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Cardiac preconditioning is the most potent and consistently reproducible method of 
protecting heart tissue against myocardial ischemia-reperfusion injury.  This review 
discussed about the signaling and amplification cascades from either ischemic precondi-
tioning stimulus or pharmacological preconditioning stimulus, the putative end-effectors 
and the mechanisms involved in cellular protection.  The pharmacological precondition-
ing induced by volatile anesthetics and opioids is very similar to the ischemic precondi-
tioning.  It includes activation of G-protein-coupled receptors, multiple protein kinases 
and ATP-sensitive potassium channels (KATP channels).  Volatile anesthetics prime the 
activation of the sarcolemmal and mitochondrial KATP channels, which are the putative 
end-effectors of preconditioning, by stimulation of adenosine receptors and subsequent 
activation of protein kinase C (PKC) and by increased formation of nitric oxide and free 
oxygen radicals.  Similarly, opioids activate - and -opioid receptors leading to activa-
tion of PKC.  The open state of the mitochondrial KATP channel and sarcolemmal KATP 

channel ultimately induces cytoprotection by decreasing Ca2+ overload in the cytosol and 
mitochondria.   

Key words: ATP-sensitive potassium channel; ischemic preconditioning; pharmacological pre-
conditioning; volatile anesthetic; opioid 

Anesthesiologists frequently meet perioperative 
cardiac ischemic events in the clinical anesthe-
sia and also treat patients with ischemic heart 
disease.  Myocardiac ischemic events lead to 
severe complications and delay the postoperative 
recovery, thereby worsening the prognosis of the 
patients who underwent surgery.   To minimize 
the damage or injury of myocardium in the peri-
operative period is a very important factor to im-
prove outcome of surgery.  It has been known well 
that anesthetics have abilities to prevent ischemic 
myocarcial injury.  Therefore, understanding the 
role of anesthetics including volatile anesthetics 

and opioids in myocardiac protection is likely to 
show the strategies of anesthetic management to 
reduce the incidence of cardiac ischemic events 
in the perioperative period.  This short review 
reveals the role of volatile anesthetics and opioids 
in prevention myocardiac ischemic injury due to 
cardiac preconditioning.

 
Ischemic preconditioning

Ischemic precondionig is the concept introduced 
by Murry et al. (1986) that four cycles of 5-min 
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left circumflex coronary artery (Lcx) occlusion, in 
advance of 40-min Lcx occlusion, reduced infarct 
size by 75% in a canine model.  Thereafter, there 
have been many reviews on ischemic precondi-
tioning (Okubo et al., 1999; Nakano et al., 2000; 
Rubino and Yellon, 2000).  Ischemic precondi-
tioning can be observed from isolated cardiomyo-
cytes and vascular endothelial cells to hearts in 
situ in various species (Okubo et al., 1999; Tomai 
et al., 1999a; Nakano et al., 2000; Rubino and 
Yellon, 2000).  In humans, ischemic precondition-
ing enhanced postischemic contraction in ventric-
ular trabeculae muscle and improved survival rate 
of isolated cardiomyocites (Tomai et al., 1999a).  
Moreover, in clinical application, ischemic pre-
conditioning elicited by two periods of 3-min aor-
tic cross clamping before cardiopulmonary bypass 
for valve replacement reduced myocardial enzyme 
leakage, free radical production and histologi-
cal degeneration and increased contractility after 
cardiopulmonary bypass (Lu et al., 1998; Li et al., 
1999).  Szmagala et al. (1998) applied 4-min aor-
tic cross clamping and 6-min reperfusion prior to 
coronary artery bypass grafting (CABG), thereby 
reducing troponin from blood samples. The pres-
ent author addresses the mechanisms of ischemia-
reperfusion injury before showing the possible 
mechanisms of ischemic preconditioning. 
 Ischemia precludes adequate oxygen supply, 
which rapidly results in depletion of ATP.  This 
inhibits ATP-driven Na+-K+ pumps, increasing 
[Na+]i.  [H+]i is increased due to poor washout 
of metabolites and inhibition of mitochondrial 
oxidation of NADH2.  Increased [H+]i enhances 
Na+-H+ exchange to retain normal pHi, leading 
to increased [Na+]i.  Accordingly, [Ca2+]i is au-
gumented via Na+-Ca2+ exchange (Opie, 1998a, 
1998b).  High [Ca2+]i degrades proteins and phos-
pholipids (Opie 1998c; Maxwell and Lip, 1997).  
Onset of ischemia increased the production of 
free radicals derived mainly from neutrophils 
and mitochondria (Opie 1998a; Maxwell and Lip, 
1997).  When coronary arteries are damaged, 
ischemia-related injury prevents swift gas ex-
change by swollen endothelial cells.  Vessels with 

malfunctioning endothelium and smooth muscle 
cannot dilate when necessary.  Moreover, neutro-
phils/platelets aggregating in the lumen decrease 
adequate coronary flow (Opie 1998c; Maxwell 
and Lip, 1997).  Neutrophils release oxygen free 
radicals, cytokines and other proinflammatory 
substances, which injure the endothelium, vascu-
lar smooth muscle and myocardium (Jordan et al., 
1999).  A pathway for neutrophil sequestration 
is the specific interaction of adhesion molecules 
whose expression is promoted by ischemia-reper-
fusion.  Adhesion molecules, for example, inter-
cellular adhesion molecule-1 (ICAM-1), L-selectin 
and CD11b/CD18 are expressed on neutrophils 
and endothelium.  On reperfusion, [H+] outside 
the cell is rapidly decreased to normal levels be-
cause of wash-out.  This results in an increase 
in [Ca2+]i due enhanced Na+-H+ and Na+-Ca2+ 
exchange (Opie 1998b; Opie 1998c).  Reperfusion 
also results in a burst of free radical generation 
because oxygen abundantly supplied (Opie 1998c; 
Maxwell and Lip, 1997).  Both increased [Ca2+] 
and free radicals harm the myocardium during 
reperfusion (Opie 1998c; Maxwell and Lip, 1997).  
Damage of the vascular system is more promi-
nent during reperfusion than ischemia (Maxwell 
and Lip, 1997; Jordan et al., 1999).  Infarction is 
one of the major events of ischemia-reperfusion 
injury during anesthesia.  Another major event is 
myocardial stunning, which is defined as revers-
ible myocardial dysfunction that persists after 
reperfusion (Opie 1998c; Bolli and Marban, 1999; 
Braunwald and Kloner, 1982).

 
Mechanisms of early preconditioning

Preconditioning is a treatment before an ischemic 
event while ischemia-reperfusion injury is devel-
oped during and after an ischemic period.  The 
signals were generated by short period of isch-
emia in ischemic preconditioning.  Ischemic pre-
conditioning is mediated via several sacrolemmal 
receptors, which are mostly linked to inhibitory 
G (Gi)-protein (Ninomiya et al., 2002), namely 
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adenosine (A-1, A-3), purinoceptors (P2Y), endo-
thelin (ET1), acetylcholine (M2), 1- and -adren-
ergic, angiotensin II (AT1), bradykinin (B2) and 
opioid ( 1, ) receptors, which couple to a highly 
complex network of kinases.  The involvement of 
many receptors or triggers in mediating precondi-
tioning reflects the biological redundancy in this 
life-saving signal transduction pathway.  Figure 1 
shows the main signaling steps and components 
of early and delayed preconditioning (Zaugg et 
al., 2003).
 G-proteins link the initial stimulus from the 
individual receptors to phospholipase C and D.  
They have several additional functions such as 
inhibition of Ca2+ influx during ischemia, regula-

tion of cellular metabolism and activation of ATP-
sensitive potassium channels (KATP channels), the 
putative main end-effectors of preconditioning.  
Activation of phospholipase C and D introduces 
formation of inositol triphosphate (IP3) for the 
release of Ca2+ from the sarcoplasmic reticulum 
via the IP3 receptor, and production of diacylg-
lycerol (DAG).  DAG activates different isoforms 
of protein kinase C (PKC). PKC is activated by 
a large number of phosphorylating enzymes, in-
cluding G-proteins, phosphlipids, DAG, increased 
intracellular Ca2+, and nitric oxide (NO), which 
is derived from intracellular constitutively active 
NO synthsae (NOS) or from extracellular sources.  
PKC can be activated by reactive oxygen species 

Fig. 1.  Signaling for cardiac preconditioning.  The left of dashed line represents mechanisms of early preconditioning 
and the right represents those of late (delayed) preconditioning.  This figure is quoted from the reference of Zaugg et al., 
2003.  dym, inner mitochondrial membrane potential; AlRed, aldose reductase; Bcl-2, anti-apoptotic protein; Ca, sarco-
lemmal voltage-dependent Ca2+ channels; COX-2, cyclooxygenase type 2; DAG, diacylglycerol; eNOS, endotherial NO 
synthase; HSP, heat shock proteins; iNOS, inducible NO synthase; IP3, inositol triphosphate; IP3R, inositol triphosphate 
receptor; K, sarcolemmal and mitochondrial KATP channels; MnSOD, manganese superoxide dismutase; NF- B, nuclear 
factor- B; NO, nitric oxide; PIP2, phosphatidylinositol bisphosphate; PKC, protein kinase C; PLC/PLD, phospholipases 
C and D; ROS, reactive oxygen species; RYR, ryanodine Ca2+-release channel; SERCA2, Ca2+ pump of the SR; SR, sar-
coplasmic reticulum.
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(ROS) derived from mitochondria either during 
the short ischemic or the subsequent repetitive 
reperfusion episodes.  Activation of this key en-
zyme leads to isoform-specific and cytoskeleton-
mediated translocation of cytosolic PKC, induc-
ing phosphorylation and thus activation of the 
sacrolemnal and mitochondrial KATP channels 
(Light et al., 2000). After only 10 min of ischemic 
preconditioning, PKC activity in the cytosol re-
duces, whereas PKC in the particulate fraction (i.e., 
nuclei, mitochondria and membranes) increases 
(Strasser et al., 1992).  PKC-  translocation seems 
to be responsible for activating mitochondrial 
KATP channels and PKC-  translocation for the es-
tablishment of late preconditioning by phosphory-
lating nuclear targets (Kawamura et al., 1998).  
However, the observation that PKC inhibition may 
not completely block the preconditioning stimulus 
(Vahlhaus et al., 1996) supports the concept that 
additional intracellular kinases downstream, up-
stream or in parallel to PKC signaling contribute 
to the amplification and establishment of the pre-
conditioned state.  Recent studies suggested that 
mitochondrial KATP channels play a greater role 
than sacrolemmal KATP channels (Nakano et al., 
2000; Rubino and Yellon, 2003).
 ROS, important intracellular signaling mol-
ecules derived from mitochondria, are increased 
during sublethal oxidative stress (precondition-
ing stimulus) and play a pivotal role in trigger-
ing early and delayed cardioprotection (Cohen 
et al., 2001).  ROS activate phospholipase C and 
PKC, which, in turn, amplify the preconditioning 
stimulus.  Generation of ROS during the initiation 
of preconditioning represents an essential trig-
ger for early and delayed cardioprotection.  NO 
can induce a cardioprotective effect against myo-
cardial stunning and infarction.  Recent studies 
revealed direct evidence of enhanced biosynthesis 
of NO in the myocardium subjected to brief epi-
sodes of ischemia and reperfusion, probably via 
increased NOS activity (Bolli, 2001).  Although 
NO is not necessary for ischemia-induced early 
preconditioning, exogenous or pharmacologically 
increased endogenous NO production elicits an 

early preconditioning effect, that is, NO is suf-
ficient but no necessary for early preconditioning 
(Bolli, 2001).  Conversely, NO has an obligatory 
role in late preconditioning (Guo et al., 1999).

 
Mechanisms of late preconditioning

Late preconditioning requires NO formation and 
increased synthesis of protective proteins (Bolli, 
2001).  PKC and multiple kinases are involved 
in the signaling cascade, leading to activation 
of several transcription factors, such as nuclear 
factor- B (NF- B), which leads to the sustained 
expression of a number of proteins considered to 
be responsible for the delayed protection phase.  
Disruption of the inducible NOS (iNOS) gene 
completely abolished the delayed infarct-sparing 
effect, which indicates the obligatory role of iNOS 
in the cardioprotection afforded by delayed pre-
conditioning (Guo et al., 1999).  The most likely 
cardioprotective effects of NO in late precondi-
tioning are: i) inhibition of Ca2+ influx; ii) antago-
nism of -adrenergic stimulation; iii) reduced con-
tractility and myocardial oxygen consumption; iv) 
opening of KATP channels; v) antioxidant actions; 
and vi) activation of COX-2 with the synthesis of 
prostanoids.  Activation of KATP channels also 
plays a role in delayed protection (Bernardo et al., 
1999). 

 
Sarcolemmal and 

mitochondrial KATP channels

Cardiomyocytes have two distinct types of KATP 
channels, one located in the surface membrane 
(sacrolemmal KATP channels) and another in the 
inner mitochondrial membrane (mitochondrial 
KATP channels).  Sarcolemmal KATP channels are 
physically bound with the creatine phosphate-
creatine kinase system and provided a direct link 
between metabolic state and cellular excitability.  
Mitochondrial KATP channels regulate mitochon-
drial volume state, mitochondrial membrane po-
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tential, formation of ROS and energy production.  
Toyoda et al. (2000) suggested differential role of 
sarcolemmal and mitochondrial KATP channels in 
preconditioning.  Reduction of myocardial infarct 
size is mediated largely by mitochondrial KATP 
channels, but functional recovery is mediated by 
sarcolemmal KATP channels.  Mitochondrial KATP 
channels also play an important role in the pre-
vention of cardiomyocyte apoptosis (Akao et al., 
2001) and in late preconditioning protection (Bolli, 
2001).  Considerable cross-talk was reported be-
tween sarcolemmal and mitochondrial KATP chan-
nels (Sasaki et al., 2001).  A lot of experimental 
studies indicate the mitochondrial KATP channels 
as the main end-effector of preconditioning, but 
role of sarcolemmal KATP channels cannot be dis-
missed totally. 
 Sacrolemmal KATP channels may modu-
late myocardial infarct size by reducing Ca2+ 
enterance into the myocytes from outside and 
by attenuating Ca2+ overload.  There are three 
possible explanations about reduction of infarct 
size by mitochondrial KATP channels.  First, the 
decreased mitochondrial Ca2+ overload during 
ischemia (Wang et al., 2001) may prevent opening 
of the mitochondrial permeability transition pores 
and guarantee optimal conditions for ATP pro-
duction (Holmuhamedov et al., 1998).  Second, 
Garlid and Pancek (2003) proposed that opening 
of the mitochondrial KATP channel decreases the 
ischemia-induced swelling of the mitochondrial 
interspace, which would preserve functional cou-
pling between adenosine nucleotide translocase 
and mitochondrial creatine kinase (prevention 
of structure/function) (Kowaltowski et al., 2001; 
Laclau et al., 2001).  This secures the transport of 
newly synthesized ATP from the site of produc-
tion by ATP synthase on the inner mitochondrial 
membrane to the cytosol.  Thus, high-energy 
phosphate substrates are supplied continuously 
from the mitochondria to the sites of energy con-
sumption.  Third, mitochondrial KATP channels 
may elicit protection in basis of the observation of 
increased formation of ROS (Fobes et al., 2001).  
ROS would stimulate the activation of multiple 

transcriptional factors (NF- B, activator pro-
tein-1, protein kinases, protein phosphatase, etc.), 
ultimately leading to cardioprotection. 

 
Pharmacogogical preconditioning

Preconditioning can be pharmacologically in-
duced by anesthetics.  Volatile anesthetics, opioids 
and other anesthetics were found to induce or en-
hance preconditioning in cardiac tissue. 

Volatile anesthetics

Lots of studies have evaluated the cardiac pre-
conditioning effects of isoflurane, enfrurane and 
halothane (Mattheussen et al., 1993; Warltier et 
al., 1988).  Sevoflurane, the most frequently used 
volatile anesthetic in Japan, has also improves 
postischemic mechanical and coronary function, 
and reduces infarct size (Novalija and Stowe, 
1998; Toller et al., 1999b).  Desflurane, a volatile 
anesthetic used outside of Japan, is suggested the 
beneficial cardioprotection (Toller et al., 2000b).  
The beneficial effects of volatile anesthetics on 
myocardial protection by their pharmacological 
preconditioning have been evaluated by reduc-
tion in infarct size, postischemic contractility 
and coronary vasculature.  Halothane, isoflurane 
and sevoflurane reduced the number of neutro-
phils sequestered in the coronary vasculature 

Table 1.  Volatile anesthetics and opioids with 
mostly enhancing effects on mitochondrial and 
sarcolemmal KATP channels

Anesthetic             KATP channel
    agent Mitochondrial   Sarcolemmal 

Isoflurane  /
Sevoflurane  ?
Desflurane  
Morphine  ?
Fentanyl  
Remifentanil  

, no effect; , increased effect; , decreased effect.
KATP, ATP-sensitive potassium.
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after ischemia (Kowalski et al., 1997; Heindl et 
al., 1999a).  A similar effect was also shown for 
platelets (Heindl et al., 1998; Heindl et al., 1999b).  
Reduced neutrophils/platelet entrapment by an-
esthetics was accompanied by enhancement of 
postischemic mechanical function (Heindl et al., 
1999a; Heindl et al., 1999b).  Novalija et al. (1999) 
measured coronary flow changes in response to 
endotherial-dependent and independent vasodila-
tors.  Sevoflurane preserved the reaction elicited 
by both types of vasodilators during the reperfu-
sion period better than no treatment. 
 The favorable oxygen supply/demand ratio 
provided by volatile anesthetics is not required 
for preconditioning because volatile anesthetic-in-
duced protection occurs under cardioplegic arrest 
(Lochner et al., 1994).  Many characteristics of 
preconditioning by volatile anesthetics are simi-
lar to those of ischemic preconditioning.  These 

involve activation of A1 adenosine receptors, PKC 
and KATP channels.  Ischemic preconditioning 
and anesthetic preconditioning similarly reduce 
Ca2+ loading, augment post-ischemic contractile 
responsiveness to Ca2+ and decrease infarct size 
(An et al., 2001).  Whether volatile anesthetics in-
duce late preconditioning is still unknown.
 Key signaling components involved in pre-
conditioning elicited by volatile anesthetics were 
unraveled recently by means of specific blockers 
for signaling steps (Fig. 2) and the specific open-
ers and blockers for signaling steps are shown in 
Table 2.  The main routes of activation by vola-
tile anesthetics involve the Gai protein-coupled 
adenosine receptor and the production of NO, 
probably by modulation of NOS activity (Zaugg 
et al., 2002).  These two signaling pathways con-
verged at the level of PKC, although alternative 
routes for NO could be operative as well.  Finally 

Fig. 2.  Signaling pathways involved in volatile anesthetic- and opioid-induced preconditioning. Multiple signaling cas-
cades prime the sarcolemmal and mitochondrial KATP channels, allowing rapid opening at the initiation of ischemia.  
This figure is changed slightly from the original figure quoted from the reference of Zaugg et al., 2003.  Abbreviations of 
the blockers and signaling components are referred to Table 2 and the legend of Fig. 1. 
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volatile anesthetics activate mitochondrial and 
sarcolemmal KATP channels, thereby providing 
cardioprotection.  There is a question of whether 
the sarcolemmal KATP channel or mitochondrial 
KATP channel is more important in mediating 
volatile anesthetic-induced preconditioning.  
Although several experimental studies have ad-
dressed this question (Toller et al., 2000; Zaugg 
et al., 2002; Hara et al., 2001), it is important to 
note that considerable cross-talk is documented 
between sarcolemmal and mitochondrial KATP 
channels (Sasaki et al., 2001) and the importance 
of the individual KATP channels may vary among 
experimental approaches and species differ-
ences.  Sato et al. (2000) proposed the concept of 
channel priming (including the sarcolemmal and 
mitochondrial KATP channels) by volatile anes-
thetics.  The primed channel state allows easy and 
rapid opening at the initiation of ischemia.  On 

the other hand, volatile anesthetics mediate their 
protection by selectively enhancing mitochondrial 
KATP channels through the triggering of multiple 
PKC-coupled signaling pathways, namely NO 
and adenosine/Gi signaling pathways (Zaugg et 
al., 2002).  Biosynthesis of NO plays a pivotal 
role in reducing ischemic damage in heart tissue.  
Moreover, NO and cGMP may be major players 
in volatile anesthetic-induced cardioprotection.  
Both NO/cGMP signaling and basal NOS activ-
ity play a fundamental role in pacing associated-
preconditioning.  Volatile anesthetics may dif-
ferentially modulate the activity of the various 
isoenzymes of NOS (nNOS, eNOS, iNOS), which 
are ubiquitous but heterogeneously distributed 
in myocytes.  The observation that isoflurane-in-
duced preconditioning is inhibited by free radical 
scavengers supports the concept that generation of 
radicals, either by means of altered NO synthesis 

Table 2.  Specific openers and blockers for signaling steps of pharmacological preconditioning

Selectivity Opener References Blocker References

Adenosine receptors   SPT Cope et al., 1997
   DPCPX Kersten et al.,  1997
PKC   CHE Toller et al., 1999a 
   Bicindolylmaleimide Toller et al., 1999a 
Gi-proteins   PTX Toller et al., 1999a  
Mitochondtrial  KATP channel
  Nicorandil Piriou et al., 1997 5HD Toller et al., 1999a; 
     DIAZO Sato et al., 2000  Piriou et al., 1997; 
    Hanouz et al., 2002; 
    Zaugg et al., 2002;  
    Shimizu et al., 2001
Sarcolemmal KATP channel  HMR-1098 Hanouz et al., 2002
NOS   L-NIL, L-NAME Müllenheim et al.,  2002
NO S-nitroso-N-acetyl- PTIO
    DL-penicillamine 
ROS   MnTBAP, MPG Müllenheim et al.,  2002

-adrenergic receptor  Phentramine, Prazosin Hanouz et al., 2000
-adrenergic receptor   Propranolol  Hanouz et al., 2000
-opioid DADLE McPherson and Yao, 2001 Naloxone Tomai et al., 1999b
1-selective TAN-67 Fryer et al., 1999 

CHE, chelerythrine; DADLE, D-Ala2-D-Leu5-enkephalin; DIAZO, diazoxide; DPCPX, 8-cyclophenyl-1,3-dipropyl-
xanthine; 5HD, 5-hydroxydecanoate; Gi, inhibitory G; L-NIL, L-N6-(l-iminoethyl)lysine; L-NAME, N G-nitro-L-arginine 
methyl ester; MnTBAP, Mn(III)tetrakis(4-benzoic acid)porphyrine chloride; MPG, N-(2-mercaptopropionyl)glycine; NO, 
nitric oxide; NOS, NO synthase; PKC, protein kinase C; PTIO, 2-(4-carboxyphenyl)-4,4’,5,5’-tetramethylimidazole-l-oxyl-
3-oxide; PTX, pertussis toxin; ROS, reactive oxygen species; SPT, 8-sulfophenyl theophylline.
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or by enhanced formation of ROS/NO (possibly 
by opening mitochondrial KATP channels), is im-
portant (Müllenheim et al., 2002).  These results 
show that the preconditioning effects of volatile 
anesthetics are triggered by multiple signaling 
cascades and mediated mainly by mitochondrial 
KATP channels, but sarcolemmal KATP channels 
may also contribute to the protection induced by 
volatile anesthetics.   
 Volatile anesthetics can elicit coronary pro-
tection through an ischemic (pharmacological) 
preconditioning-like effect.  Ischemic precondi-
tioning is known to reduce ICAM-1 production 
and neutrophil entrapment, and to preserve the 
response to vasodilators (Rubino and Yellon., 
2000).  Treatment with volatile anesthetics de-
creased neutrophil adhesion on the endothelium 
and expression of CD11b, which forms an integrin 
with CD18, while the anesthetic did not affect 
endothelial cell actibation vis-à-vis neutrophils 
(Mobert et al., 1999).  These findings supports 
that administration of volatile anesthetics prior to 
reperfusion maintains coronary vasculature.

Opioids

The involvement of opioid receptors in ischemic 
preconditioning has been demonstrated in vari-
ous animal species (Schultz and Gross 2001) and 
humans (Bell et al., 2000).  Among opioid recep-
tor subtypes, -opioid receptors are responsible 
for ischemic preconditioning in rats and humans.  
Although opioid receptors are located more abun-
dant in the central nervous system, they are also 
located in the heart (Bell et al., 2000).  Opioid 
receptor subtype distribution in heart is consid-
ered to differ between species; - and -, but not 

-opioid receptors are expressed in the rat heart 
(Schultz and Gross, 2001), - and -opioid recep-
tors are dominant compared with -opioid recep-
tors in human atrium (Schultz and Gross, 2001).  
Naloxone blocked the effect of ischemic precon-
ditioning in isolated hearts, and quaternary nalox-
one, which does not cross the blood-brain barrier, 
eliminated the protection by ischemic precon-

ditioning in in vivo models (Chien et al., 1999).  
These findings suggest that it is in the heart itself 
that opioid receptors play a role in protection by 
ischemic preconditioning. 
 Morphine and fentanyl are capable of bind-
ing to - and -receptors although they bind dom-
inantly with -receptors (Jaffe and Martin, 1990).  
Selective - (McPherson and Yao, 2001) and 1- 
(Huh et al., 2001) agonists induce cardioprotec-
tion. Conversely protection by morphine and 
fentanyl is abolished by -antagonists (McPherson 
and Yao, 2001).  The role of -receptors remains 
controversial.  Activation of opioid receptors re-
sults in a potent cardioprotection effect similar to 
classical and late preconditioning.  Currently, it 
is considered that selective activation of 1 opioid 
agonists exert this protection through an interac-
tion with Gi-proteins and activation PKC, tyro-
sine kinases (and possibly other kinases, such as 
MAPK), and ultimately KATP channels, especially 
mitochondrial KATP channels (Fryer et al., 1999).  
Morphine 1 mM induced the same protection as 
preconditioning with 5 min of ischemia and that 
protection were abolished by 5-hydroxydecanoate 
(a specific mitochondrial KATP channel blocker), 
which emphasizes the dominant role of mitochon-
drial KATP channels in preconditioning (Liang 
and Gross, 1999).  
 Remifentanil, a new comer of fentanyl fam-
ily, induces also the pharmacological precondi-
tioning effect as well as morphine and fentanyl 
through the same mechanism (Zang et al., 2004, 
2005). 

 
Conclusions:  This review summarizes recent 
knowledge about the key cellular events involved 
in ischemic and pharmacological precondition-
ing.  Many characteristics of anesthetic-induced 
preconditioning are similar to ischemic precon-
ditioning.  However, there may be fundamental 
differences in terms of signal intensity and the 
potential to concomitantly injured cardiac tis-
sue.  Of many anesthetics, volatile anesthetics are 
arguably the most promising agents as cardiopro-
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tectors.  They demonstrated the beneficial effect 
against ischemic-reperfusion injury better than 
any other anesthetic.  Volatile anesthetics provide 
cardioprotection at clinically relevant concentra-
tions and morphine has also been to be protective 
at clinical concentrations.  Therefore, volatile an-
esthetic and morphine might be good choice for 
the patients at risk of myocardial ischemia.  
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