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oxidized glutathione; HSP, heat shock protein; MEOS, microsomal ethanol oxidizing system; NAC, N-acetylcysteine;
NAPQI, N-acetyl-p-benzoquinoneimine; ROS, reactive oxygen species; SAMC, S-allylmercaptocysteine; TBARS,
thiobarbituric acid-reactive substance; α-Toc, α-tocopherol

Acetaminophen (N-acetyl-p-aminophenol, APAP),
also referred to as paracetamol, is widely used as an
analgesic and antipyretic drug throughout the
world.  In the United Kingdom, about 3.2 × 109 tab-
lets of APAP are consumed every year, which is
equivalent to an average of 55 tablets/person (Jones,
1998).  As an over-the-counter drug, it can be read-
ily obtained without prescription.  Although APAP
is generally harmless at therapeutic doses, overdose

causes hepatotoxicity (Davidson and Eastham, 1966;
Mitchell, 1988).  In addition, susceptibility to
APAP-induced hepatotoxicity is modified by vari-
ous factors such as alcohol abuse, fasting and concom-
itant drug use.  In Japan, APAP has usually been
consumed as combination tablets or granules and
rarely used alone except as a suppository.  However,
since recent reports that the use of salicylic acid in
combination cold remedies is associated with
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Reye’s syndrome in children with influenza or
varicella infection (Belay et al., 1999), APAP has
become more likely to be used alone in Japan and in
other countries.  Therefore, it is important that we
review APAP toxicity, even though APAP-induced
hepatic injury is not a newly emerging problem.

APAP-induced hepatotoxicity has been dem-
onstrated in experimental animals as well as clinical
cases.  Mice and hamsters have been shown to be
very sensitive to the hepatotoxic effects of APAP,
developing a fulminant centrilobular necrosis simi-
lar to that observed in humans (Mitchell et al.,
1973; Davis et al., 1974; Potter et al., 1974).  Rats,
rabbits and guinea pigs are, however, relatively
resistant to APAP insult (Boyd and Bereczky, 1966;
Madhu et al, 1992).

This review focuses on the mechanisms under-
lying APAP-induced hepatotoxicity, risk factors
that increase susceptibility to the hepatotoxic ef-
fects of APAP, and protection against the toxicity.

Mechanisms of APAP-Induced
Hepatotoxicity

Reactive intermediate metabolite of APAP

APAP is biotransformed and eliminated as nontoxic
glucuronic acid and sulfate conjugates.  Glucuro-
nide is provided by UDP-glucuronic acid, and sul-
fation is dependent on phosphoadenylsulfate
(Clements et al., 1984).  Furthermore, the mixed-
function oxidase system cytochrome P450 (CYP)
participates in metabolizing a small proportion of
APAP at therapeutic doses.  The metabolism of
APAP by CYP leads to the formation of N-acetyl-p-
benzoquinoneimine (NAPQI), a highly reactive in-
termediate metabolite (Dahlin et al., 1984), which is
normally detoxified by conjugation with reduced
glutathione (GSH).

After high doses of APAP, the capacity for its
removal by hepatic conjugation with glucuronide
and sulfate is exceeded, and more of the reactive
metabolite NAPQI is formed.  Consequently, more
NAPQI is conjugated with GSH, and when hepatic
GSH is depleted, more NAPQI will bind covalently

to cellular macromolecules (Jollow et al., 1973;
Potter and Hinson, 1986).  This is thought to lead to
a loss of protein thiol groups (Moore et al., 1985;
Kyle et al., 1990) and ultimately to cell death.  In
humans, CYP2E1, CYP1A2 and CYP3A4 have been
thought to contribute to the metabolism of APAP to
form NAPQI (Raucy et al., 1989; Patten et al., 1993;
Thummel et al., 1993; Nelson, 1995).  However,
recent pharmacokinetics studies in human volun-
teers have demonstrated that involvement of
CYP1A2 and CYP3A4 in NAPQI formation in vivo
is much less than that of CYP2E1, as omeprazole
(CYP1A2 inducer) and rifampicin (CYP3A4 induc-
er) treatment have no effect on the formation of
NAPQI from APAP, whereas disulfiram (CYP2E1
inhibitor) treatment decreases NAPQI formation
(Sarich et al., 1997; Manyike et al., 2000).  Studies
using CYP2E1 and CYP1A2 knockout mice have
shown that the former, but not the latter, are more
resistant to APAP-induced hepatotoxicity than
wild-type animals (Lee et al., 1996; Tonge et al.,
1998; Zaher et al., 1998), indicating that CYP2E1 is
a primary contributor to APAP biotransformation
among CYPs.  Concerning the other CYP enzymes
responsible for bioactivation of APAP, Hazai et al.
(2002) recently reported that selective inhibition of
CYP2A6 as well as CYP2E1 significantly decreas-
ed NAPQI formation in human liver microsomes,
whereas CYP1A2 and CYP3A4 inhibition did not
affect NAPQI production, suggesting that CYP2A6
may also be responsible for APAP bioactivation.
However, the role of CYP2A6 in APAP metabo-
lism in vivo remains to be established.  Overall, it is
feasible that the principal CYP responsible for
APAP toxicity is CYP2E1.

Oxidative stress

Oxidative stress is also considered to be involved in
the induction of hepatotoxicity by APAP.  The one-
electron oxidation of APAP by CYPs may generate
reactive oxygen species (ROS).  Hydrogen perox-
ide and superoxide are produced during metabolic
activation of APAP in the mixed function oxidase
system (Nordblom and Coon, 1977; Kuthan et al.,
1978; de Vries, 1981).  It has been reported that
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APAP overdose causes decreases in antioxidant
enzyme activities such as catalase and glutathione
peroxidase (Lores Arnaiz et al., 1995; Chen and
Lin, 1997), levels of endogenous antioxidants such
as α-tocopherol (α-Toc) and reduced forms of co-
enzyme Q9 (CoQ9H2) and coenzyme Q10 (CoQ10H2)
(Amimoto et al., 1995; Sumioka et al., 1998), and
the GSH/oxidized glutathione (GSSG) ratio
(Jaeschke, 1990; Lores Arnaiz et al., 1995; Amimoto
et al., 1995) in animal livers.  These endogenous
antioxidants, especially α -Toc, CoQ9H2 and
CoQ10H2 scavenge lipid peroxyl radicals and con-
sequently their own levels decrease (Matsura et al.,
1992a, 1992b).  Although there are arguments that
lipid peroxidation may be a consequence rather
than the cause of APAP-induced cell damage
(Mitchell et al., 1981, 1984), our time course data
obtained by quantitative analysis of biomarkers in
mice revealed that the reduction in hepatic CoQ9H2

and CoQ10H2 levels preceded increases in the thio-
barbituric acid-reactive substance (TBARS) con-
tent as an index of lipid peroxidation and plasma
alanine aminotransferase (ALT) activity following
APAP treatment (Amimoto et al, 1995).  Moreover,
pretreatment with oxidized coenzyme Q10 (CoQ10)
resulted in an increase in hepatic CoQ10H2 and a
marked reduction in hepatic TBARS content and
plasma ALT activity without affecting hepatic GSH
after APAP injection (Amimoto et al., 1995).
Pretreatment with α-Toc also suppressed the in-
crease in the hepatic TBARS content and plasma
ALT activity without affecting the hepatic GSH
level (Amimoto et al., 1995).  These results strongly
suggest that lipid peroxidation is involved in the
mechanism of APAP-induced hepatic injury.

Recently, it has been reported that the forma-
tion of reactive nitrogen species such as peroxy-
nitrite followed by extensive protein nitration is
also associated with APAP-induced hepatotoxicity
(Hinson et al., 1998; Knight et al., 2001).

Risk Factors

Even therapeutic doses of APAP sometimes induce
hepatotoxicity in the presence of risk factors (such
as alcohol abuse, fasting and drug interaction),

which increase susceptibility to the hepatotoxic
effects of APAP.

Alcohol

Interaction between alcohol and APAP has been
recognized since the late 1970s (McClain et al.,
1980).  However, the APAP-alcohol interaction is
very complicated, because acute and chronic alco-
hol intakes have opposite effects.  Chronic alcohol
intake increases hepatic CYP2E1 activity (Perrot et
al., 1989) and decreases the GSH level (Lauterburg
and Velez, 1988), especially the liver mitochondrial
GSH level (Hirano et al., 1992; Zhao et al., 2002;
Zhao and Slattery 2002).  These changes lead to an
increase in NAPQI formation and a decrease in
NAPQI detoxification, resulting in accumulation of
NAPQI.  Consequently, the severity of APAP-induced
hepatotoxicity is enhanced by chronic alcohol in-
take (Sato et al., 1981a; Zimmerman and Maddrey,
1995; Schmidt et al., 2002), and even a therapeutic
dose of APAP (generally considered to be nontoxic
in nonalcoholics) may lead to hepatotoxicity.  On
the other hand, acute alcohol intake reduces the
severity of APAP-induced hepatotoxicity (Rumack
et al., 1981; Banda and Quart 1982).  In rats, this
effect may be due to direct inhibition by alcohol of
the biotransformation of APAP to NAPQI (Sato et
al., 1981b, 1981c).  Because alcohol itself is metab-
olized not only by alcohol dehydrogenase but also
by CYP2E1 (microsomal ethanol oxidizing system;
MEOS) and MEOS plays a major role when blood
ethanol levels are high (Lieber, 1990), alcohol may
competitively inhibit biotransformation of APAP to
NAPQI.  In these studies, APAP was administered
when ethanol was still present in the blood circula-
tion.  Because ethanol is both a substrate and in-
hibitor of CYP2E1 (Lieber, 1997), the relative tim-
ing of APAP and ethanol ingestion is critical when
attempting to elucidate the effect of short-term
ethanol exposure on APAP metabolism.  Recently,
Thummel et al. (2000) reported, from studies in
healthy adult volunteers, that the increase in
NAPQI formation caused by ethanol occurred only
when APAP was given after ethanol had cleared
from the body.
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Fasting

Fasting has also been considered a risk factor for
APAP-induced hepatotoxicity.  Whitcomb and
Block (1994) reported a clinical study which found
that APAP-induced hepatotoxicity after an over-
dose is more likely to be associated with recent fast-
ing than recent alcohol use.  In rats, fasting causes
severe malnutrition, and the capacity of hepatic
conjugation of APAP with glucuronide and sulfate
decreases (Price et al., 1986, 1987).  Consequently,
more APAP is metabolized by CYPs, resulting in
more NAPQI production.  Although NAPQI is de-
toxified by conjugation with GSH, fasting also de-
creases hepatic GSH (Langley and Kelly, 1992; Vogt
and Richie, 1993).  Therefore, fasting may potentiate
APAP-induced hepatotoxicity.

Drug interactions

Finally, long-term treatment with drugs that induce
CYPs may increase the risk of APAP-induced liver
damage.  Carbamazepine, phenytoine, isoniazid
and troglitazone are considered to induce CYPs,
and therefore long-term use of these drugs enhances
APAP-induced hepatotoxicity (Smith et al., 1986;

Minton et al., 1988; Crippin, 1993; Li et al., 2002).  In
contrast, susceptibility to APAP liver injury is de-
creased by pretreatment with CYP inhibitors such
as piperonyl butoxide and 4-methylpyrazone (Brady
et al., 1991; Brennan et al., 1994; Kucukardali et al.,
2002, Hazai et al., 2002).

Protection against APAP-Induced
Hepatotoxicity

Cysteine prodrugs

GSH plays an important role in protecting the liver
against APAP-induced hepatotoxicity, because
NAPQI is detoxified by conjugation with GSH.
Therefore, stimulation of hepatic GSH synthesis is
feasible for prevention of APAP-induced hepatic
injury.  GSH, a tripeptide comprising glutamate,
cysteine and glycine, is synthesized by a two-step
reaction.  The first step is catalyzed by γ-glutamyl-
cysteine synthase to form γ-glutamylcysteine.  In
the second step, GSH synthase catalyzes the reac-
tion between glycine and γ-glutamylcysteine to
form GSH (Wang and Ballatori, 1998).  The first
step catalyzed by γ-glutamylcysteine synthase

Table 1.  Protective effect of cysteine prodrugs on APAP-induced hepatotoxicity

       Compound Experimental model References
Mouse hepatocytes

Massey and Racz 1981    (in vitro)
N-Acetylcysteine Rats (in vivo) Lauterburg et al. 1983

Mice (in vivo) Corcoran et al. 1985
Mice (in vivo) Hjelle et al. 1986
Mice (in vivo) Corcoran and Wong 1986

L-2-Oxothiazolidine-4-carboxylate
Mice (in vivo) Hazelton et al. 1986

L-2-Methylthiazolidine-4-carboxylate

2-(Polyhydroxyalkyl)thiazolidine-4(R)-
Mice (in vivo) Roberts et al. 1987   carboxylic acids

Cystathionine Mice (in vivo) Kitamura et al. 1989

2-Methyl-thiazolidine-2,4-dicarboxylic acid
HepG2 cells (in vitro) Wlodek and Rommelspacher 1997a
Mice (in vivo) Wlodek and Rommelspacher 1997b

Ribose cysteine
Mice (in vivo) Roberts et al. 1992
Mice (in vivo) Lucas et al. 2000

2(R,S)-n-Propylthiazolidine-4(R)-carboxylic acid Mice (in vivo) Srinivasan et al. 2001

N,S-bis-Acetyl-L-cysteine Mice (in vivo) Crankshaw et al. 2002
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(rate-limiting enzyme) is regulated by feedback
inhibition of GSH (Richman and Meister, 1975).
When GSH is consumed and the regulation of feed-
back inhibition is lost, the availability of cysteine as
a precursor can become the limiting factor for GSH
synthesis (Wang and Ballatori, 1998).

Various cysteine prodrugs have been reported
to protect the liver from APAP-induced hepatotox-
icity in experiments using animals or cultured cells
(Table 1).  The mechanism responsible for this pro-
tection may be metabolism of these prodrugs to L-
cysteine, which is incorporated into hepatic GSH
(Lauterburg et al., 1983; Corcoran and Wong, 1986;
Hazelton et al., 1986; Roberts et al., 1987).

Among these cysteine prodrugs, N-acetylcys-
teine (NAC) is the most widely used antidote for
APAP overdose in clinical practice.  Intravenous
administration of NAC to patients with APAP poi-
soning is effective for preventing APAP-induced
hepatotoxicity (Prescott, 1981; Smilkstein et al.,
1991).  Prescott (1981) reported that NAC given
intravenously 8 to 10 h after APAP ingestion was

Fig. 1.  Effect of SAMC or NAC treatment on APAP-
induced liver injury in male ddY mice.  APAP (500 mg/
kg) was orally administered to mice, and then SAMC
(100 mg/kg) or NAC (80 mg/kg) was given orally 1 h
after APAP administration.  The mice were anesthetized
with diethyl ether and blood samples were taken from
the right ventricle with a heparinized syringe 6 h after
APAP.  Plasma ALT activity was determined spectro-
photometrically with a commercially available kit.  The
data are expressed as means ± SE for 4 to 5 animals.
Plasma ALT activity in intact mice was 8 ± 1 IU/L (Note:
these values are too small to visualize).  *,** Significantly
different from the APAP + vehicle group (P < 0.05 and
0.01, respectively).  Unpublished data, Sumioka et al.

effective for preventing liver damage, hepatic fai-
lure, renal damage and death.  Oral administration
of NAC to patients with APAP poisoning was also
shown to be effective for preventing liver damage
(Rumack et al., 1981; Smilkstein et al., 1988).
Analysis of the national multicenter study (1976 to
1985) in the United States reported by Smilkstein et
al. (1988) demonstrated that oral treatment with
NAC was protective regardless of the initial plasma
APAP concentration when given within 8 h of
APAP ingestion.  They concluded that NAC treat-
ment should be started within 8 h of APAP inges-
tion, but that treatment is still indicated at least as
late as 24 h after ingestion.  As shown in Fig. 1, we
demonstrated that oral treatment of mice with NAC
1 h after APAP administration significantly sup-
pressed the increase in plasma ALT activity as an
index of liver injury.  The most appropriate route
and dose regimen of NAC for APAP-induced hepa-
totoxicity is still controversial.  However, retro-
spective and prospective studies suggest that NAC
treatment may be effective for fulminant liver fai-
lure after APAP overdose (Harrison et al., 1990;
Keays et al., 1991).

CYP2E1 inhibitors

The metabolism of APAP by CYP leads to the for-
mation of NAPQI as discussed in the “Reactive in-
termediate metabolite of APAP” section.  There-
fore, CYP inhibitors may be effective for APAP-
induced hepatotoxicity.  Of the CYP enzymes,
CYP2E1 plays the most important role in metabo-
lizing APAP.  Studies of CYP2E1 knockout mice
have revealed that CYP2E1 is the most important
factor in APAP biotransformation (Lee et al., 1996;
Zaher et al., 1998).

We have demonstrated that S-allylmercapto-
cysteine (SAMC), an organosulfur compound in
aged garlic extract, protects mice from APAP-
induced liver injury.  Oral treatment with SAMC
(100–200 mg/kg) suppressed the increase in plasma
ALT activity (Fig. 1) and the hepatic necrosis after
APAP overdose, and reduced APAP-induced mor-
tality.  The mechanism underlying this protection
involved the suppression of CYP2E1 activity

4000

3000

2000

1000

0

P
la

sm
a 

A
LT

 a
ct

iv
ity

Intact Vehicle SAMC NAC
  + APAP

(IU/L)

*
**



22

I. Sumioka et al.

Fig. 2.  Effect of CoQ10 or α-Toc pretreatment on
APAP-induced liver injury in male ICR mice.  CoQ10 (5
mg/kg), α-Toc (20 mg/kg) or vehicle was  intravenously
injected into mice 12 h before intraperitoneal adminis-
tration of APAP (400 mg/kg). The mice were anesthe-
tized with diethyl ether and blood samples were taken
from the right ventricle with a heparinized syringe 3 h
after APAP.  Plasma ALT activity was determined spec-
trophotometrically with a commercially available kit.
The data are expressed as means ± SE for at least 5 ani-
mals.  * Significantly different from the APAP + vehicle
group (P < 0.05).  From Amimoto et al., 1995 with some
modifications.

(Nakagawa et al., 1989; Sumioka et al., 1998, 2001).
Diallyl sulfide and phenethyl isothiocyanate, com-
pounds derived from garlic and cruciferous plants,
respectively, have also been shown to inhibit
CYP2E1 activity, and thereby to exhibit a protec-
tive effect against APAP-induced hepatotoxicity
(Hu et al., 1996; Li et al., 1997).  A synthetic com-
pound, 2-(allylthio)pyradine, inhibited CYP2E1
mRNA and protein expression, resulting in preven-
tion of APAP-induced liver damage (Kim et al.,
1997).  SAMC or diallyl sulfide treatment, not only
before but also after APAP overdose, can protect
animals from APAP-induced hepatotoxicity (Hu et
al., 1996; Sumioka et al., 2001), suggesting that
CYP2E1 inhibitor could serve as an antidote for
APAP overdose.

CYP2E1 is also known to be a key bioactiva-
tor of various carcinogens, such as azoxymethane
and N-nitrosodimethylamine (Yoo et al., 1990; Sohn
et al., 2001).  In this context, a CYP2E1 inhibitor
could be a potential inhibitor of carcinogenesis by
environmental carcinogens (Smith et al., 1995), and
its clinical application could be extended from

treatment of APAP-induced hepatotoxicity to treat-
ment of all CYP2E1-related disorders.

Antioxidants

Oxidative stress followed by lipid peroxidation is
also thought to contribute to the initiation or pro-
gression of APAP-induced hepatotoxicity (Wendel
et al., 1979; Albano et al., 1983, 1985), as described
in the “Oxidative stress” section.

We have demonstrated that intravenous pre-
treatment with the lipid-soluble antioxidants, CoQ10

(5 mg/kg) and α-Toc (20 mg/kg), can limit hepatic
injury produced by APAP overdose (Amimoto et al.,
1995).  CoQ10 is converted to CoQ10H2 in liver cells,
and thereafter acts as an antioxidant (Matsura et al.,
1992a, 1992b).  These lipid-soluble antioxidants
suppressed the increase in plasma ALT activity
(Fig. 2) and hepatic TBARS level without affecting
the hepatic GSH level.  L-Ascorbic acid and its esters
(Raghuram et al., 1978; Lake et al., 1981; Mitra et al.,
1991) and β-carotene (Baranowitz and Maderson,
1995) also exert protective action against APAP-
induced hepatotoxicity.  In addition, antioxidant en-
zymes such as superoxide dismutase and catalase
protect the liver from APAP-induced injury (Kyle
et al., 1987; Nakae et al., 1990).  Iron is well known
to play a major role in lipid peroxidation (Halliwell
and Gutteridge, 1990).  Sakaida et al. (1995) report-
ed that deferoxamine, an iron chelator, can protect
against APAP-induced hepatotoxicity.

Given that these antioxidants are effective
when administered before APAP, taking APAP
with them might be helpful for protecting against
toxicity by misadventure, especially as antioxidants
in nature, such as CoQ10, α-Toc, ascorbic acid and
β-carotene, have few side effects.

Heat shock protein (HSP) inducers

HSP is ubiquitous in nature, and expressed in both
prokaryotic and eukaryotic cells in response to a
variety of stresses (Hendrick and Hartl, 1993).  Ini-
tially, HSP was identified as a cellular response
protein to hyperthermia, but HSP induction has also
been observed after treatment of cells with a num-
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ber of chemical toxicants.  APAP-induced hepato-
toxicity has been shown to increase the expression
of HSP25 and HSP70i (Salminen et al., 1997a).  It is
generally accepted that the stimulus for increased
HSP synthesis in response to stresses is the pres-
ence of non-native proteins (Ananthan et al., 1986;
Goff and Goldberg, 1985).  In the case of APAP-
induced hepatotoxicity, covalent binding of NAPQI
to hepatic macromolecules is thought to play a

Fig. 3.  The metabolic pathways of APAP, and the mechanisms of, and protection against, APAP-induced hepatotox-
icity.  +, stimulation; –, inhibition.

pivotal role in triggering HSP induction (Salminen
et al., 1998).  HSP70i together with HSP25 may
function as a cytoprotective HSP to repair damaged
protein in the necrotic lesion.  The patterns of hepat-
ic HSP25 and HSP70i induction are clearly differ-
ent.  The level of HSP70i increases initially after
APAP overdose, and thereafter the level of HSP25
increases.  The induction time after APAP overdose
may differ with the severity of hepatotoxicity.  For
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example, at a lethal dose, HSP25 could be detected
24 h after APAP treatment (Sumioka et al., 2004),
whereas, at a necrotic but not lethal dose, it was de-
tectable 6 h after APAP treatment (Salminen et al.,
1997a).  Salminen et al. (1997b) reported that intra-
peritoneal pretreatment with amphetamine (15 mg/
kg) in mice causes an acute rise in core body tem-
perature to 40˚C for at least 1 h, increases the levels
of HSP25 and HSP70i, and protects the liver from
APAP-induced hepatotoxicity.  We have reported
that the level of expression of hepatic HSP25 may
be a crucial determinant of the fate of mice exposed
to APAP insult, because mortality following APAP
overdose declined rapidly after the appearance of
hepatic HSP25 (Sumioka et al., 2004).  These find-
ings suggest that HSP (HSP25 and 70i) inducer
might be a new type of antidote for APAP overdose.

Conclusion

APAP overdose causes hepatotoxicity, which is
sometimes fatal.  This hepatotoxicity is initiated by
the metabolic activation of APAP to NAPQI, a
reactive metabolite.  ROS generation and subse-
quent lipid peroxidation during APAP biotrans-
formation is likely to exacerbate APAP insult.
Even at  therapeutic doses, APAP hepatotoxicity
can occur when there are risk factors such as alco-
hol abuse, fasting and concomitant drug use.  NAC,
one of the cysteine prodrugs, has been traditionally
used to prevent the development of hepatotoxicity
following a significant overdose of APAP.  In addi-
tion to NAC, HSP inducers as well as CYP2E1 in-
hibitors and antioxidants may also be antidotes for
APAP overdose, on the basis of the mechanisms
underlying APAP toxicity (Fig. 3).

References

 1 Albano E, Poli G, Chiarpotto E, Biasi F, Dianzani MU.
Paracetamol-stimulated lipid peroxidation in isolated
rat and mouse hepatocytes.  Chem Biol Interact 1983;
47:249–263.

 2 Albano E, Rundgren M, Harvison PJ, Nelson SD,
Moldeus P.  Mechanisms of N-acetyl-p-benzoquinone

imine cytotoxicity.  Mol Pharmacol 1985;28:306–311.
 3 Amimoto T, Matsura T, Koyama S, Nakanishi T,

Yamada K, Kajiyama G.  Acetaminophen-induced
hepatic injury in mice:  the role of lipid peroxidation
and effects of pretreatment with coenzyme Q10 and α-
tocopherol.  Free Radic Biol Med 1995;19:169–176.

 4 Ananthan J, Goldberg AL, Voellmy R.  Abnormal
proteins serve as eukaryotic stress signals and trigger
the activation of heat shock genes.  Science 1986;232:
522–524.

 5 Banda PW, Quart BD.  The effect of mild alcohol con-
sumption on the metabolism of acetaminophen in man.
Res Commun Chem Pathol Pharmacol 1982;38:57–70.

 6 Baranowitz SA, Maderson PF.  Acetaminophen toxi-
city is substantially reduced by beta-carotene in mice.
Int J Vitam Nutr Res 1995;65:175–180.

 7 Belay ED, Bresee JS, Holman RC, Khan AS, Shahriari
A, Schonberger LB.  Reye’s syndrome in the United
States from 1981 through 1997.  N Engl J Med 1999;
340:1377–1382.

 8 Boyd EM, Bereczky GM.  Liver necrosis from para-
cetamol.  Br J Pharmacol 1966;26:606–614.

 9 Brady JT, Birge RB, Khairallah EA, Cohen SD.  Post-
treatment protection with piperonyl butoxide against acet-
aminophen hepatotoxicity is associated with changes in
selective but not total covalent binding.  Adv Exp Med
Biol 1991;283:689–692.

10 Brennan RJ, Mankes RF, Lefevre R, Raccio-Robak N,
Baevsky RH, DelVecchio JA, et al.  4-Methylpyrazole
blocks acetaminophen hepatotoxicity in the rat.  Ann
Emerg Med 1994;23:487–494.

11 Chen LH, Lin SM.  Modulation of acetaminophen-
induced alterations of antioxidant defense enzymes by
antioxidants or glutathione precursors in cultured
hepatocytes.  Biochem Arch 1997;13:113–125.

12 Clements JA, Critchley JA, Prescott LF.  The role of
sulphate conjugation in the metabolism and disposition
of oral and intravenous paracetamol in man.  Br J Clin
Pharmacol 1984;18:481–485.

13 Corcoran GB, Racz WJ, Smith CV, Mitchell JR.
Effects of N-acetylcysteine on acetaminophen covalent
binding and hepatic necrosis in mice.  J Pharmacol Exp
Ther 1985;232:864–872.

14 Corcoran GB, Wong BK.  Role of glutathione in pre-
vention of acetaminophen-induced hepatotoxicity by
N-acetyl-L-cysteine in vivo:  studies with N-acetyl-D-
cysteine in mice.  J Pharmacol Exp Ther 1986;238:54–
61.

15 Crankshaw DL, Berkeley LI, Cohen JF, Shirota FN,
Nagasawa HT.  Double-prodrugs of L-cysteine:  differ-
ential protection against acetaminophen-induced hepa-
totoxicity in mice.  J Biochem Mol Toxicol 2002;16:
235–244.

16 Crippin JS.  Acetaminophen hepatotoxicity:  potentia-
tion by isoniazid.  Am J Gastroenterol 1993;88:590–
592.

17 Dahlin DC, Miwa GT, Lu AYH, Nelson SD.  N-Acetyl-
p-benzoquinone imine:  a cytochrome P-450-mediated



25

Acetaminophen-induced hepatotoxicity

oxidation product of acetaminophen.  Proc Natl Acad
Sci USA 1984;81:1327–1331.

18 Davidson DG, Eastham WN.  Acute liver necrosis fol-
lowing overdose of paracetamol.  Br Med J 1966;
5512:497–499.

19 Davis DC, Potter WZ, Jollow DJ, Mitchell JR.  Species
differences in hepatic glutathione depletion, covalent
binding and hepatic necrosis after acetaminophen.  Life
Sci 1974;14:2099–2109.

20 de Vries J.  Hepatotoxic metabolic activation of para-
cetamol and its derivatives phenacetin and benorilate:
oxygenation or electron transfer?  Biochem Pharmacol
1981;30:399–402.

21 Goff SA, Goldberg AL.  Production of abnormal pro-
teins in E. coli stimulates transcription of lon and other
heat shock genes.  Cell 1985;41:587–595.

22 Halliwell B, Gutteridge MC.  Role of free radicals and
catalytic metal ions in human disease:  an overview.
Methods Enzymol 1990;186:1–85.

23 Harrison PM, Keays R, Bray GP, Alexander GJ, Williams
R.  Improved outcome of paracetamol-induced fulminant
hepatic failure by late administration of acetylcysteine.
Lancet 1990;335:1572–1573.

24 Hazai E, Vereczkey L, Monostory K.  Reduction of
toxic metabolite formation of acetaminophen.  Bio-
chem Biophys Res Commun 2002;291:1089–1094.

25 Hazelton GA, Hjelle JJ, Klaassen CD.  Effects of cyste-
ine pro-drugs on acetaminophen-induced hepatotoxi-
city.  J Pharmacol Exp Ther 1986;237:341–349.

26 Hendrick JP, Hartl F.  Molecular chaperone functions
of heat-shock proteins.  Annu Rev Biochem 1993;62:
349–384.

27 Hinson JA, Pike SL, Pumd NR, Mayeux PR.  Nitrotyro-
sine protein adducts in hepatic centrilobular areas
following toxic doses of acetaminophen in mice.  Chem
Res Toxicol 1998;11:604-607.

28 Hirano T, Kaplowitz N, Tsukamoto H, Kamimura S,
Fernandez-Checa JC.  Hepatic mitochondrial glutathi-
one depletion and progression of experimental alcoholic
liver disease in rats.  Hepatology 1992;16:1423–1427.

29 Hjelle JJ, Brzeznicka EA, Klaassen CD.  Comparison
of the effects of sodium sulfate and N-acetylcysteine on
the hepatotoxicity of acetaminophen in mice.  J Pharmacol
Exp Ther 1986;236:526–534.

30 Hu JJ, Yoo JS, Lin M, Wang EJ, Yang CS.  Protective
effects of diallyl sulfide on acetaminophen-induced
toxicities.  Food Chem Toxicol 1996;34:963–969.

31 Jaeschke H.  Glutathione disulfide formation and oxi-
dant stress during acetaminophen-induced hepatotox-
icity in mice in vivo:  the protective effect of allopuri-
nol.  J Pharmacol Exp Ther 1990;255:935–941.

32 Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette
JR, Brodie BB.  Acetaminophen-induced hepatic ne-
crosis.  II. Role of covalent binding in vivo.  J Pharma-
col Exp Ther 1973;187:195–202.

33 Jones AL.  Mechanism of action and value of N-acetyl-
cysteine in the treatment of early and late acetamino-
phen poisoning:  a critical review.  J Toxicol Clin

Toxicol 1998;36:277–285.
34 Keays R, Harrison PM, Wendon JA, Forbes A, Gove C,

Alexander GJ, et al.  Intravenous acetylcysteine in
paracetamol induced fulminant hepatic failure:  a pros-
pective controlled trial.  BMJ 1991;303:1026–1029.

35 Kim ND, Kwak MK, Kim SG.  Inhibition of cyto-
chrome P450 2E1 expression by 2-(allylthio) pyrazine,
a potential chemoprotective agent:  hepatoprotective
effects.  Biochem Pharmacol 1997;53:261–269.

36 Kitamura Y, Kamisaki Y, Itoh T.  Hepatoprotective ef-
fects of cystathionine against acetaminophen-induced
necrosis.  J Pharmacol Exp Ther 1989;250:667–671.

37 Knight TR, Kurtz A, Bajt ML, Hinson JA, Jaeschke H.
Vascular and hepatocellular peroxynitrite formation
during acetaminophen-induced liver injury:  role of
mitochondrial oxidant stress.  Toxicol Sci 2001;62:
212–220.

38 Kucukardali Y, Cinan U, Acar HV, Ozkan S, Top C,
Nalbant S, et al.  Comparison of the therapeutic effica-
cy of 4-methylpyrazole and N-acetylcysteine on acet-
aminophen (paracetamol) hepatotoxicity in rats.  Curr
Med Res Opin 2002;18:78–81.

39 Kuthan H, Tsuji H, Graf H, Ullrich V.  Generation of su-
peroxide anion as a source of hydrogen peroxide in a re-
constituted monooxygenase system.  FEBS Lett 1978;91:
343–345.

40 Kyle ME, Miccadei S, Nakae D, Farber JL.  Superoxide
dismutase and catalase protect cultured hepatocytes from
the cytotoxicity of acetaminophen.  Biochem Biophys
Res Commun 1987;149:889–896.

41 Kyle ME, Sakaida I, Serroni A, Farber JL.  Metabolism
of acetaminophen by cultured rat hepatocytes.  Deple-
tion of protein thiol groups without any loss of viabili-
ty.  Biochem Pharmacol 1990;40:1211–1218.

42 Lake BG, Harris RA, Phillips JC, Gangolli SD.  Studies on
the effects of L-ascorbic acid on acetaminophen-induced
hepatotoxicity.  1. Inhibition of the covalent binding of
acetaminophen metabolites to hepatic microsomes in
vitro.  Toxicol Appl Pharmacol 1981;60:229–240.

43 Langley SC, Kelly FJ.  Differing response of the gluta-
thione system to fasting in neonatal and adult guinea
pigs.  Biochem Pharmacol 1992;44:1489–1494.

44 Lauterburg BH, Corcoran GB, Mitchell JR.  Mecha-
nism of action of N-acetylcysteine in the protection
against the hepatotoxicity of acetaminophen in rats in
vivo.  J Clin Invest 1983;71:980–991.

45 Lauterburg BH, Velez ME.  Glutathione deficiency in
alcoholics:  risk factor for paracetamol hepatotoxicity.
Gut 1988;29:1153–1157.

46 Lee SST, Buters JTM, Pineau T, Fernandez-Salguer P,
Gonzalez FJ.  Role of CYP2E1 in the hepatotoxicity of
acetaminophen.  J Biol Chem 1996;271:12063–12067.

47 Li J, Kaneko T, Wang Y, Qin LQ, Wang PY, Sato A.
Troglitazone enhances the hepatotoxicity of acetamino-
phen by inducing CYP3A in rats.  Toxicology 2002;176:
91–100.

48 Li Y, Wang EJ, Chen L, Stein AP, Reuhl KR, Yang CS.
Effects of phenethyl isothiocyanate on acetaminophen



26

I. Sumioka et al.

metabolism and hepatotoxicity in mice.  Toxicol Appl
Pharmacol 1997;144:306–314.

49 Lieber CS.  Mechanism of ethanol induced hepatic
injury.  Pharmac Ther 1990;46:1–41.

50 Lieber CS.  Cytochrome P-450 2E1:  its physiological
and pathological role.  Physiol Rev 1997;77:517–544.

51 Lores Arnaiz S, Llesuy S, Cutrin JC, Boveris A.  Oxi-
dative stress by acute acetaminophen administration in
mouse liver.  Free Radic Biol Med 1995;19:303–310.

52 Lucas AM, Hennig G, Dominick PK, Whiteley HE,
Roberts JC, Cohen SD.  Ribose cysteine protects against
acetaminophen-induced hepatic and renal toxicity.  Toxi-
col Pathol 2000;28:697–704.

53 Madhu C, Maziasz T, Klaassen CD.  Effect of pregneno-
lone-16a-carbonitrile and dexamethasone on acetamino-
phen-induced hepatotoxicity in mice.  Toxicol Appl
Pharmacol 1992;115:191–198.

54 Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT.
Contribution of CYP2E1 and CYP3A to acetaminophen
reactive metabolite formation.  Clin Pharmacol Ther
2000;67:275–282.

55 Massey TE, Racz WJ.  Effects of N-acetylcysteine on me-
tabolism, covalent binding, and toxicity of acetaminophen
in isolated mouse hepatocytes.  Toxicol Appl Pharmacol
1981;60:220–228.

56 Matsura T, Yamada K, Kawasaki T.  Difference in
antioxidant activity between reduced coenzyme Q9 and
reduced coenzyme Q10 in the cell:  studies with isolated
rat and guinea pig hepatocytes treated with a water-
soluble radical initiator.  Biochim Biophys Acta 1992a;
1123:309–315.

57 Matsura T, Yamada K, Kawasaki T.  Antioxidant role of
cellular reduced coenzyme Q homologs and α-tocopherol
in free radical-induced injury of hepatocytes isolated from
rats fed diets with different vitamin E contents.  Biochim
Biophys Acta 1992b;1127:277–283.

58 McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL.
Potentiation of acetaminophen hepatotoxicity by alco-
hol.  JAMA 1980;244:251–253.

59 Minton NA, Henry JA, Frankel RJ.  Fatal paracetamol
poisoning in an epileptic.  Hum Toxicol 1988;7:33–34.

60 Mitchell JR.  Acetaminophen toxicity.  N Engl J Med
1988;319:1601–1602.

61 Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette
JR, Brodie BB.  Acetaminophen-induced hepatic
necrosis.  I.  Role of drug metabolism.  J Pharmacol
Exp Ther 1973;187:185–194.

62 Mitchell JR, Smith CV, Hughes H, Lauterburg BH,
Horning MG.  Overview of alkylation and peroxidation
mechanisms in acute lethal hepatocellular injury by che-
mically reactive metabolites.  Semin Liver Dis 1981;1:
143–150.

63 Mitchell JR, Smith CV, Lauterburg BH, Hughes H,
Corcoran GB, Horning EC.  Reactive metabolites and
the pathophysiology of acute lethal cell injury.  In:
Mitchell JR, Horning MG, eds.  Drug metabolism and
drug toxicity.  New York: Raven; 1984.  p. 301–319.

64 Mitra A, Kulkarni AP, Ravikumar VC, Bourcier DR.

Effect of ascorbic acid esters on hepatic glutathione
levels in mice treated with a hepatotoxic dose of acet-
aminophen.  J Biochem Toxicol 1991;6:93–100.

65 Moore M, Thor H, Moore G, Nelson S, Moldéus P,
Orrenius S.  The toxicity of acetaminophen and N-
acetyl-p-benzoquinone imine in isolated hepatocytes is
associated with thiol depletion and increased cytosolic
Ca2+.  J Biol Chem 1985;260:13035–13040.

66 Nakae D, Yamamoto K, Yoshiji H, Kinugasa T,
Maruyama H, Farber JL, et al.  Liposome-encapsulated
superoxide dismutase prevents liver necrosis induced
by acetaminophen.  Am J Pathol 1990;136:787–795.

67 Nakagawa S, Kasuga S, Matsuura H.  Prevention of liv-
er damage by aged garlic extract and its components in
mice.  Phytother Res 1989;3:50–53.

68 Nelson SD.  Mechanisms of the formation and disposi-
tion of reactive metabolites that can cause acute liver
injury.  Drug Metab Rev 1995;27:147–177.

69 Nordblom GD, Coon MJ.  Hydrogen peroxide forma-
tion and stoichiometry of hydroxylation reactions cata-
lyzed by highly purified liver microsomal cytochrome
P-450.  Arch Biochem Biophys 1977;180:343–347.

70 Patten CJ, Thomas PE, Guy RL, Lee M, Gonzalez FJ,
Guengerich FP, et al.  Cytochrome P450 enzymes in-
volved in acetaminophen activation by rat and human
liver microsomes and their kinetics.  Chem Res Toxicol
1993;6:511–518.

71 Perrot N, Nalpas B, Yang CS, Beaune PH.  Modulation
of cytochrome P450 isozymes in human liver, by etha-
nol and drug intake.  Eur J Clin Invest 1989;19:549–
555.

72 Potter WZ, Thorgeirsson SS, Jollow DJ, Mitchell JR.
Acetaminophen-induced hepatic necrosis.  V. Correla-
tion of hepatic necrosis, covalent binding and glutathi-
one depletion in hamsters.  Pharmacology 1974;12:
129–143.

73 Potter DW, Hinson JA.  Reactions of N-acetyl-p-benzo-
quinone imine with reduced glutathione, acetaminophen,
and NADPH.  Mol Pharmacol 1986;30:33–41.

74 Prescott LF.  Treatment of severe acetaminophen poison-
ing with intravenous acetylcysteine.  Arch Intern Med
1981;141:386–389.

75 Price VF, Miller MG, Jollow DJ.  Mechanisms of
fasting-induced potentiation of acetaminophen
hepatotoxicity in the rat.  Biochem Pharmacol
1987;36:427–433.

76 Price VF, Schulte JM, Spaethe SM, Jollow DJ.  Mecha-
nism of fasting-induced suppression of acetaminophen
glucuronidation in the rat.  Adv Exp Med Biol 1986;
197:697–706.

77 Raghuram TC, Krishnamurthi D, Kalamegham R.  Ef-
fect of vitamin C on paracetamol hepatotoxicity.  Toxi-
col Lett 1978;2:175–178.

78 Raucy JL, Lasker JM, Lieber CS, Black M.  Acetamin-
ophen activation by human liver cytochromes P450
IIE1 and P450 IA2.  Arch Biochem Biophys 1989;271:
270–283.

79 Roberts JC, Nagasawa HT, Zera RT, Fricke RF, Goon



27

Acetaminophen-induced hepatotoxicity

DJW.  Prodrugs of L-cysteine as protective agents against
acetaminophen-induced hepatotoxicity.  2-(Polyhydroxy-
alkyl)- and 2-(polyacetoxyalkyl)thiazolidine-(R)-carbox-
ylic acids.  J Med Chem 1987;30:1891–1896.

80 Roberts JC, Charyulu RL, Zera RT, Nagasawa HT.  Pro-
tection against acetaminophen hepatotoxicity by ribose-
cysteine (RibCys).  Pharmacol Toxicol 1992;70:281–285.

81 Richman PG, Meister A.  Regulation of gamma-glutamyl-
cysteine synthetase by nonallosteric feedback inhibi-
tion by glutathione.  J Biol Chem 1975;250:1422–1426.

82 Rumack BH, Peterson RC, Koch GG, Amara IA.  Acet-
aminophen overdose.  662 cases with evaluation of oral
acetylcysteine treatment.  Arch Intern Med 1981;141:
380–385.

83 Sakaida I, Kayano K, Wasaki S, Nagatomi A, Matsumura
Y, Okita K.  Protection against acetaminophen-induced
liver injury in vivo by an iron chelator, deferoxamine.
Scand J Gastroenterol 1995;30:61–67.

84 Salminen WF, Voellmy R, Roberts SM.  Differential
heat shock protein induction by acetaminophen and a
nonhepatotoxic regioisomer, 3'-hydroxyacetanilide, in
mouse liver.  J Pharmacol Exp Ther 1997a;282:1533–
1540.

85 Salminen WF Jr, Voellmy R, Roberts SM.  Protection
against hepatotoxicity by a single dose of amphetamine:
the potential role of heat shock protein induction.  Toxi-
col Appl Pharmacol 1997b;147:247–258.

86 Salminen WF, Voellmy R, Roberts SM.  Effect of N-
acetylcysteine on heat shock protein induction by acet-
aminophen in mouse liver.  J Pharmacol Exp Ther 1998;
286:519–524.

87 Sarich T, Kalhorn T, Magee S, Sayegh F, Adams S,
Slattery J, Goldstein J, et al.  The effect of omeprazole
pretreatment on acetaminophen metabolism in rapid
and slow metabolizers of S-mephenytoin.  Clin Phar-
macol Ther 1997;62:21–28.

88 Sato C, Matsuda Y, Lieber CS.  Increased hepatotoxi-
city of acetaminophen after chronic ethanol consump-
tion in the rat.  Gastroenterology 1981a;80:140–148.

89 Sato C, Nakano M, Lieber CS.  Prevention of acetamin-
ophen-induced hepatotoxicity by acute ethanol admini-
stration in the rat:  comparison with carbon tetrachlo-
ride-induced hepatoxicity.  J Pharmacol Exp Ther 1981b;
218:805–810.

90 Sato C, Lieber CS.  Mechanism of the preventive effect
of ethanol on acetaminophen-induced hepatoxicity.  J
Pharmacol Exp Ther 1981c;218:811–815.

91 Schmidt LE, Dalhoff K, Poulsen HE.  Acute versus chron-
ic alcohol consumption in acetaminophen-induced hepa-
totoxicity.  Hepatology 2002;35:876–882.

92 Smilkstein MJ, Knapp GL, Kulig KW, Rumack BH.
Efficacy of oral N-acetylcysteine in the treatment of ac-
etaminophen overdose.  Analysis of the national multi-
center study (1976 to 1985).  N Engl J Med 1988;319:
1557–1562.

93 Smilkstein MJ, Bronstein AC, Linden C, Augenstein
WL, Kulig KW, Rumack BH.  Acetaminophen over-
dose:  a 48-hour intravenous N-acetylcysteine treat-

ment protocol.  Ann Emerg Med 1991;20:1058–1063.
  94 Smith JA, Hine ID, Beck P, Routledge PA.  Paracetamol

toxicity:  is enzyme induction important?  Hum Toxicol
1986;5:383–385.

  95 Smith TJ, Hong JY, Wang ZY, Yang CS.  How can carci-
nogenesis be inhibited?  Ann N Y Acad Sci 1995;768:82–
90.

  96 Sohn OS, Fiala ES, Requeijo SP, Weisburger JH,
Gonzalez FJ.  Differential effects of CYP2E1 status on the
metabolic activation of the colon carcinogens azoxy-
methane and methylazoxymethanol.  Cancer Res 2001;
61:8435–8440.

  97 Srinivasan C, Williams WM, Ray MB, Chen TS.
Prevention of acetaminophen-induced liver toxicity by
2(R,S)-n-propylthiazolidine-4(R)-carboxylic acid in
mice.  Biochem Pharmacol 2001;61:245–252.

  98 Sumioka I, Matsura T, Kasuga S, Itakura Y, Yamada K.
Mechanisms of protection by S-allylmercaptocystein
against acetaminophen-induced liver injury in mice.
Jpn J Pharmacol 1998;78:199–207.

  99 Sumioka I, Matsura T, Yamada K.  Therapeutic effect
of S-allylmercaptocysteine on acetaminophen-induced
liver injury in mice.  Eur J Pharmacol.  2001;433:177–
185.

100 Sumioka I, Matsura T, Kai M, Yamada K.  Potential
roles of hepatic heat shock protein 25 and 70i in pro-
tection of mice against acetaminophen-induced liver in-
jury.  Life Sci 2004;74:2551–2561.

101 Thummel KE, Lee CA, Kunze KL, Nelson SD, Slattery
JT.  Oxidation of acetaminophen to N-acetyl-p-amino-
benzoquinone imine by human CYP3A4.  Biochem
Pharmacol 1993;45:1563–1569.

102 Thummel KE, Slattery JT, Ro H, Chien JY, Nelson SD,
Lown KE, et al.  Ethanol and production of the hepato-
toxic metabolite of acetaminophen in healthy adults.
Clin Pharmacol Ther 2000;67:591–599.

103 Tonge RP, Kelly EJ, Bruschi SA, Kalhorn T, Eaton DL,
Nebert DW, et al.  Role of CYP1A2 in the hepatotoxici-
ty of acetaminophen:  investigations using Cyp1a2 null
mice.  Toxicol Appl Pharmacol 1998;153:102–108.

104 Vogt BL, Richie JP Jr.  Fasting-induced depletion of
glutathione in the aging mouse.  Biochem Pharmacol
1993;46:257–263.

105 Wang W, Ballatori N.  Endogenous glutathione conju-
gates:  occurrence and biological functions.  Pharmacol
Rev 1998;50:335–356.

106 Wendel A, Feuerstein S, Konz KH.  Acute paracetamol
intoxication of starved mice leads to lipid peroxidation
in vivo.  Biochem Pharmacol 1979;28:2051–2055.

107 Whitcomb DC, Block GD.  Association of acetamino-
phen hepatotoxicity with fasting and ethanol use.
JAMA 1994;272:1845–1850.

108 Wlodek L, Rommelspacher H.  2-Methyl-thiazolidine-
2,4-dicarboxylic acid protects against paracetamol
induced toxicity in human liver derived HepG2 cells.
Acta Biochim Pol 1997a;44:759–766.

109 Wlodek L, Rommelspacher H.  2-Methyl-thiazolidine-2,4-
dicarboxylic acid as prodrug of L-cysteine.  Protection



28

I. Sumioka et al.

against paracetamol hepatotoxicity in mice.  Fundam
Clin Pharmacol 1997b;11:454–459.

110 Yoo JS, Ishizaki H, Yang CS.  Roles of cytochrome
P450IIE1 in the dealkylation and denitrosation of N-
nitrosodimethylamine and N-nitrosodiethylamine in
rat liver microsomes.  Carcinogenesis 1990;11:2239–
2243.

111 Zaher H, Buters JTM, Ward JM, Bruno MK, Lucas AM,
Stern ST, et al.  Protection against acetaminophen
toxicity in CYP1A2 and CYP2E1 double-null mice.  Tox-
icol Appl Pharmacol 1998;152:193–199.

112 Zhao P, Kalhorn TF, Slattery JT.  Selective mitochon-
drial glutathione depletion by ethanol enhances acet-
aminophen toxicity in rat liver.  Hepatology 2002;36:

326–335.
113 Zhao P, Slattery JT.  Effect of ethanol dose and ethanol

withdrawal on rat liver mitochondrial glutathione:  im-
plication of potentiated acetaminophen toxicity in
alcoholics.  Drug Metab Dispos 2002;30:1413–1417.

114 Zimmerman HJ, Maddrey WC.  Acetaminophen (para-
cetamol) hepatotoxicity with regular intake of alcohol:
analysis of instances of therapeutic misadventure.
Hepatology 1995;22:767–773.

Received and accepted March 30, 2004

Corresponding author: Tatsuya Matsura, MD, PhD


