

鳥大農研報 (Bull. Fac. Agric., Tottori Univ.) 39 19~23 (1986)

Aspergillus nigerのgluconate dehydrataseの性質

市川吉夫*・森 信寛*・河野隆一* 谷口佳人*・北本 豊*

昭和61年5月31日受付

Some Properties of Gluconate Dehydratase from Aspergillus niger

Yoshio Ichikawa*, Nobuhiro Mori, Ryuichi Kono*, Yoshito Taniguchi*, Yutaka Kitamoto*

The enzyme system for gluconate fermentation in *Aspergillus niger* has been investigated. Glucose oxidase and gluconate dehydratase activities were detected in the fungus grown in the glucose medium, although gluconokinase activity could not be found in the same medium.

Gluconate dehydratase was partially purified by procedures of ammonium sulfate fractionation and DEAE-cellulose batch treatment. The enzyme was rather labile. Stabilization of the enzyme was performed by addition of 30 % ethylene glycol in 0.1 M glycine-NaOH buffer, pH 8.3. Gluconate dehyratase was strongly activated by 1 mM $\rm Mg^{2+}$. The Michaelis constant for gluconate was 11mM. The dehydration of gluconate was identified as 2-keto-3-deoxygluconate by paper chromatography.

緒 言

グルコン酸は食品添加物,医薬,工業用薬品として広く利用されている。グルコン酸生産能力を有する微生物として Pseudomonas 属 や Acetobactor 属 の 細 菌, Aspergillus 属やPenicillium属などの糸状菌が知られており,工業的生産には主にAspergillus nigerが用いられている。Asp. nigerは $CaCO_3$ で中和しながら培養するとglucose oxidaseによりグルコースから大量のグルコン酸を培地中に蓄積する。また,グルコース濃度が高いとglucose oxidase活性が著しく増加し,グルコン酸蓄積量も増大することが認められている。

微生物によるグルコン酸の分解に関しては細菌による 研究が多数報告されている。Pseudomones 属がや Escherichia coli³¹ではグルコン酸はgluconokinaseにより リン酸化され,6ーホスホグルコン酸 (6-PG) となり,6ーphosphogluconate dehydrataseにより脱水され,2ーケトー3ーデオキシー6ーホスホグルコン酸 (KDPG) となる経路が報告されている。また Clostridium pasteurianum, 1.21 Rodopseudomonas spheroides, 121 Achromobacter®属においては,グルコン酸はgluconate dehydrataseにより脱水され,2-ケトー3-デオキシグルコン酸 (KDG) となる経路が報告されており,本酵素の性質についても検討されている。

一方,糸状菌によるグルコン酸分解経路としては,gluconokinaseによりリン酸化され6-PGとなってhexose monophosphate経路にはいる経路のほかに,グルコン酸が脱水され,KDGになり,さらにグリセルアル

^{*} 鳥取大学農学部農芸化学科農産製造学研究室
Department of Agricultural Chemistry, Faculty of Agriculture, Tottori University

デヒドとピルビン酸に分解されるEntner-Doudoroff経路類似の経路がAsp. nigerで観察されているが,酵素化学的な解明には到っていない。また著者らはAsp.nigerにおいてグルコン酸はアデノシン三リン酸 (ATP) 関与のもとにKDPGになることを既に報告しているが,リン酸化の段階やそれらの酵素系を解明するには到っていない。本研究では,Asp. nigerのグルコース生育菌体中にgluconate dehydratase活性を見いだし,本酵素の基本的な性質について検討した結果を報告する。

実 験 方 法

(1)使用菌株: 本実験にはAspergillus niger (IFO4417) を用いた。

(2)培地および培養方法:菌株の保存にはポテト・シュークロース培地を用いた。培養にはグルコース20g/l, corn steep liquor5.0g/l, $(NH_4)_2HPO_4$ 0.8g/l, KH_2PO_4 0.4g/l, $MgSO_4 \cdot 7H_2O$ 0.2g/l, ペプトン0.02g/l, Tween80 1.0g/l, CaCO $_3$ 5.0g/l0 の培地を用い、pHは6.5に調整した。種菌にはポテト・シュークロース培地上に形成した本菌の胞子を0.1% Tween80溶液に懸濁して用いた。培養は上記培地50mlを500ml容振盪フラスコに入れ、30°Cで振盪培養した。

(3)無細胞抽出液の調製:菌体は濾過により集菌し、直ちに破砕した。湿重量で2.5gの菌体を0.1Mの緩衝液10mlに懸濁し、グラスホモジナイザーで0 $^{\circ}$ Cで15分間磨砕した。この懸濁液を $10,000 \times g$ で15分間遠心分離し、上清液を粗酵素液として実験に供した。

(4)酵素活性測定法

- a) Gluconokinase: グリシルグリシン緩衝液 (pH7.5) 150 μ mol, $MgCl_2$ 15 μ mol, ATP 5 μ mol, グルコン酸ナトリウム 12.5 μ mol, 適当量の酵素液を含んだ反応液 (全量1.0ml) で30°Cで反応を行った。生成する6ーホスホグルコン酸を6ーphosphogluconate dehydrogenaseを用いる酵素法により定量した $^{\circ}$
- b) Gluconate dehydratase: グリシン—NaOH緩衝液 $(pH8.3)300\mu$ mol, $MgCl_215\mu$ mol, グリコン酸ナトリウム 15μ mol, 酵素液を含んだ反応液 (全量1.5ml)で 30° Cで1時間反応を行った。0.5MHCl 1.5mlを加え酵素反応を停止し,生成するKDGをセミカルバジド法で定量した。 $^{(1)}$ なお,KDGの標準物質を得ることができないためピルビン酸ナトリウムを標準物質としてKDG量を算出した。
- c) Glucose oxidase: リン酸カリウム緩衝液 (pH7.0)150 μ mol, グルコース50 μ mol, 4 -アミノアンチピ

リン 4.5μ mol, フェノール 6.0μ mol, peroxidase 6 単位, 酵素液を含んだ反応液 (全量3.0ml) で30°Cで反応し、500nmにおける吸光度の増加を経時的に測定した。酵素単位は上記反応条件下で1分間に 1μ molの反応生成物を生成する酵素量を1単位と定義した。比活性はタンパク質1mg当0の単位数とした。

(5)タンパク質の定量:タンパク質は牛血清アルブミンを標準タンパク質としたLowryらの方法により定量した。 (6)Gluconate dehydratase反応生成物のペーパークロマトグラフィーによる同定:展開溶媒はメタノールーアンモニア水一水(6:1:3)。 n-プロパノールーギ酸一水(6:3:1)。 n-プロパノールーギ酸一水(6:1:2)。 3種類の溶媒を用いた。KDGのスポットはn-フェニレンジアミン溶液を噴霧し、n-グラフィーは、n-ブタノールーエタノールー水(4:1:5)。 n-ブタノールーエタノールー水(4:1:5)。 n-ブタノールーエタノールーへ、n-ブタノールースタノールーの、n-ブタノールースタノールの展開溶媒を用いた。

実 験 結 果

(1)Glucose oxidase, gluconate dehydratase活性のタイムコース:酵素精製にあたり, gluconate dehydratase活

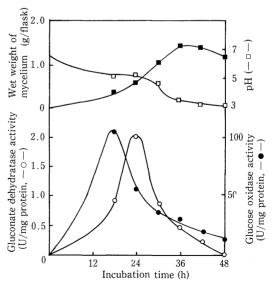


Fig. 1 Time course of glucose oxidase activity and gluconate dehydratase activity during growth of *Aspergillus niger* in the glucose medium.

性が最も高い供試菌株を得るため、菌の生育とgluconate dehydratase活性およびglucose oxidase活性のタイムコースを検討した(Fig. 1)。Gluconate dehydrataseは glucose oxidase活性より遅れて出現し、培養24時間で最大活性となった。

(2)gluconate dehydrataseの安定化条件:調製した粗酵素液中の本酵素活性は非常に不安定であったので、精製に先だち安定化の条件を検討した。リン酸、ホウ酸、トリスーHCI、トリエタノールアミン、グリシン-NaOHの各緩衝液を用いて菌体を破砕し粗酵素液を調製した。5 $\mathbb C$ で

Table 1 Effect of various reagents on stability of gluconate dehydratase

Regent	Concn.	Residual activity (%)
None	-	12
Sodium gluconate	1 mM	2
Dithiothreitol	1 mM	5
2-Mercaptoethanol	1 mM	7
Reduced glutathione	$1 \mathrm{mM}$	10
EDTA	1 mM	8
Glycerol	50%	100
Ethylene glycol	50%	92
Polyethylene glycol #6,000	30%	100

Gluconate dehydratase was stood for 5 days at 5°C and then determined the residual activity.

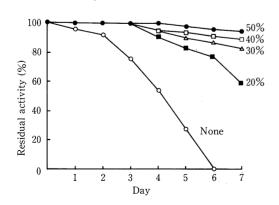


Fig. 2 Stabilized effect of ethylene glycol on gluconate dehydratase.

3日間保存し、その残存活性を測定したところ、本酵素 はpH8.3~8.7で安定であった。つぎに各種保護剤につい て検討した。0.1Mグリシン-NaOH緩衝液 (pH8.5) で 菌体を破砕し得られた粗酵素液に保護剤を添加し,5℃で 5日間保存し、その残存活性を測定した(Table 1)。基 質やSH基保護剤,エチレンジアミンテトラ酢酸(EDTA) には保護効果は認められなかったが, グリセロール, エ チレングリコール、ポリエチレングリコールに保護効果 が認められた。さらにエチレングリコール濃度の効果を 検討した (Fig. 2)。エチレングリコールを30%以上添加 することにより酵素活性の低下を防げた。以上の結果よ り本酵素の精製には30%エチレングリコールを含むグリ シン-NaOH緩衝液 (pH8.3) を使用することとした。 (3)gluconate dehydrataseの部分精製:粗酵素液に硫酸 アンモニウンを添加して40~50%飽和の硫安分画を行な った。遠心分離により得られた沈殿物を30%エチレング リコールを含む0.1Mグリシン-NaOH緩衝液 (pH8.3) の少量に溶解し,同じ緩衝液で透析した。つぎに透析後 の酵素液をあらかじめ30%エチレングリコールを含む0. 1Mグリシン-NaOH緩衝液 (pH8.5)で平衡化したDEAE ーセルロースイオン交換樹脂にバッチ法で吸着させた。 樹脂を0.2MKCIを含む同じ緩衝液で洗浄し, gluconate dehydratase活性は0.25MKClを含む同緩衝液で溶出し た。溶出液は限外濾過により脱塩濃縮し以後の実験に供 した。以上の精製操作により本酵素を抽出液から7倍に 精製できた。

(4)至適温度,至適pH:酵素反応に及ぼす温度の影響を60 分間の反応で調べた結果,至適温度は35℃付近であった。 また至適pHは7.7~8.0付近であった(Fig. 3)。

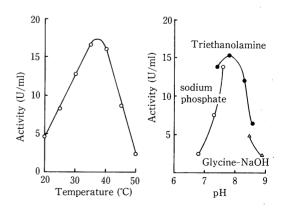


Fig. 3 Effects of temperature and pH on gluconate dehydratase activity.

Table	2	Effect	of	metal	ions	on	gluconate
		dehydra	atas	e activit	у		

Metal ion (1mM)	Relative activity(%)		
None	100		
Li ⁺	0		
Ag^+	0		
Mg^{2+}	355		
Ca ²⁺	0		
Mn^{2+}	97		
Co ²⁺	130		
Ni^{2+}	77		
Cu^{2+}	33		
Zn^{2+}	64		
Hg ²⁺ Fe ³⁺	0		
Fe^{3+}	44		

(5)各種金属イオンの影響:酵素活性におよぼす金属イオンの影響を検討した (Table 2)。本酵素活性は Mg^{2+} により活性化され,約3.5倍の活性増加が認められた。酵素活性に対する Mg^{2+} 濃度の影響を検討したところ、 Mg^{2+} 濃度が $1\,m$ Mで活性はほぼ最大となり, $1\,m$ M以上の濃度では活性はほとんど増加しなかった。また, Co^{2+} により約30%の活性増加が認められたが, Li^+ , Ag^+ , Ca^{2+} , Hg^{2+} 添加では逆に活性が阻害された。

(6)SH化合物の影響:本酵素活性の発現におよぼすSH化合物の効果について検討した。反応液中に各種SH化合物を1mM添加し活性を測定したが,本酵素活性には顕著な変化は認められなかった。

(7)Km値:本酵素のグルコン酸に対するKm値は11mMとなった。

(8)酵素反応生成物の同定:酵素反応生成物をペーパークロマトグラフィーにより同定した。方法の項で述べた展開溶媒を用いて下降法で展開した。KDGの標準物質が得られないため文献によるKDGのRf値と比較したところほぼ等しい値が得られた(Table 3)。また2.4ージニトロフェニルヒドラジン誘導体のRf値も文献のRf値とほぼ一致した(Table 3)。

Table 3 Identification of reaction product by paper chromatography

	R _f value		
Solvent system	Reaction product	Reference	
Methanol : NH ₄ OH : H ₂ O (6:1:3)	0.77	0.807)	
n - Propanol : formic acid : H ₂ O (6:3:1)	0.68	0.60^{7}	
sec - Butanol : formic acid: H ₂ O (6:1:2)	0.47	0.431)	
n - Butanol : ethanol: 0.5N NH ₄ OH* (7:1:2)	0.45	0.437	
n - Butanol : ethanol : H_2O^* (4:1:5)	0.30	0.334)	

* 2, 4 - dinitrophenylhydrazone derivative of reaction product

考 察

Aspergillus nigerのグルコース生育菌体中にglucose oxidaseおよびgluconate dehydrataseの両活性が検出で きたが、gluconate dehydrataseの比活性はglucose oxidaseの比活性と比較してその約1/50であった。グルコ ン酸が培養液中に大量に蓄積するのはこの両酵素の比活 性の違いによるものと思われる。一方, gluconokinase活 性はグルコース生育菌体中には検出できなかった。著者 らはすでにグルコン酸はATP関与のもとにKDPGに変化 することを報告している"が、以上の結果から、グルコン 酸は直接脱水反応を受けKDGになり、KDGがリン酸化を 受けKDPGになるものと推定できた。本酵素は非常に不 安定であったが、エチレングリコールやグリセロールな どの多価アルをコール添加することにより安定化された。 一方, Achromobacterのgluconate dehydrataseも非常に 不安定であり安定化にはMgCl₂とグルコン酸の添加が必要 であったが, エチレングリコールの添加は効果がなかっ た $^{8)}$ 本酵素は Mg^{2+} により活性が約3倍に増加した。また Ca2+によっても活性化された。Mg2+による活性化は Achromobacterのgluconate dehydrataseでも報告されて いる。— 方, Clostridium pasteurianumの gluconate dehydrataseは Fe^{2+} あるいは Mg^{2+} が活性発現に必須であったが 2 へ本酵素では Fe^{2+} は阻害的に作用した。また酵素活性が Hg^{2+} 添加により強く阻害され、活性発現におけるSH基の関与が示唆された。

摘 要

Asperillus nigerによるグルコン酸の分解酵素について検討した。本菌のグルコース培地生育菌体中にglucose oxidaseおよびgluconate dehydratase活性が検出された。Gluconate dehydrataseは非常に不安定であったが、エチレングリコールを30%添加することにより安定化された。本酵素を硫安分画、イオン交換樹脂処理により約7倍に精製した。本酵素は Mg^{2+} により強く活性化された。本酵素のグルコン酸に対するKm値は11mMであった。本酵素の反応生成物をペーパークロマトグラフィーにより2-ケトー3-デオキシグルコン酸と同定した。

文 献

- Andressen, J. R. and Gottschalk, G.: Arch. Microbiol., 69 160—170 (1969)
- Bender, R. and Gottschalk, G.: Eur. J. Biochem.,
 40 309—321 (1973)

- Eisenberg, R. C. and Dobrogosz, W. J.: J. Bacteriol., 93 941—949(1967)
- 4) Elzainy, T. A., Hassan, M. M. and Allam, A. M.: J. Bacteriol., 114, 457—459 (1973)
- 5) Entner, N. and Doudoroff, M.: J. Biol. Chem., 196, 853—862 (1952)
- 6) Haid, E.: Method of Enzymatic Analysis, 2nd Edition, Bergmeyer, H. U. Academic Press, New York and London (1974) pp. 1248—1250
- 7) 市川吉夫・今中宏:日本農芸化学会誌, 34, 961 -965 (1960)
- 8) Kersters, K., Khan-Matsubara, J., Nelen, L. and Ley, J. D.: Antonie van Leeuwenhoek, **37**, 233— 246(1971)
- Lakshmenarayana, K., Modil, V. V. and Sbab, V. K.; Arch, Microbiol., 66, 396—405 (1969)
- Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J.: J. Biol. Chem., 193, 265 (1951)
- Macgee, J. and Douduroff, M.: J. Biol. Chem., 210 617—626 (1954)
- Szymona, M. and Doudoroff, M. : J. Gen. Microbiol., 22 167—183 (1960)