

鳥大農研報 (Bull. Fac. Agric., Tottori Univ.) 52 13~19 (1999)

埋め込みパイプを利用した RC ボックスカルバート壁体の 温度ひび割れ防止方法に関する解析的検討

緒方英彦*·服部九二雄*

平成11年6月25日受付

*鳥取大学農学部生存環境学講座

Analytical Investigation on Preventive Method of Thermal Cracking in a RC Box Culvert Wall by Embedded Pipe

Hidehiko Ogata* and Kunio Hattori*

* Department of environmental engineering, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan

The thermal cracking generated in a RC box culvert wall is an external restraint cracking. The thermal stress which causes this cracking is generated by volume change of the wall concrete being restraint with the lower slab concrete which has already been placed. The thermal stress is influenced by the fluctuation of temperature and the elastic modulus ratio between the wall and the lower slab concrete. If the fluctuation of temperature between the wall and the lower slab concrete is reduced, the generated thermal stress can be decreased. In this research, the method for reducing the fluctuation of temperature between the wall and the lower slab concrete by using the pipe embedded in the lower slab concrete was examined. The effectiveness of this method was evaluated by the analytical results of thermal stress in a RC box culvert wall using 3-D FEM. The diameter of the pipe embedded in the lower slab concrete and concrete condition placed in that had been variously changed. As a result, the thermal stress of the wall concrete was able to be decreased by the pipe embedded in the lower slab concrete.

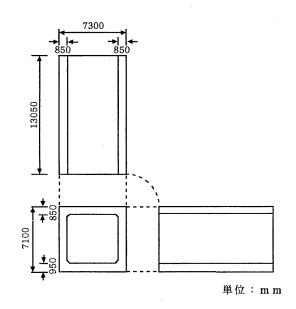
Received 25 June 1999)

Key words: elastic modulus, embedded pipe, maturity, RC box culvert, thermal cracking, thermal stress and 3-D FEM

はじめに

近年、中山間地域や山間地域に建設される農道では、地形条件の制約や他の道路との機能を確保するために農道用RCボックスカルバートを建設するケースが多々ある。この農道用RCボックスカルバートには、初期材齢において温度ひび割れが発生することがあり、その防止対策を図ることは構造物の耐久性を確保する上で重要になる。

RC ボックスカルバートのコンクリート部材は、底版、 上スラブ、そして壁体に大きく分けられる。底版と上ス ラブに発生する温度ひび割れの主は内部拘束ひび割れで あり、その原因になる内部拘束応力は部材内部の温度差 に起因して生じる。一方、壁体に発生する温度ひび割れ の主は外部拘束ひび割れであり、その原因になる外部拘 束応力は壁体コンクリートの体積変化が既設コンクリー トである底版に拘束されることで生じる。このように温 度ひび割れの原因になる温度応力は、内部拘束応力と外 部拘束応力に大別することができるが、実際は両者が複合的に関係して生じる.内部拘束ひび割れは、部材を貫通することは少ないが、外部拘束ひび割れのほとんどは部材を貫通することが報告されている[2].部材を貫通する外部拘束ひび割れは、雨水や塩分が部材内部に進入することで鉄筋を錆びさせる原因になることから、その防止対策は必ず図る必要がある.しかし、施工性や経済性の問題から、小型コンクリート構造物である RC ボックスカルバートでは防止対策が図られることは少ない.


温度応力の大きさは、熱弾性論に基づいて考えると温 度差、熱膨張係数、弾性係数の3者に影響される、従っ て、温度応力を小さくするためには、これら3者を小さ くすればよい. しかし, 熱膨張係数や弾性係数を小さく することは、技術的に容易なことではなく、また、コン クリート構造物に必要不可欠な諸荷重への耐久性を考え ると適当とは言えない. そのために, 温度差を小さくす る方法が, 材料や施工の面からさまざまに検討されてき た[1][6] など、RC ボックスカルバート壁体で考えると, 温度ひび割れは壁体と底版の間の温度差を小さくし、生 じる温度応力を小さくすることで防止することができ る. 具体的には、2つの方法が上げられる. 既設コンク リートである底版は, 既に外気温と同程度まで下がって いることから、壁体の温度低減を図ることがまず考えら れる. この壁体の温度低減を図る方法は、材料や施工の 面からさまざまに検討されており、その効果も報告され ている [4][5]. 一方, 底版の温度を上げれば, 壁体との 間の温度差を小さくすることができる。しかし、具体的 な方法は未だ確立されていない状況にある.

温度ひび割れ防止の確実性は、さまざまな防止方法を 複合的に組み合わせることで増すことができる。そこで 本研究では、未だ確立されていない底版の温度を上げる 方法を検討することにした。本研究で取り上げた方法は、 底版にパイプを埋設し、このパイプを利用して底版の温 度を上げ、壁体との間の温度差を小さくして温度ひび割 れを防止するものである。この方法の有効性を解析的に 検討したので報告する。

解析構造物

本研究で対象にした RC ボックスカルバートの概略 図を第1 図に示す. 外寸法は,高さ $7.10 \text{m} \times$ 横 $7.30 \text{m} \times$ 奥行き 13.05 m であり,各部材の厚さは,底版:0.95 m,上スラブ:0.85 m,壁体:0.85 m である.

第1図に示した RC ボックスカルバートは,実際に建

第1図 RCボックスカルバートの概略図

設されたものであり、実際の示方配合では初期材齢に発生する温度の低減を図るため、セメントに高炉セメント B 種を使用し、混和剤として高性能減水剤を使用した配合となっている。しかし、本研究では、温度ひび割れ防止方法を解析的に検討することが目的であることから、セメントには初期材齢に発生する温度が大きい普通ポルトランドセメントを使用し、また、混和剤を使用しないコンクリート配合とした。本研究で用いたコンクリートの示方配合を第1表に示す。

解析方法と解析条件

本研究では、温度解析を Galerkin 法に基づく三次元 有限要素法で行い、温度応力解析を仮想仕事の原理を 用いた三次元有限要素法で行った。解析プログラムは、 FORTRAN 言語を用いて作成し、NDP FORTRAN-386 にファーラップ社の DOS エキステンダーを利用して汎 用型パーソナルコンピュータで計算した。

温度・温度応力解析を三次元有限要素法で行うために、第1 図に示した RC ボックスカルバートを 20 節点アイソパラメトリック要素を用いて 116 要素,756 節点に分割した。有限要素分割を行ったのは、RC ボックスカルバートの対称性を考慮した 1/4 領域である。温度解析における境界条件は、底版下部面を温度規定境界、露出面を熱伝達境界、そして 1/4 分割面を熱流束境界とした。温度応力解析における拘束条件は、底版下部面を X,Y,

第1表 コンクリートの示方配合

セメント	粗骨材の	スラ	空気	水セメ	細骨		単位量	(kg/m ³)	
の種類	最大寸法	ンプ	量	ント比	材率	水	セメ	細骨	粗骨
	(mm)	(cm)	(%)	(%)	(%)		ント	材	材
普通ポルトランド	20	12	2.0	55	38.2	167	304	707	1152

第2表 RCボックスカルバートの解析条件

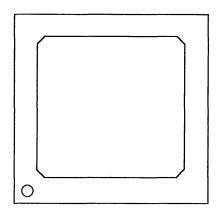
20	スカルハートの辨析条件	
熱伝導率	(W/m/°C)	2.67
熱伝達率	$(W/m^2/^{o}C)$	11.6
比熱	(kJ/kg/°C)	0.96
密度	(kg/m^3)	2330
打設温度	(°C)	28.0
終局の断熱温度上昇量	(°C)	45.12
温度上昇速度に関する定	数	1.597
熱膨張係数	(/°C)	10×10^{-6}
圧縮強度	(kgf/cm ²)	$f'c(M) = 160\log_{10}(M) - 309$
		M:材齢 t 日までのコンクリート内部温度
		と材齢の積算値
		f'c(M):積算温度 M における圧縮強度
弾性係数	(kgf/cm^2)	$Ec(M) = \psi(t) \times 1.5 \times 10^4 \times \sqrt{f'c(M)}$
		Ec(M):積算温度 M における弾性係数
		$\psi(t)$:クリープの影響を考慮した補正係数
		(材齢3日まで:0.73, 材齢5日以降:1.00,
		材齢 3~5 日までは直線補間)
ポアソン比		0.2

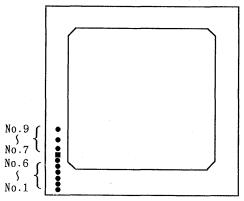
Z 方向とも拘束し、1/4 分割面は分割面と直交方向を拘束した。それ以外の節点は自由である。

温度・温度応力解析に使用した解析条件を第2表に示す。ここで、温度応力解析に使用した弾性係数は、圧縮強度を材齢とコンクリート内部温度の積算値(マチュリティー)で表現し、これを用いて推定することにした。このマチュリティー法による弾性係数推定方法は、弾性係数を材齢の関数として推定した場合に比べて、温度応力の解析値を実測値により近似させることができる[3]. 圧縮強度の推定式における定数は、第1表の示方配合で作製した標準供試体の圧縮強度試験結果(第3表参照)を基に最小二乗法で求めた。ここで、今回行った三次元有限要素法による温度応力解析は、圧縮強度と弾性係数ともPaではなく、kgf/cm²を入力単位として行ったことから、第2表ではkgf/cm²で記述した。しかし、解析結果の提示並びに考察を行う際には、kgf/cm²をPaに換算して行った。

パイプ埋設方法と考察位置

埋設したパイプを利用して底版の温度を上げる方法 は、経済性と施工性を考慮に入れコンクリート自体の


第3表 標準供試体の圧縮強度


材齢 (日)	圧縮強度 (MPa)			
7	22.7			
14	28.2			
28	32.0			
56	33.1			

発熱を利用することにした. つまり, 底版に埋設したパイプ内部をフレュシュなコンクリートで充填し, コンクリート自体の発熱を利用して底版の温度を上げる方法である.

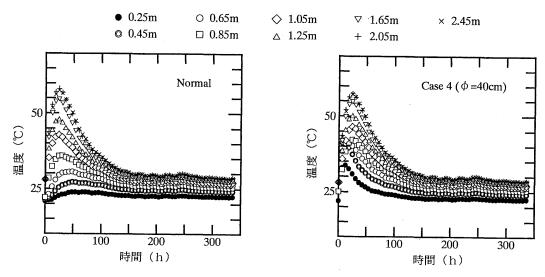
コンクリートの発熱量は、コンクリートの配合と体積によって異なる。そこで、パイプ内部に充填するコンクリートの配合を3種類、埋設するパイプの径を20、30、40mmの3種類検討することにした。ここで、底版に埋設するパイプの位置は、第2図に示すように壁体の直下である。また、温度ひび割れの発生原因となる引張側の温度応力は、コンクリート内部温度が最高値に達した後の降下過程に生じることから、壁体のコンクリート内部温度が最高値に達した後に底版の温度を上げることで引張側の温度応力を小さくできると思われる。この点を

- 解析温度の考察位置(No.1~No.9)
- 解析温度応力の考察位置

第2図 パイプの埋設位置と温度・温度応力解析結果の考察位置

第4表 パイプ内部に充填したコンクリートの温度解析条件

	Case 1	Case 2	Case 3	Case 4
終局の断熱温度上昇量 (°C)	45.12	58.66	58.66	67.68
温度上昇速度に関する定数	1.597	2.076	2.076	2.400
打設時間 (h)	0	0	24	0


第5表 各解析条件における高さごとの最高温度

		>	BOXX TO	パチリオ・ロード	-42 () S lat	CCCON	又问血及				
		No.1	No.2	No.3	No.4	No.5	No.6	No.7	No.8	No.9	
					底版下部	面からの	高さ (m)				
解析	条件	0.25	0.45	0.65	0.85	1.05	1.25	1.65	2.05	2.45	
		最高温度 (°C)									
Nor	mal	24.03	27.33	30.76	36.01	42.87	47.82	54.88	58.12	57.56	
	$\phi 20 \mathrm{cm}$	24.69	28.40	32.01	37.05	43.42	48.15	54.88	58.00	57.50	
Case 1	$\phi 30 \mathrm{cm}$	26.05	30.78	34.01	38.36	44.15	48.54	54.84	57.81	57.45	
	$\phi 40 \mathrm{cm}$	28.55	33.86	36.74	40.03	45.10	49.09	54.84	57.61	57.40	
	$\phi 20 \mathrm{cm}$	24.78	28.95	32.42	37.41	43.64	48.28	54.91	57.97	57.48	
Case 2	$\phi 30 \mathrm{cm}$	27.55	33.63	35.20	39.16	44.63	48.84	54.88	57.74	57.42	
	$\phi 40 \mathrm{cm}$	31.62	38.39	39.24	41.41	45.96	49.63	54.93	57.50	57.34	
	$\phi 20 \mathrm{cm}$	26.58	33.46	34.85	37.37	43.38	48.12	54.88	58.01	57.50	
Case 3	$\phi 30 \mathrm{cm}$	29.88	38.16	38.81	38.83	43.73	48.28	54.80	57.86	57.48	
	$\phi 40 \mathrm{cm}$	33.95	42.71	43.49	40.93	44.12	48.48	54.74	57.74	57.47	
	$\phi 20 \mathrm{cm}$	25.05	30.44	32.68	37.64	43.79	48.37	54.91	57.94	57.47	
Case 4	$\phi 30 \mathrm{cm}$	28.93	36.28	36.03	39.67	44.97	49.05	54.91	57.69	57.39	
	$\phi 40 \mathrm{cm}$	33.98	41.99	41.26	42.32	46.55	50.01	54.99	57.42	57.29	

^{* 0.95}m が底版と壁体の境

踏まえ、充填するコンクリートの打設時間は、壁体と同じ時間、壁体のコンクリート内部温度が最高値に達する時間 (本研究では打設後 24 時間) の両者で検討することにした。よって、本研究で考慮したパイプ内部に充填するコンクリートの解析条件は、第 4 表に示した 4 種類で

ある. 本研究では、パイプ内部に充填するコンクリートの配合までは検討せず、各解析条件におけるコンクリートの配合の違いは、内部発熱量を断熱モデルで計算する際に使用する終局の断熱温度上昇量と温度上昇速度に関する定数で表すことにした。表中の打設時間は、壁体打

第3図 Normal と Case 4(ϕ 40cm) の解析温度

設からの時間である.

第2表と第4表の解析条件で、三次元有限要素法による温度・温度応力解析を行い、底版と壁体の温度変化、壁体の温度応力変化をそれぞれ考察した。考察した位置は、第2図に示すように温度で9箇所、温度応力で1箇所である。温度応力の考察位置は、最も温度応力が大きくなる位置である。

解析結果

1. 温度解析結果

各解析条件で温度解析した結果を示す。第5表には、高さごとの最高温度を示す。ここで、Normal は底版にパイプを埋設しない場合の解析結果であり、Case $1\sim4$ は第4表に示した解析条件での解析結果である。また、第3図には、Normalと Case $4(\phi40\text{cm})$ の解析条件における高さごとの解析温度の時間変化を示す。底版と壁体の境は0.95mである。

底版では、各 Case においてパイプの径が大きくなる ほど最高温度は高くなる。また、パイプ内部に充填する コンクリートの内部発熱量が大きくなるほど底版の最高 温度は高くなったが、各 Case において大きな差は見ら れない。

壁体では、底版との境から 0.30m 上に位置する高さ (底版下部面からの高さ 1.25m) までは温度上昇が見られた. しかし, これより上に位置する高さにおいては、Normal とほぼ同じ温度であり、底版の温度を上げたこ

とによる影響は見られない. また, パイプの径が異なることによる温度の違いも見られない.

本研究における温度解析結果から、底版に埋設したパイプを利用して底版の温度を上げることで、壁体下部の温度を上げることができた。しかし、底版と壁体の境からの距離が 0.30m を超えると、底版の温度を上げたことによる影響はほとんどなくなることが分かった。

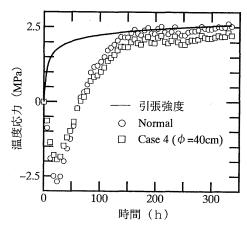
2. 温度応力解析結果

各解析条件で温度応力解析した結果を示す. 第6表には、最大圧縮側応力、最大引張側応力、引張強度、温度ひび割れ指数を示す. また、第4回には、Normalと Case $4(\phi40\text{cm})$ の解析条件における解析温度応力の時間変化を示す. ここで、温度ひび割れ指数は、引張強度と温度応力の比であり、その値が大きいほど温度ひび割れが発生しにくく、小さいほど発生しやすいという一つの指数である. また、一般に温度ひび割れ指数が小さいほど発生する温度ひび割れの数が多くなり、その幅も大きくなるとされている. 一般的には、温度ひび割れを防止したい場合は1.5以上、温度ひび割れの発生を制限したい場合は1.5以上、温度ひび割れの発生を制限したい場合は1.5以上1.5未満、有害な温度ひび割れの発生を制限したい場合は0.7以上1.2未満をとればよいとされている. 温度ひび割れ指数が1.0 の場合、温度ひび割れの発生確率は約50%である.

最大引張側応力と引張強度で考察すると、Normal と Case $1(\phi 20 \mathrm{cm})$ において最大引張側応力は引張強度より

笛c虫	各解析条件における温度応力解析結果	1
# h 7		•

解析条件		最大圧縮側応力	最大引張側応力	引張強度	温度ひび割れ指数	
		(MPa)	(MPa)	(MPa)		
Normal		2.67	2.65	2.57	0.97	
	$\phi 20 \mathrm{cm}$	2.67	2.62	2.57	0.98	
Case 1	$\phi 30 \mathrm{cm}$	1.96	2.33	2.57	1.10	
	$\phi 40 \mathrm{cm}$	1.95	2.34	2.57	1.10	
	$\phi 20 \mathrm{cm}$	1.97	2.33	2.57	1.10	
Case 2	$\phi 30 \mathrm{cm}$	1.89	2.33	2.57	1.10	
	$\phi 40 \mathrm{cm}$	1.94	2.34	2.57	1.10	
	$\phi 20 \mathrm{cm}$	2.07	2.32	2.57	1.10	
Case 3	$\phi 30 \mathrm{cm}$	2.05	2.32	2.57	1.10	
	$\phi 40 \mathrm{cm}$	2.03	2.34	2.57	1.10	
	$\phi 20 \mathrm{cm}$	1.97	2.33	2.57	1.10	
Case 4	$\phi 30 \mathrm{cm}$	1.95	2.33	2.57	1.10	
	$\phi 40 \mathrm{cm}$	1.94	2.34	2.57	1.10	


も大きくなる. 他の解析条件では、最大引張側応力は引張強度よりも小さくなる. よって、この最大引張側応力と引張強度だけで考察すると、底版に埋設したパイプを利用して底版と壁体下部の温度を上げることで、温度ひび割れの発生を許容することができる.

次に、各解析条件における温度ひび割れ指数を考察する。各解析条件における温度ひび割れ指数は、パイプの径やパイプ内部に充填するコンクリートの内部発熱量に関係なく 1.10 一定である。Normal での温度ひび割れ 指数が 0.97 であることから、温度ひび割れの発生確率をやや小さくすることができる。しかし、両者は、有害な温度ひび割れの発生を制限したい場合の 0.7 以上 1.2 未満の範囲内にあり、温度ひび割れを防止したい場合の 1.5 以上ではない。よって、底版に埋設したパイプを利用して底版と壁体下部の温度を上げることは、多少温度ひび割れの発生確率を小さくすることはできるが十分ではない。

温度ひび割れの発生を温度応力解析結果から判定する場合、判定基準により結果は異なる.本研究においても、解析した温度応力を用いると温度ひび割れの発生は許容できるという判定結果になるが、温度ひび割れ指数を用いると十分ではないという判定結果になる.しかし、本研究で検討したRCボックスカルバート壁体の温度ひび割れ防止方法は、少なからず温度ひび割れ防止に効果があることが本解析結果から分かった.

おわりに

本研究では、RC ボックスカルバート壁体に発生する

第4図 Normal と Case 4(ϕ 40cm) の解析温度応力

温度ひび割れの防止方法について解析的に検討した.本研究で検討した方法は、底版にパイプを埋設し、パイプ内部に充填したフレッシュなコンクリートを利用して底版の温度を上げ、底版と壁体の間の温度差を小さくして温度ひび割れを防止する方法である.

その結果、本方法は、少なからず温度ひび割れ防止に効果があることが分かった.しかし、本研究で考慮したパイプの径やパイプ内部に充填するコンクリートの配合の違いによる影響を解析結果から顕著に見ることはできなかった.

温度ひび割れ防止の確実性は、さまざまな防止方法を 複合的に組み合わせることで増すことができる。本研究 で検討した方法だけでは、RC ボックスカルバート壁体 に発生する温度ひび割れを完全に防止することは難しい. しかし,他の温度ひび割れ防止方法と複合的に組み合わせれば,少なからず温度ひび割れ防止に貢献する方法であると思われる.

引用文献

- 1) 石川雅美, 長束 勇:マスコンクリートの温度応力制御技 術について(その1)-解析的予測手法-,水と土,86:2-13 (1991)
- 2) 土木学会: コンクリート技術シリーズ8 マスコンクリート 技術の現状と動向:2-5 (1994)
- 3) 緒方英彦, 國武昌人, 近藤文義, 中澤隆雄, 山下 博:RCボックスカルバート上スラブの三次元有限要素温度応力解析における熱膨張係数と弾性係数の一考察, 農土論集, 186:27-34 (1997)
- 4) 小野 定、櫛田泰仁,木村克彦,島津 寛,大下繁:マスコンクリートの温度ひび割れ制御-低発熱型高炉セメントを使用したコンクリートの諸性質-,セメント・コンクリート,442:33-39 (1983)
- 5) 十河茂幸, 新開千弘, 入谷桂史郎:マッシブな鉄筋コンク リート構造物の温度ひび割れ対策とその効果, セメント・コ ンクリート, 453:12-20 (1984)
- 6) マスコンクリートの温度応力研究小委員会:マスコンクリートの温度応力推定方法に関する既往の研究とその総括(その1), コンクリート工学, 21(8):4-17 (1983)