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How Can Antimicrobial Resistance in Pseudomonas aeruginosa 
Be Controlled?
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Pseudomonas aeruginosa remains one of the most difficult to treat and to control nosoco-
mial infections.  In vitro antimicrobial susceptibility data are required for successful ther-
apy because acquired resistance to such antimicrobials as -lactams, fluoroquinolones and 
aminoglycosides is so prevalent in P. aeruginosa.  Strategies for controlling P. aeruginosa 
infections include early detection of P. aeruginosa as the causative pathogen, determina-
tion of its antimicrobial susceptibilities, initiation of effective and adequate therapy and 
strict infection control practice such as hand hygiene and equipment procedures.  Once 
antimicrobial therapy has been initiated against a P. aeruginosa infection, its susceptibility 
to antimicrobials, especially to carbapenems and fluoroquinolones, should be monitored 
during antimicrobial therapy to detect clonal shifts in resistance and microbial substitu-
tions as early as possible.  Continued surveillance of nosocomial infections and monitoring 
of antimicrobial resistance by the infection control staff plays major roles in preventing 
nosocomial infections and the spread of antimicrobial resistance.  Additional strategies 
for controlling antimicrobial resistance in P. aeruginosa include the development of new 
methods for rapid detection of antimicrobial resistance and new agents and vaccines 
against P. aeruginosa infections in the laboratories and pharmaceuticals, while preserving 
the efficacy of currently available antimicrobials for as long as possible in the hospital set-
tings.
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Special Contribution

Pseudomonas aeruginosa as a pathogen

Pseudomonas aeruginosa is a non-fermentative, 
aerobic, Gram-negative rod that normally lives in 
moist environments.  P. aeruginosa is an opportu-
nistic human pathogen and causes pneumonia, uri-
nary tract infections, wound infections and blood 
stream infections.  P. aeruginosa has minimal 
nutritional requirements, which contributes to its 
broad ecological adaptability and distribution.  Wa-

ter in flower vases, showers and toilets, disinfectant 
solutions, uncooked vegetables, skin, respiratory 
equipment and other moist environments can act as 
reservoirs of P. aeruginosa in the hospital settings 
(Pier et al., 2004; Rossolini and Mantengoli, 2005).  
Consequently, P. aeruginosa is a common nosoco-
mial pathogen and often is the pathogen in cases of 
ventilator-associated pneumonia, catheter-related 
urinary tract infections and catheter-related blood 
stream infections.  Community-acquired infections 
by P. aeruginosa are uncommon.
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Antimicrobial resistance in P. aeruginosa

It is difficult to treat P. aeruginosa infections be-
cause acquired resistance to such antimicrobials as 
-lactams, fluoroquinolones and aminoglycosides 

is common.  Clinically it has been shown that P. 
aeruginosa has the capacity to develop resistance 
rapidly during the course of antimicrobial therapy 
by several mechanisms (Fish et al., 1995; Hancock, 
1998; Carmeli et al., 1999; Le Thomas et al., 2001).  
It has been also shown that selection of resistance 
during antimicrobial therapy occurs frequently 
in P. aeruginosa (Harris et al., 1999).  Therefore, 
sequential accumulation of resistance may result 
in emergence of multidrug resistance in P. aerugi-
nosa.
 Notably integron-mediated multidrug resis-
tance frequently found in P. aeruginosa and is a 
major clinical problem (Weldhagen, 2004).  Inte-
grons are genetic elements that possess the capac-
ity to capture individual antimicrobial resistance 
genes, including those encoding -lactamases and 
aminoglycoside-modifying enzymes, and to pro-
mote transcription and expression of these genes.  
Integrons include a receptor site, attI, where the 
captured genes are integrated, and a recombinase 
gene, int.  Widespread integron-mediated resis-
tance poses an increasing threat to the treatment 
and control of P. aeruginosa infections.
 Factors influencing the emergence and spread 
of acquired resistance in P. aeruginosa include 
inadequate use and overuse of antimicrobials 
(Rossolini and Mantengoli, 2005).  Previous re-
ports have shown that use of carbapenems and oth-
er antimicrobials increases the risk of emergence 
of resistant P. aeruginosa, although antimicrobial 
rankings differ between studies (Carmeli et al., 
1999; Amari et al., 2001; Harris et al., 2002).

-Lactam resistance

-Lactams including carbapenems are commonly 
used to treat P. aeruginosa infections in Japan.  
The predominant mechanisms conferring -lactam 
resistance in clinical P. aeruginosa isolates include 
production of -lactamases, loss or decreased pro-

duction of outer membrane proteins (OMPs) and 
up-regulation of efflux pumps (Szabo et al., 2005). 
 To date, a number of -lactamases have been 
identified in clinical P. aeruginosa isolates.  Most 
isolates produce chromosomally encoded AmpC-
type -lactamases (molecular class C) (Ambler, 
1980).  Hyperproduction of AmpC-type -lac-
tamases induced by exposure to certain antimi-
crobials can lead to resistance to penicillins and 
cephalosporins but not to carbapenems (Livermore, 
1987).  In P. aeruginosa, carbapenem resistance can 
be conferred by production of metallo- -lactamases 
(molecular class B), which hydrolyze all classes of 
-lactams (Ambler, 1980).  Metallo- -lactamases 

are not inhibited by -lactamase inhibitors such as 
clavulanic acid, sulbactam and tazobactam.  Most 
metallo- -lactamase genes are located on plas-
mids and can be transferred to other strains.  The 
first documented instance of transferable metallo-
-lactamase derived from P. aeruginosa was found 

in Japan in 1988 (Watanabe et al., 1991), and trans-
ferable metallo- -lactamases such as IMP- and 
VIM-types have now been found in Japan, Korea, 
Europe and USA (Walsh et al., 2005).  Addition-
ally P. aeruginosa can produce OXA- and PSE-
type -lactamases belonging to molecular class D, 
resulting primarily in inactivation of penicillins 
(Bonomo and Szabo, 2006; Naas and Nordmann, 
1999).  Recently extended-spectrum -lactamases 
(ESBLs) derived from molecular class A and D 
(OXA)-types also have been described (Bonomo 
and Szabo, 2006).
 Mutational impermeability is one of the major 
mechanisms responsible for carbapenem resistance 
and arises via mutational loss or decrease of OMPs 
(Studemeister and Quinn, 1998; Livermore, 2002).  
OprD is a porin-forming transmembrane channel 
(D2 porin), which is accessible to carbapenems 
but not to other -lactams.  It has been shown that 
loss or decrease of OprD production or inactiva-
tion of OprD results in carbapenem resistance in 
P. aeruginosa but does not confer resistance to 
other -lactams (Pirnary et al., 2002; Horii et al., 
2003; Muramatsu et al., 2003 and 2005; Wolter et 
al., 2004; Rossolini and Mantengoli, 2005).  It was 
suggested that carbapenem resistance caused by 
mutational changes in OprD can emerge during an-
timicrobial therapy against a P. aeruginosa infec-
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tion (Horii et al., 2003).  Mutations leading to up-
regulation of efflux systems such as MexA-MexB-
OprM, MexC-MexD-OprJ and MexX-MexY-OprM 
can variably result in decreased susceptibility 
to -lactams and fluoroquinolones (Rossolini and 
Mantengoli, 2005).

Fluoroquinolone resistance

The major mechanisms of fluoroquinolone resistance 
in clinical isolates of P. aeruginosa include alterations 
in DNA gyrase and/or topoisomerase IV caused by 
mutations in the quinolone resistance-determining 
regions (QRDRs) of GyrA and ParC (Akasaka et al., 
2001; Muramatsu et al., 2005).  Other reports have 
suggested that mutations of GyrB are associated with 
fluoroquinolone resistance (Mouneimnè et al., 1999; 
Le Thomas et al., 2001).  A secondary mechanism, 
active efflux systems, contributes to reduced suscep-
tibility to fluoroquinolones (Le Thomas et al., 2001; 
Livermore, 2002).  Of the known efflux pumps in P. 
aeruginosa, only MexA-MexB-OprM is expressed 
constitutively at sufficient levels to result in intrinsic 
fluoroquinolone resistance (Zhanel et al., 2004).

Aminoglycoside resistance

Mechanisms conferring aminoglycoside resistance 
in P. aeruginosa include enzymatic modification 
of aminoglycosides, active efflux systems and im-
permeability (Poole, 2005).  Aminoglycosides are 
inactivated by enzymatic phosphorylation (amino-
glycoside phosphoryltransferase [APH]), acetyla-
tion (aminoglycoside acetyltransferase [AAC]) and 
adenylation (aminoglycoside nucleotidyltransferase 
[ANT]).  These modifying enzymes are located 
on chromosome or plasmids.  Individual amino-
glycoside-resistant isolates of P. aeruginosa carry 
multiple modifying enzymes, resulting in broad-
spectrum aminoglycoside resistance (Poole, 2005).

Detection of antimicrobial resistance 
in P. aeruginosa

Antimicrobial therapy against individual P. aeru-
ginosa infections should be based on in vitro an-
timicrobial susceptibility data generally expressed 

in terms of minimum inhibitory concentrations 
(MICs).  Techniques for detection of specific anti-
microbial resistance alleles, including both clini-
cally available and those limited to research labo-
ratories, are summarized in Table 1.

-Lactam resistance

Genetic techniques to determine types of -lac-
tamases include PCR, cloning, DNA probes and 
nucleotide sequencing, although the nongenetic 
gold standard remains examination for ability of 
bacterial crude extracts to hydrolyze -lactams.  
Hyperproduction of AmpC-type -lactamases can 
be detected by RNA-based techniques such as real-
time reverse transcription (RT)-PCR (Quale et al., 
2006).  Metallo- -lactamases can be detected eas-
ily using microbiological methods (Walsh et al., 
2005).  Metallo- -lactamase activity is inhibited 
by the removal of zinc from the active site.  Micro-
biological laboratories usually apply disk diffusion 
methods using ceftazidime (substrate) and 2-mer-
captoproprionic acid (inhibitor), microdilution 
methods using imipenem (substrate) and EDTA or 
1,10-phenanthroline (inhibitor) and Etest methods 
using imipenem and EDTA to the examination.  
Metallo- -lactamases can also be detected by PCR 
for the specific blaIMP and blaVIM genes, DNA 
probes and/or nucleotide sequencing.
 Alterations in OprD result from decreased 
production or inactivation of OprD due to dele-
tions, substitutions or insertions in the oprD gene 
or regulatory mutations (Pirnary et al., 2002; 
Rossolini and Mantengoli, 2005).  The altera-
tions can be detected by SDS-PAGE following the 
preparation of OMPs, RNA-based techniques or 
nucleotide sequencing of the oprD and relevant 
genes (Pirnary et al., 2002; Horii et al., 2003; 
Muramatsu et al., 2003).

Fluoroquinolone resistance

Our understanding of fluoroquinolone resistance 
is based on nucleotide sequencing of the QRDRs 
of the gyrA, gyrB and parC genes (Akasaka et al., 
2001; Le Thomas et al., 2001; Muramatsu et al., 
2005).  Additional contributions to fluoroquinolone 
resistance by efflux systems can be detected by 
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biological assays that measure active intracellular 
concentrations of fluoroquinolones with and with-
out carbonyl cyanide m-chlorophenylhydrazone 
(CCCP) (Hirai et al., 1986).  Nucleotide sequencing 
and RNA-based techniques are used to character-
ize disruption and overexpression of the genes cod-
ing for efflux pumps such as MexA-MexB-OprM 
(Zhanel et al., 2004; Quale et al., 2006). 

Aminoglycoside resistance

Although the mechanisms of amionoglycoside 
resistance are multiplexed, the genes encoding 
the aminoglycoside-modifying enzymes such 
as AAC(6’)-I, AAC(6’)-II, AAC(3)-I, AAC(3)-
II, APH(3’)-II and ANT(2’)-I can be detected by 

Table 1.  Detection techniques of antimicrobial resistance alleles in Pseudomonas aeruginosa   
 

Antimicrobial
 Resistance mechanism
     Resistance gene              Gene product                      Detection techniques                 Reference

-Lactam 
 Production of -Lactamase
  bla TEM-, SHV-,  PCR, real-time RT-PCR, Bauernfeind et al., 1996;
   OXA-type cloning, DNA probes,  Nordmann and Polrel, 2002;
     (class A and D) nucleotide sequencing,  Lee et al., 2005;
  ampC AmpC-type  enzymatic analysis Bonomo and Szabo, 2006;
   (class C)  Quale et al., 2006

  bla IMP-, VIM-type PCR, cloning, DNA probes, Lauretti et al., 1999;
   (class B) cloning, nucleotide  Franceschini et al., 2000;
    sequencing, microbiologic  Shibata et al., 2003;
    methods (disk diffusion  Nordmann and Polrel, 2002;
    and Etest), enzymatic analysis Wash et al., 2002

 Loss or decreased OprD production, inactivation of OprD
     oprD OprD OMP analysis, real- Pirnary et al., 2002;
    time RT-PCR,   Horii et al., 2003;
    RNA-based techniques,  Muramatsu et al., 2003;
    nucleotide sequencing Dumas et al., 2006;
     Quale et al., 2006
Fluoroquinolone
 Alteration of in DNA gyrase and topoisomerase IV
  gyrA, gyrB, parC GyrA, GyrB, ParC Nucleotide sequencing Akasaka et al., 2001;
     Le Thomas et al., 2001;
     Muramatsu et al., 2005
Aminoglycoside
 Enzymatic modification of aminoglycoside
  aac(6’)-I, aac(6’)-II, AAC(6’)-I, AAC(6’)-II, PCR, cloning, DNA probes, Shaw et al., 1991;
  aac(3)-I, aac(3)-II, AAC(3)-I, AAC(3)-II, nucleotide sequencing Vliegenthart et al., 1991;
  aph(3’)-II, ant(2’)-I APH(3’)-II, ANT(2’)-I  Mendes et al., 2004

 Production of 16S rRNA methylase
  rmtA RmtA PCR Yokoyama et al., 2003

Multidrug
 Up-regulation of efflux systems 
  mexA, mexB, oprM MexA-MexB-OprM Real-time PCR, nucleotide  Mortimer and Piddock, 1991;
  mexC, mexD, oprJ MexC-MexD-OprJ sequencing, RNA-based  Quale et al., 2006
  mexX, mexY, oprM MexX-MexY-OprM techniques, biological assay      

OMP, outer membrane protein; RT, reverse transcription. 
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PCR, DNA probes and/or nucleotide sequenc-
ing (Shaw et al., 1991; Vliegenthart et al., 1991; 
Mendes et al., 2004).

Nosocomial infections caused by 
antimicrobial-resistant P. aeruginosa

Antimicrobial-resistant P. aeruginosa are a major 
cause of nosocomial infections (Table 2).  Noso-
comial transmission of antimicrobial-resistant P. 
aeruginosa has been associated with endoscopes, 
tap water and other environmental surfaces 
(Muscarella, 2004).  Contaminated environmental 
surfaces in the hospital settings can lead to noso-
comial transmission via contact with contaminated 
hands (or gloves) of the healthcare staff, patients 
themselves or visitors.  Of particular concern is 
the increasing isolation of P. aeruginosa from 
intensive and high care units (Trautmann et al., 
2005).  The risk factors for nosocomial infections 
in critically ill patients include length-of-stay and 
extent of exposure to invasive devices such as 
mechanical ventilators, urinary bladder catheters 
and intravenous and intraarterial catheters, as well 
as inadequate use of antimicrobials (Trilla, 1994; 
Obritsch, 2005).
 

Antimicrobial therapy against infections 
caused by P. aeruginosa

The prevalence of antimicrobial resistance in P. 
aeruginosa leads to limitation in efficacious an-
timicrobial therapies.  Acquired resistance that 
develops during the course of treatment, especially 
with carbapenems and fluoroquinolones, is an-
other serious problem (Fish et al., 1995; Hancock, 
1998; Carmeli et al., 1999; Amari et al., 2001; Le 
Thomas et al., 2001; Harris et al., 2002).  There-
fore, in vitro susceptibility data are essential in the 
choice of antimicrobials: the alternatives include 
antipseudomonal penicillins (piperacillin and tazo-
bactam/piperacillin), antipseudomonal cephalo-
sporins (cefoperazone, ceftazidime and cefepime), 
aztreonam, carbapenems, aminoglycosides (to-
bramycin and amikacin) and fluoroquinolones.  
In some types of infections such as endocarditis, 

nosocomial pneumonia and bacteraemia, combina-
tion therapy with an antipseudomonal penicillin, an 
antipseudomonal cephalosporin or aztreonam plus 
an aminoglycoside is administered.  The question 
of whether combination therapy prevents the emer-
gence of resistance remains highly controversial 
(Paul et al., 2004; Paterson, 2006).
 Carbapenems are widely used in the treat-
ment of P. aeruginosa infections, and a strong 
association between use and resistance has been 
documented for these antimicrobials (Rossolini 
and Mantengoli, 2005).  In some cases, prior use 
of a particular antimicrobial predicts development 
of resistance in P. aeruginosa (El Amari et al., 
2001).  Resistance emerges during antimicrobial 
therapy in as many as 50% of patients treated for a 
serious P. aeruginosa infection with imipenem.  In 
this context, resistance is most likely attributable to 
mutational loss of OprD (Livermore, 2002).  Cases 
of clonal shifts in carbapenem resistance resulting 
in loss or decreased production of OprD during 
antimicrobial therapies have been reported (Horii 
et al., 2003).  In addition, it was reported that 
emergence of resistance to both fluoroquinolones 
and -lactams such as cefsulodin and aztreonam 
during monotherapy with ciprofloxacin was caused 
by amino acid mutations of QRDRs in GyrB plus 
overexpression of the active efflux system, MexA-
MexB-OprM, and required combination therapy 
with ceftazidime and amikacin (Le Thomas et al., 
2001).  Accordingly, it is critical to monitor anti-
microbial susceptibility, especially to carbapenems 
and fluoroquinolones, during antimicrobial therapy 
against a P. aeruginosa infection.

Table 2.  Recent cases of nosocomial trans-
mission of antimicrobial-resistant Pseudomo-
nas aeruginosa in Japan

Case      Year       Number of            Environmental 
                               patients*          source of bacteria

  1† 2000–2001 18 (1) Urinary catheter
  2 2001–2002 30  Urinary catheter
  3† 2004   9 (3) Transesophageal endoscope
  4† 2004 11 (2) Endoscope
  5† 2005   6 (5) Cup for urine examination

*Number of deceased patients is shown in the parenthesis.
†Case was reported from a university hospital.
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 Multidrug-resistant P. aeruginosa (MDRP) 
in Japan is defined as a strain showing MICs of 
≥ 16 mg/L for imipenem, ≥ 4 mg/L for ciprofloxa-
cin and ≥ 32 mg/L for amikacin.  Risk factors for 
MDRP infection include prolonged hospitaliza-
tion, protracted and broad-spectrum antimicro-
bial therapy and an immunocompromised state 
(Obritsch et al, 2005).  The frequency of MDRP 
infections in Japan is reported in the Infectious 
Diseases Weekly Report (IDWR, see http://idsc.
nih.go.jp/kanja/idwr/idwr-j.htm) and varies be-
tween hospitals.  The intrinsic susceptibility of P. 
aeruginosa is already limited to only several anti-
microbials, and the emergence of multidrug resis-
tance compromised most antipseudomonal thera-
pies except colistin and synergistic combinations 
of antimicrobials (Obritsch et al., 2005).  Colistin 
is a multicomponent polypeptide antimicrobial, 
comprised mainly of colistin A and B.  Colistin 
became available for clinical use in the 1960s, 
but is not currently available in Japan.  There are 
no recommended breakpoints for susceptibility 
testing of colistin for P. aeruginosa.  Strategies 
against MDRP infections include combination 
therapy with cefepime plus amikacin, continuous-
infusion meropenem (not applicable in Japan) and 
parenteral colistin therapy (Obritsch et al., 2005).  
Concomitantly, strict compliance with recom-
mended infection control practices and isolation 
procedures is required to prevent the spread of 
MDRP clones within the hospital settings.

Strategies for controlling infections 
caused by antimicrobial-resistant 

P. aeruginosa

In 2001, the World Health Organization (WHO) 
document, “WHO global strategy for containment 
of antimicrobial resistance”, provided a framework 
of interventions to slow the emergence and reduce 
the spread of antimicrobial-resistant microorgan-
isms by reducing the disease burden and spread of 
infection, improving access to appropriate antimi-
crobials, improving use of antimicrobials, strength-
ening health care systems and their surveillance 
capabilities, enforcing regulations and legislation 
and encouraging the development of appropriate 

new drugs and vaccines (http://www.who.int/csr/
resources/publications/drugresist/WHO_CDS_CS
R_DRS_2001_2_EN/en/). 
 In hospital settings, strategies for control of P. 
aeruginosa infections include early detection of P. 
aeruginosa as the causative pathogen, determina-
tion of its antimicrobial susceptibilities, effective 
therapy against the infection with adequate use of 
antimicrobials and strict infection control practic-
es.  Once antimicrobial therapy has been initiated 
against a P. aeruginosa infection, its susceptibil-
ity to antimicrobials, especially to carbapenems 
and fluoroquinolones, should be monitored dur-
ing antimicrobial therapy to detect clonal shifts in 
resistance and microbial substitutions as early as 
possible.  Continued surveillance of nosocomial in-
fections and monitoring of antimicrobial resistance 
by the infection control staff will help prevent 
nosocomial infections and antimicrobial resistance.
   In the future, the development of methods for 
the rapid detection of antimicrobial resistance, es-
pecially to carbapenem and fluoroquinolone, will 
lead to early detection of clonal shifts in resistance 
during antimicrobial therapy and identification 
of resistance alleles associated with nosocomial 
dissemination of antimicrobial-resistant P. aerugi-
nosa.  The spread of MDRP represents an increas-
ing threat and efforts should be made to develop 
new agents and vaccines against P. aeruginosa 
infections in the laboratories and pharmaceuti-
cals, while preserving the efficacy of the currently 
available antimicrobials for as long as possible in 
the hospital settings.
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