ is determined based on the configuration
at the preceding time ¢; we calculate the changes of
physical or mechanical quantities during &¢. The
changes have to satisfy the equilibrium of stresses at
time 1+5¢.

(1) Equilibrium of stresses at 1+8¢

The equilibrium of forces acting on/in an element of
thickness Az' at time ++3¢ yields the following equation
(see Fig.2):

o(z' 1 +80)—o(z'+Az' 1 + 8t) + bt + 8 )Az' = 0, (2.19)
with

B(t+80)=

o R Y (220)

where p(&,t) is the total density of soil, and g is the
acceleration of gravity. At the limit of Az—0,

bzt +8t)= lim b(t+8t)=p(z',t +8r)g.  (2.21)
0

Az'—
Introducing the stress increment defined as
dc(z,t;0t) = o(z',t +81)—a(z,t) (2.22)
and

do(z+Az,1;8t) =o(z'+Az' 1 + 8t) - 6(z + Az, 1),
(2.23)

€q.(2.19) is expressed in terms of the increments:
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{60(z+ Az,l;8!)~50(z,t;81)}+
{o(z+Az,0)~0(2,0)} b (1 +81)Az'=0  (2.24)

In the above we consider the stress equilibrium at time
t, which is

o(z,t)—a(z+Az,1)+b(t)Az =0, 2.25)
with
O il RO 3 (2.26)

Indeed, eq.(2.24) is modified to

{50(2 +Az,1;81)-80(z,1; 81‘)} -b(t+ 81)Az' +b(t)Az = 0

@.27)
Dividing by Az and taking the limit Az—0,
660(2,1;&)_6,)(2";8[)
+f’£z"l)j§’———%)'ﬁﬂ&(z,t;&) =0, (2.28)
where
8b(z,6;80) = b(z',t +8t)— b(z,¢) (2.29)

In the above, the term 8bde is a small quantity of
higher order than other terms. If we neglect it,
€q.(2.28) leads to

680(2,1;61)
Oz

b(z,t)
l—a(z,t)

~8b(z,6,8)+ 8e(z,1;8¢) =0

(2.30)

Eq.(2.28) or (2.30) is the stress equilibrium that
the increment 8o, 8¢ and 85 have to satisfy. The term
including 8¢ expresses the effect of finite strain or
geometrical non-linearity. The term 85 reflects the
strain and is not explicitly given. An iterative scheme
is needed in the finite element analysis because of the
evaluation of 3b. Further we note here that the gradient
is evaluated at the current (time ) configuration.

&:

o(z,1)

Z+Az

c(z+Az, t)

unit area

Fig.2: Forces acting on/in the element at time t.

If we assume that the strain increment is
negligibly small, then eq.(2.28) and (2.30) reduce to:

350 (z,1,5¢)

—8b(z,1;,8¢)=0
oz (” )

(2.31)

The last equation can be used for the problems in
which the strain is assumed to be small but the
constitutive relations are non-linear and the body force
changes (Shimizu,1991).

2.3 Balance of mass for saturated soils

(1) General

We derive the equation for the balance of mass for
saturated soils. Consider a soil element that occupy
the space z <& <z+ Az at time ¢, as shown in Fig.2.
As explained earlier, our element always consists of
the same soil particles and the velocities of the
boundaries are equal to the velocity of soil particles at
the boundaries.

The balance of mass for a soil element during
finite time increment 8¢ requires the following
conditions if no interchange of mass between soil
particles and pore water is assumed: for soil grains

M(t+8)- My(r)=0 (2.32)
and for the pore water
M, (e+80)= M, (1) = [7*¥ 0, (<, 2.33)

where M and M,, are the mass of soil grains and that
of pore water contained in the element, respectively;
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Qs is the mass of the water that inflows into the
element through the boundaries per unit time. They are
defined as:

z+Az

M(1) = [77% my (&, 1) (2.34)
with
ms(8,0) = p(&, 1 -n(E,0)}, (2.35)
My (0)= [2% m, (&, 0)de (2.36)
with
my (8,0) = py, (&, )n(&, 1), (237
and
0u(t)=-[qu (z+ Az,0)- 4, (z.1)] (2.38)

with

gy (z+ Az 1) = v,(z+ Az,t)n(z+Az,t)pw(z+Az,1)
(2.39)

awlz.0)=v,(z,0)n(z,0)p,, (z,¢), (2.40)

in which vy is the relative velocity of pore water to soil
grains defined as
(2.41)

Vi =Vy — Vg

At the limit of & — 0, the conditions, eq.(2.32)
and (2.33) become, for soil particles,

d .

— Ms(1)=0 (2.32)
and for the pore water

d 1

—M,(1)=0,(r), (2.33)

dt

To implement the conditions, eqs.(2.32") and (2.33"), in
the finite element analyses, the time increment ¢ has
to be sufficiently small because they were derived by
taking the limit of 8¢ — 0.

(2) Mass balance for soil particles

The condition, eq.(2.32"), leads to the following
differential form for the mass balance for soil grains
(see Appendix 2):

(1-n)Ps i (1-n) P2 0, (2.42)
Ps 0z

where
. _0Ops  Ops

=Ps  PBs 2.43
s % T 243
and

on on

i=2" 4 2.44
Tata 249)

All the quantities are defined at a time ¢. The
quantityp; is the material derivative of the density of
soil grains; on the other hand 7 means only
apparently the material derivative of n because n is
not associated with soil grains.

(3) Mass balance for pore water
By the way described in Appendix 2, the condition,
€q.(2.33", leads to the following differential form:

7% b D, ) s o (2.45)
0z Oz

Pw

(4) Mass balance for saturated soils

Eliminating 7 from eqs.(2.42) and (2.45), we obtain
the general equation for the mass balance of saturated
soils as below:

2P (1) Oy )+ Ps g (2.46)
Py s O oz
If the incompressibility of soil grains is
assumed, then
nPr @ 1o Ps g (2.47)
Py Oz oz

Moreover if the incompressibility of pore water is
assumed, then

L (v, )+ s,
0z

pa (2.48)

which is a usual equation for the incompressible pore
water flow in a deformable soil skeleton.
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In this study we use eq.(2.46) bacause we do
not assume the incompressibility of pore water to hold
the generality. One of advantages of taking into
account the compressibility of pore fluid was
demonstrated in the problem of wave-induced
generation of pore water pressure in sand seabeds
(Shimizu, 1994). One another reason is that, if we
assume it, some difficulty will arise when
instantaneous loading on the ground is analyzed by the
FEM.

2.4 Constitutive equations for soils
We can express non-linear constitutive equations of

soils by the relations between strain rate and effective
stress rate as:

€ = m,s' (2.49)
or

L1

G'=—8, (2.50)

where &' is the effective stress defined as 6'= G- p.
The non-linearity is taken into account by the non-
constant coefficient of volume compressibility m,,.
The coefficient is a function of o' or £. The function
can be evaluated from the e-logp relation
(Shimizu,1991),

2.5 Compressibility of pore water

The density of pore water is assumed to be a unique
function of pore water pressure p as:

Pw _pp,
Pw

(2.51)

where B is the coefficient of volume compressibility
of water; it can be assumed to be constant,

2.6 Darcy's law

We assume that the flow of pore water in saturated
soils obeys Darcy's law, which is

nv, = —k%

. 2.52
% (2.52)

where £ is the coefficient of permeability and 4 is the
total head. The total head is the sum of the elevation
head and the pressure head as

h=—(z—zo)+——£—-,

Pw8

(2.53)

In the above z( is the datum for the head, which is a
constant arbitrarily chosen, and p is the pore water
pressure. We note that the Jaw does not control the
velocity of pore water itself but its relative velocity to
the velocity of soil particles; Gibson et al.(1967) gave
a physical interpretation of Darcy's law. Imai(1987) -
also gave an interpretation of the law.

Considering that p,, is a function of spatial and
time variables as well as p is, we have

ah__ by

2.54
oz Puwg Oz @39
where the relation that
1 ooy = B_aﬁ (2.55)

Py Oz oz

was used (see €q.(2.51)).

We can justify the approximation of 1+pp=1
as follows: the order of magnitude of B is
5x1071%m? /N , that of p encountered in practical
consolidation problems including laboratory tests is at
most 2x 105N /m? and

Bp <1073, (2.56)

With this approximation, eq.(2.54) yields

S as
- Pwg 0z

as Darcy's law. This is the equation that we should use
in FE analyses.

Gibson et al. (1967) used, in Darcy's law, the
excess pore water pressure, which is defined as the
deviation of pore water pressure from the hydrostatic
component. However, here, such a separation of the
pore water pressure is not done because confusion is
sometimes seen in the definition of the excess pore
water pressure (Gibson et al., 1989).



194 Masayoshi SHIMIZU : Formulation for finite deformation FE analysis of one-dimensional

consolidation of saturated soils

3. Finite element formulation

In this section we transform the differential equations
derived in the preceding section to a discrete system of
equations for the FEM. We follow the procedures as:
1. To derive weak forms or integral forms of the
differential equations by using the weighted residual
method.
2. To introduce the finite element approximation of
unknown functions to discretize the unknowns.
3. To discretize the weak form governing equations by
using the Galerkin method.

In the finite element analyses, we calculate
increments of unknowns in the time increment 8¢ from
a time f to a subsequent time ¢+5¢.

3.1. Weighted residual

(1) Equilibrium of stresses
The equilibrium of stresses is given by:

950(z,t;8r)

—8b(z,1;5t)
0z
+b(z,t)+8b(z,t,81) e(z,1:51) = 0,
1-¢(z,1)
(2.28bis)
or
do(z,1;8¢) b(z,1)
" —8blz,1;0t ) + ———8e(z,1;81) = 0
oz (=, )+1—a(z,t) e(z.1:81)
(2.30bis)

In what follows we base the formulation for FEM on
eq.(2.28bis).

The weighted residual of the above equation in
an arbitrary domain z) < z < z, is defined as

o b+8b 88) -0,

r=? we(——8b+ 3.1

T oz 1-¢

where wg is a weighting function. The weighting
function can be chosen arbitrarily. With the integration
by parts, eq.(3.1) is modified to

re = {e(23)80(2,) - w, (2 )80 (21}

4 {—%’50 — w,8b+w, bltib 88}4’2

(32)

In this equation we consider the relationships between
the increments of total stresses and surface traction at
the boundaries such as

80(zy) = 8q(z) (3.3)

80(z;) = -84(z;), 34

where g is the surface traction (see Fig.3), and the
definition of effective stress increments such as

b0 = 3c'+3p. 3.5)
o @0 @f(zmo
Rsc (21)>0 yvanso
\'15" (22)>0 y vz2)>0
Tsa 20 T f(z2>0

Fig.3: Definition of flux and surface traction,

Further, considering the constitutive relations,
€q.(2.49), we obtain the weighted residual.for the
equilibrium of stresses as

re = _{we(zl )6q(zl)+ We(ZZ)Sq(Z2 )}
+J~’2 (_Q_wis_s_weﬁb+we b+3b o — Ove ﬁp}fz
m,, 1-¢

3 oz oz
(3.6)

(2) Mass balance

The equation that describes the balance of mass, at
t+dt for saturated soils was already derived as
€q.(2.47). The equation is valid at any time, and we
have the equation for the mass balance at f'(=1+5¢) as

n(r') 2:8 +—£—'va(t')+ avgz("') =0, G
where
va(1) = n(t')v, (1) (3.8)

In the above, and in what follows, the spatial variable
Z'at time £(=1+5!) is not written for simplicity of
description.
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Introducing, in eq.(3.7), the compressibility of
pore water, eq(2.51), and velocity gradient of soil
particles, eq.(2.18), we obtain the following;

()

n(e )pp(e) + (3.9

1.,
e(’|)t:(t)=0

The gradient at  has to be transformed to the gradient
at 1, because in the FE analyses, the configuration at
the preceding time ¢ is known but that at ++8¢ is not
known. In facts

6Va(’l) _ a"a(") oz _ aVa(’.) l“s(t)

oz & o & 1-€(r') (.10)
Eq.(3.9) is rewritten to:

I 2Dy
n(t)B] AL ple)+ l_s(t)e(z)_o (3.11)

where eq.(2.13) was used.
The weighted residual of eq.(3.11) is given as

_ %2, 1- 5(’)
r =Jz] W [n( )p (l)

() .y
i)+ s(l)e(i)]=
(3.12)

Taking into account the following relations, eqs.(3.13)
to (3.15), the weighted residual p is modified to
eq.(3.16).

ov, (¢ ow
0o 220 2 )- 20 ), Gy
and

0 . 1 op(r)
valt)=—k(t )[—1 o —az—,—], (3.14)
where
aplr) _[aplr)  asp) 1-e(r)
oz' —{ Oz e 1-g(r) 315)

o ={-w () @)+ wp(e2) 1)

Howp ()87 (21)+ wp (28 (z2)}
i, = (()) (1))

¥ U B %
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ow
- Zz_pk !
jzx oz (¢)d=

5y k() 1-¢(r)(op(r) 85
+jz| Egpw(t')gl s(t')[ "t 6zp)dz
- wpy "k &(r)z, (3.16)

where f denotes the flux at the boundary planes. The
flux is defined positive when water inflows the
element.(see Fig.3)

(3) Finite difference in the time domain

‘The weighted residuals include ¢ and p that are the
rates at the time #+df. We approximate the rates by
such finite differentiation as

. s(t+8t).—e(t) e

07 3.17
Elr 45 Yy =3 (3.17)
and
. ple+d0)-plt) &

P A A WA 4 3.18
Plevse o o (3.18)
Further the strain increment is replaced by the
displacement increment as
8e = ~(1-£(z, t)) Obu (3.19)
where
du=u(z',1 +8t)-ulz,1) {3.20)
with
u(z,t)=z-2 (3.21)
and
Wz t+8t)=2'-2Z 3.22)

Finally we obtain the weighted residuals of the
equation for the equilibrium of stresses and the
equation for the mass balance as

Te = "{we (ZI )sq(zl ) + W, (22 )8‘1(22 )}
o (?_:_ e sz;)] Obu
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ow,
- jz’f — §pdz - jz’f w,Bbdz = 0 (3.23)

0z
rp= {“Wp(zl )f(z)+ Wp(ZZ)f(ZZ)}
+{—Wp(21 )37 (z1)+ wp(z, )8 (z)}

1.z l—e(t')
+— [ t'Bpd
ot Wp 1—8(’) Bn( bp 4

ow
~ 2L k(¢')dt
'[21 oz (r)dz

yp2e M) 1-e()(ap() , obp),
7 0z pw(t')g1~s(t')\ oz oz
Lo, B

&t'n P o

(3.24)

3.2 Discretization

Unknown functions are displacement increment, Su
and pore pressure increment 8p. It is natural that 3u is
approximated with a nodal function of higher order
than 8p in the weighted residuals, egs.(3.18) and (3.19),
because the order of derivative for u is higher than
that for &p.

As in usuai textbooks for FEM, we introduce
vector notation in what follows. The notation <x>
denotes a row vector and {x} denotes a column vector.
A matrix is denoted by [x].

The increments of displacement and pore
pressure are approximated in an element by the
functions:

du=< N, > {57}, (3.25)
and
8p=<N,>{sp}, (3.26)

where <N,;> and <Np> are nodal approximation
functions; {87} and {5p} are vectors of which
components are nodal values of du and dp,
respectively. <Njp> is a second order function of a
normalized space variable and <Ny,> a first order
function. The detail of the nodal approximation can be
referred to a textbook, e.g., (Dhatt et al., 1984),
According to the Galerkin method, we also
discretize weighting functions, we and wp, as

we =< Ny, > {W,}, (327

wp =< N, >{w,}. (3.28)

Weighted residuals for an element are thus

re =<, >[([k ]~ [kp 1 - [3)){57}
~[1){8P) - {8b} - {8s}]

rp =<7, > [a_lrmT {57} + (B—It[c] + [a]){Sﬁ}

—{e} + {1} + (8} +[a)(p)]

where

z 1-¢
ta)=J,} (B =< B, > de

(k)= [? {N,}8b < B, > dz

[k31= 72 (N,}b < B, > dz

1= J:f {By} <Ny >dz

{85} = { Ny (21)}8g(21) + {N,(22)}8q(z2)
[85]= lel {N,)8bdz

k(t) 1-€(1) <B

ow()g 1-s(r) P %

[a)= [} (B,

(1= 2 (N Ion(e ) T < N, >

{e) = j:f <Bp > k(')dz

{F}=—Np@}f (21) +{Np(22)} [ (22)

of} == {Np(20}8f (21)+ (N p(22)}8/ (22),

where

< B, >= 2 <N, >
oz

and

<Bp>=§;<Np>

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
(3.40)

(3.41)

(3.42)

(3.43)
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3.4 Assemble

Considering the continuity of unknown and weighting
functions, the weighted residuals in the global system
can be obtained (assembly). The arbitrariness of the
weighting functions leads to the global system of
equations to be solved as

-1} [T}
[C1+3:{ 4] ]| (3P}
(8B} + {55)
—{5’({E}_{F}—{SF}—[A]{P_})}’ (3.44)

[K11-1Kz1-1K3)
("

where capital letters are used to specify matrices or
vectors in the global system.

4. Conclusions

A theoretical formulation was made in which small
deformation is not assumed but finite deformation is
considered with a non-linear constitutive law. Then the
method of solving, by the FEM, the derived system of
the governing equations was presented. Rigorous
analysis of the system that was developed here has not
yet been made.

Appendix 1: Motion of material points

Using a coordinate axis, denoted by x, that is fixed in
the space, we specify the position of any material
particle in the body by the value of x (see Fig.1). The
one-dimensional motion of material particles can be
described by the following equation:
z=x(2.,1), (A1)
which indicates that material points locating at the
position §=Z at a reference time t move to the

position &=z at some subsequent time ¢. From this
definition,

Z=x(Z.1o). (A2)
Moreover, the position at time ¢ + 8¢ is given by
2'=x(Z,t+5¢) (A3)
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Consider material points of which motion is
described by eq.(A1). If a physical or mechanical
quantity, ¢, associated with these material points
changes during the time duration 5¢, then the change df
is given by

80(z,1;81) = ¢(2', £ +80) - ¢(z,1), (A4)
which gives the time rate of ¢ as
L. 80 & %

= Ty 2 AS
b=lim 5= Vet o (A3)
where

Z,t

=20, (A6)

which is the velocity of the material points with which
the physical quantity ¢ is associated: e.g., when the
material points refer to soil grains, vy means the
velocity of soil grains; when the material points refer
to the pore water, it means the velocity of pore water;
and so on,

Appendix 2: Mass balance

d

M= lim (M (0450~ 44,(0) )
where

My(e+8) = [ my(g 1 +80)ak (A8)
and

M(0)= [F* mo(e,0)ae (A9)
with

my(&.0) = ps(E. {1 -n(z,0)], (A10)
When 5t is small,

'z z4vg(z,1)81 (A1D
A= 2+ Az + vz + Az, t)dt (A12)

M(r+ 51)=jzz+vs(”)5’ m(E, ¢ +81 e
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jHAzm(& {+80)E

Jzz:Az+v,(z+Az161 e+ (A13)

Considering that the domains for integral in the first
and third terms are small, we can change the above to

Mt +5t) = —mg(z,e+8¢)vg(z,0)5¢

+J;+Az{ my(e.)+ 2sl&:t) ( )8,}4g

+mg(z+ Azt + 8t v (z+Az,0)8t  (Al4)

Further,

M(r+80)= L”Az[%{ms(z,t +80)v(z,1) 8t

ams(‘r;:’)

ot

+{ms(§,t)+ ax}]dg (A15)

Inserting eqs.(A9) and (A15) into eq.(A7), we obtain

d 2 r .
= My= ]! +Az[5%ims(z,t +80)vy(z,0)}

dt
ams(‘;w’)
+T&}d§ (Al6)

Considering that the element is arbitrary or the
integration domain is arbitrary, the condition that

%Mfo leads to
Bms(é,t) =0

~6-{7)15((Z§,t + St)vs(z,t)} + py

x (A17)

After some diferential operation, we get eq.(2.42).
As for the mass balance for the pore water,

d}; Jzzmz[ {m, (&t)vs(.g,)}+a”'»v§!)]
(A.18)

= J”A’a{n(& OGP ENIE  (A19)

Inserting these relations into eq.(2.33"), we have
€q.(2.42).
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