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Abstract: Unconfined compression tests were conducted on a silt sample. Unsaturated specimens were prepared by 

applying suction to the saturated sample having been one-dimensionally consolidated. Compressive stress-strain-suction 
behavior is discussed. Bishop's effective stress and Fredlund et al.'s shear strength equation were applied to explain 
unconfined compressive strengths. Conclusions show that the suction decreases during compression more for specimens 
of low initial suction than for those of high initial suction; Bishop's effective stress explains well the strength for 
specimens of high degree of saturation but underestimates it for specimens of low degree of saturation; and Fredlund et 
al.'s equation would be applied with the consideration of a nonlinear relationship of the parameter b included in the 
equation with the suction. 
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