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Abstract

The influence of dose rate on feldspar thermoluminescence shape is considered for a variety of

natural dose rates. The geologic dose rate experienced by bedrock samples is observed to control

the position of the low-temperature edge of the bulk TL signal (the T1/2 parameter), with higher

dose rates producing natural TL signals that begin to emit at lower measurement temperatures.

This behavior can be explained in terms of the natural equilibrium between electron trapping and

detrapping rates, as the trapping rate depends directly on the dose rate. The role of anomalous

fading is more subtle. While a wide range of T1/2 values is found at low fading rates, only high

T1/2 values are found when the fading rate is greater. This suggests that high fading rates may

also influence the natural T1/2 value by making low-temperature regions of the TL curve unstable.

Our results illustrate the need to consider dose-rate and fading-rate variations between bedrock

samples before interpreting the minimum stability of each natural TL signal, a consequential result

for future low-temperature thermochronology applications.

Keywords: geologic dose rate, feldspar thermoluminescence, low-temperature thermochronology,

anomalous fading

1. Introduction1

Whether a set of traps accumulate or lose electrons through time depends on the balance between2

the rate of free electrons produced by ionizing radiation, i.e., the dose rate, Ḋ, and the average3

probability per unit time of detrapping, p, which is the inverse of the trap lifetime, τ . This has4

an interesting consequence. Imagine that all traps in a crystal were emptied and then subjected to5

geologic burial. After some time there would exist some trap types that were in ‘field saturation’ or6
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steady state, meaning that the rate of trapping at geologic conditions is the same as the loss rate7

(Huntley and Lian, 2006; Kars et al., 2008). Other traps will still be experiencing net accumulation.8

If this crystal were analyzed and the equivalent doses (De) were determined for all trap types, the9

De values for accumulating traps would indicate the time since traps were empty and the De values10

for the static traps would represent the average trap lifetime, as illustrated by the following equation11

(Grün et al., 1999):12

De = Ḋ · τ

[

1− exp(−t/τ)

]

(1)13

14

This principle is the basis for ‘age-plateau’ analysis commonly used in TL dating (e.g., p. 64,15

Fleming, 1979).16

According to Eq. 1, the magnitude of the dose rate and the rate of detrapping (a function of17

ambient temperature) control the degree to which sites will be filled (Christodoulides et al., 1971;18

Ypma and Hochman, 1991). The degree of site saturation, usually expressed as n/N , is the target19

measurement in most luminescence thermochronology research (for a recent review, see King et al.,20

2016a), but most of the experimental research to date has considered variations in laboratory or21

natural thermal conditions while variations in dose rates have been restricted to a narrow range22

(e.g., factor 1.6 difference in beta dose rates and the resulting infrared stimulated luminescence23

signal; Guralnik et al., 2015).24

The aim of this study is to measure how TL signals from bedrock feldspars vary following a wide25

range of natural dose rates. As feldspars extracted from bedrock samples have been explored for26

use in low-temperature thermochronometry (Brown et al., 2017; Tang and Li, 2017; Biswas et al.,27

2018), we examine how surficial bedrock samples from the same glacial valley yield natural TL28

signals which vary in shape as a linear function of geologic dose rate. By comparison, measured29

fading values do not correlate strongly with the position of the leading edge of emissions. Our30

results are discussed in light of future thermochronology efforts involving samples with different31

geologic dose rates.32

2. How geologic dose rate relates to the natural TL shape33

To understand how the dose rate Ḋ is expected to affect electron trap site stability, we consider34

the electron trapping rate equation from Brown et al. (2017):35

dn(r′)

dt
=

Ḋ

D0

(

N(r′)− n(r′)

)

− n(r′) exp

(

−∆E/kBT

)

P (r′)s

P (r′) + s
(2)36

37
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where n(r′) andN(r′) are the concentrations (m−3) of occupied and total traps, respectively, at some38

recombination distance r′; D0 is the characteristic dose of saturation (Gy); ∆E is the activation39

energy (eV) required for thermally-activated tunneling; T is the sample temperature (K); kB is40

the Boltzmann constant; P (r′) is the tunneling probability at some distance r′ (s−1); and s is41

the frequency factor (s−1). We can see that the distance r′ between the electron trap and the42

nearest recombination center influences site stability; nearer sites are more likely to recombine43

and will therefore have a shorter mean lifetime (Huntley, 2006). This effect is enhanced at higher44

temperatures as more electrons are excited to higher-energy states where tunneling becomes more45

probable (Jain et al., 2012, 2015). This temperature dependence is the underlying principle for46

feldspar TL thermochronology (Pagonis and Brown, 2019).47

Assuming that all of the blue emissions from feldspar natural TL between measurement tem-48

peratures of about 130 - 330 ◦C are from the same defect (Krbetschek et al., 1997) – below the49

∼ 410 ◦C TL peak identified by Murray et al. (2009) as the main dosimetric trap for the IRSL signal50

– and assuming that the only difference between the TL measured in that temperature range is the51

stability of those detrapping sites, we can approximately describe the thermal stability of the bulk52

TL emissions by the position of the T1/2 metric (Fig. 1). Because the TL measurement temperature53

at which emissions become significant is a function of the occupied sites of minimum stability, and54

because the T1/2 value is a convenient and (usually) unambiguous measurement, we treat measured55

T1/2 values as representing the characteristic (minimum) thermal stability of the feldspar bulk TL56

signal (Spencer and Sanderson, 1994, 2012; Chen and Pagonis, 2011, Ch. 5).57

In the case of widely varying steady-state temperatures, T1/2 values are shown to largely be a58

function of long-term rock temperature (Brown et al., 2017). If, however, several bedrock samples59

have been held at a similar temperature, their natural T1/2 values may reflect higher-order influences60

like dose-rate variations or differences in fading rates.61

The bedrock samples collected from Rock Creek glacial valley lend themselves to this analysis.62

Collected from within a single valley and all from near the ground surface, these samples experi-63

enced similar mean annual air temperature since their exposure: instrumental temperature records64

combined with the dry adiabatic lapse rate should result in mean annual temperatures ranging from65

about -7.0 to 1.0 ◦C between the highest- and lowest-elevation samples considered in this section.66

The valley-bottom temperature is based on the mean annual temperatures recorded between 189267

and 2012 in the nearby town of Red Lodge, MT (elevation 1697 masl), which are freely available68

from the Western Regional Climate Center website: www.wrcc.dri.edu. Furthermore, the geologic69
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dose rates for these samples vary by a factor of 9.7 (Table 1), an unusually high difference.70

While the focus of this study is the dose-rate dependence of natural T1/2 values, we also consider71

whether a sample’s fading rate is a good predictor of T1/2. As will be shown with fading measure-72

ments in Section 5.2, though fading is not strongly correlated to T1/2, it may still limit the stability73

of the bulk TL signal in feldspars.74

3. Sample collection, preparation, and measurement details75

The feldspar samples measured in this study were taken from the tectonically uplifted crustal76

block known as the Beartooth uplift, located near the town of Red Lodge, Montana, USA. This77

uplifted region is a 60 × 125 km block of Precambrian crystalline basement which was initially78

exhumed during the Laramide orogeny, a period of mountain building in the western USA between79

∼80 to 35 Mya (Wise, 2000). Apatite fission-track results from a 2.5-km-deep exploratory well80

indicate a two-stage uplift history, with the first stage beginning around 61 Ma and resulting in 4 -81

8 km of uplift, and the second stage beginning between 15 and 5 Ma and producing about 4 km of82

uplift, which continues to the present (i.e., 0.3 - 0.8 mm/yr) (Omar et al., 1994).83

Bedrock samples were detached by sledge hammer and chisel from rock outcrops that seemed84

to be in place (i.e., not ‘float’). The latitude, longitude, and elevations of sample collection loca-85

tions were measured with a handheld GPS system. After sample collection, the bedrock samples86

were spray-painted with a contrasting color and then broken into smaller pieces under dim amber87

LED lighting in the laboratory. The sunlight-exposed, outer-surface portions of the samples were88

separated from the inner portions.89

The unexposed inner portions from the samples were then crushed by hand using a pestle and90

mortar and sieved to isolate the 175 - 400 µm size fraction. These separates were then treated with91

3% hydrochloric acid and separated by density using lithium metatungstate heavy liquid (ρ < 2.56592

g/cm3; Rhodes 2015) in order to isolate the most potassic feldspar grains. Grains were mounted93

on stainless steel discs in a small-diameter (3 - 5 mm) monolayer using silicon oil. No hydrofluoric94

acid was used to etch these crystals.95

All luminescence measurements were performed at the UCLA luminescence laboratory using a96

TL-DA-20 Risø automated reader equipped with a 90Sr/90Y beta source which delivers 0.1 Gy/s at97

the sample location (Bøtter-Jensen et al., 2003). Emissions were detected through a Schott BG3-98

BG39 filter combination (transmitting between ∼325 - 475 nm), thermoluminescence measurements99

were performed in a nitrogen atmosphere and glow curves were measured at a heating rate of 5 ◦C/s.100
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Table 1: Dosimetry information. See Section 4 for details.

Sample Lat.

(◦N)

Long.

(◦W)

Elev.

(masl)

K

(wt.%)

Th

(ppm)

U

(ppm)

Grain size

(µm)

Internal K

(wt.%)

Total dose rate

(Gy/ka)

J0994 45.038 109.408 2940 7.0 4.5 0.57 237 ± 141 13.8 ± 0.13a 8.78 ± 0.72

J0995 45.038 109.409 2895 0.7 11.8 0.76 225 ± 137 0.04 ± 0.02 2.36 ± 0.14

J0996 45.041 109.409 2781 2.3 2.2 1.34 39 ± 20 12.5 ± 0.5b 3.85 ± 0.17

J0997 45.042 109.409 2735 2.2 2.4 1.53 41 ± 22 12.5 ± 0.5b 3.84 ± 0.17

J1000 45.044 109.414 2518 1.5 13.2 0.70 275 ± 178 12.5 ± 0.5b 4.16 ± 0.69

J1001 45.048 109.417 2315 2.1 2.3 0.69 231 ± 139 13.9 ± 0.06 3.79 ± 0.60

J1002 45.050 109.423 2241 2.4 18.7 2.54 261 ± 156 13.8 ± 0.13a 5.98 ± 0.69

J1003 45.038 109.440 2856 0.6 1.0 0.32 277 ± 164 13.8 ± 0.13a 2.34 ± 0.69

J1004 45.043 109.439 2691 0.2 2.3 0.25 287 ± 166 0.04 ± 0.02c 0.90 ± 0.05

J1006 45.050 109.432 2449 2.2 1.5 1.63 41 ± 21 12.5 ± 0.5b 3.75 ± 0.17

J1007 45.003 109.517 2636 3.6 26.9 3.40 254 ± 140 13.8 ± 0.13a 8.03 ± 0.67

J1010 45.076 109.381 2131 2.4 9.4 1.27 281 ± 176 13.8 ± 0.13a 4.95 ± 0.76

aAverage value of separated material from granitic samples J0999 and J1001.

bHuntley and Baril (1997).

cMeasured value from J0995, a tonalite like J1004.

The thermal background was measured and then subtracted from each glow curve.101

4. Geologic dose rate determination102

The outer portions of each bedrock sample were analyzed by inductively-coupled plasma mass103

spectrometry (ICP-MS) to estimate the U and Th contents, and with inductively-coupled optical104

emission spectrometry (ICP-OES) to measure the K content. The alpha and beta dose-rates were105

calculated using the conversion factors of Liritzis et al. (2013), the alpha and beta attenuation factors106

of Brennan et al. (1991) and Guérin et al. (2012), respectively, and an a-value of 0.15 ± 0.05, as107

recommended for coarse-grained K-feldspars (Balescu and Lamothe, 1994). Beta attenuation is108

calculated assuming a water content of 1 ± 1%. The original feldspar grain sizes were estimated109

following the approach of King et al. (2016b), who processed images of petrographic thin sections110

using the grain size analysis software of Buscombe (2013) (see the Supplementary Materials for the111
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detailed results).112

The internal potassium values were estimated as follows. Three samples from this site were113

analyzed with electron microprobe analysis in a previous study (Brown and Rhodes, 2017): J0995,114

J0999, and J1001. Because J0999 and J1001 are granitic gneisses, the other granitic gneiss samples115

(J0994, J1002, J1007 and J1010) and granitoid gneiss (J1003) were given the mean value of the two116

samples: 13.8 ± 0.13 wt.%. Sample J1004 shares the value of J0995 (0.04 ± 0.02 wt.%) because117

both are tonalitic gneisses. The remaining samples, three dacite porphyries (J0996, J0997, and118

J1006) and one granodiorite gneiss (J1000) were assigned the conservative value from Huntley and119

Baril (1997) of 12.5 ± 0.5 wt.%.120

Cosmic dose rates were estimated using the geomagnetic latitude along with a shielding depth.121

A shielding depth of 5 ± 5 cm was used, as this represents the typical radius of collected specimens122

(a shielding density of 2.65 g/cm3 was used). The geologic dose rate was calculated using the DRAC123

software package, v1.2 (Durcan et al., 2015), and the resulting values are listed in Table 1.124

5. Results125

5.1. Relationship between T1/2 and geologic dose rate126

The natural T1/2 values measured at a heating rate of 5 ◦C/s are plotted as a function of geologic127

dose rate (Ḋ) in Fig. 2. The sizes of the error bars are determined by the between-aliquot variation,128

as TL curves were measured from three discs for most samples (only two discs were measured for129

samples J1007 and J1010). Samples J0999, J1008, and J1009 were excluded from this analysis, as the130

location of T1/2 was ambiguous (see Supplementary Materials). A linear relationship is found, and131

as expected, as Ḋ increases the natural TL curves exhibit lower T1/2 values. The interpretation is132

that these less stable sites (lower T1/2 values) remain occupied because there are more free electrons133

roaming the lattice at any given moment due to the greater flux of ionizing radiation.134

The best-fit line for the dependence of T1/2 on Ḋ is given as135

T1/2 = (−2.38± 0.50)Ḋ + (242.3± 2.6). (3)136

137

This regression was performed using the updated York fitting, appropriate for data with multivariate138

errors (Mahon, 1996), and the mean square weighted deviate (MSWD) value of 0.90 suggests a robust139

linear relationship. The slope of this line, -2.38 ± 0.50 ◦C Gy−1 ka−2 is particularly noteworthy,140

suggesting the magnitude of this dose-rate dependence. As a side note, the range in dose rates141

observed for these samples is probably close to the natural variation expected for bedrock feldspars,142
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Table 2: Sample characteristics.

Sample Lithology ρ′ × 104 T1/2 (◦C) Dose rate (Gy/ka)

J0994 Granitic gneiss 10.9 ± 4.9 227.7 ± 6.4 8.78 ± 0.72

J0995 Tonalitic gneiss 7.3 ± 4.8 241.2 ± 11.8 2.36 ± 0.14

J0996 Dacite porphyry 1.8 ± 0.7 231.7 ± 2.2 3.84 ± 0.19

J0997 Dacite porphyry 2.7 ± 1.9 236.4 ± 4.5 3.83 ± 0.21

J1000 Granodiorite gneiss 2.7a 235.5 ± 4.5 4.16 ± 0.69

J1001 Granitic gneiss 2.1a 223.2 ± 6.9 3.79 ± 0.60

J1002 Granitic gneiss 3.3a 232.2 ± 5.2 5.98 ± 0.69

J1003 Granitoid gneiss 22.5 ± 11.8 239.0 ± 5.8 2.34 ± 0.69

J1004 Tonalitic gneiss 31.7 ± 16.5 236.6 ± 3.5 0.90 ± 0.05

J1006 Dacite porphyry 4.5a 238.5 ± 6.0 3.73 ± 0.20

J1007 Granitic gneiss 3.9 ± 1.5 220.3 ± 2.2 8.03 ± 0.67

J1010 Granitic gneiss 2.0 ± 0.7 233.1 ± 1.9 4.95 ± 0.76

aOne of two discs omitted.

so this plot may prove useful in quantifying the maximum dependence of T1/2 on dose rate for a143

suite of samples.144

5.2. Relationship between T1/2 and room-temperature fading145

So far, we have considered the variation in geologic dose rate and how the resulting change in146

the trap filling rate controls the minimum stability (i.e., T1/2 position) of the bulk TL signal. In this147

section, we will consider a competing effect: the degree to which trap emptying by room-temperature148

fading may control the T1/2 position.149

To quantify this effect, samples were given a beta dose of 5.1 Gy and then kept a room tempera-150

ture for a period of time before measurement. Two aliquots per sample were each measured following151

nine pauses of different lengths. The shortest pause for every sample was 54 s and the longest pause152

ranged from 15.5 to 19.8 d. These delayed TL measurements, as well as their respective T1/2 values153

plotted as a function of delay time, are provided in the Supplementary Materials.154

Generally, samples exhibit a logarithmic increase in T1/2 as a function of delay time, though some155

samples exhibited more complicated behavior (see Supplementary Materials for the entire dataset).156

Fig. 3 illustrates the behavior exhibited by samples J0995, J1003, and J1004. Notice the kink in157
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the plot of T1/2 versus effective fading time for sample J1003 (inset of Fig. 3a) as contrasted with158

sample J1007, which shows logarithmic growth in T1/2 over the entire range of fading times. This159

difference in behavior seems to stem from the prominent peak centered at about 103 ◦C (Fig. 3a).160

This peak decays at room temperature with a half-life of about 1.7 hrs. The position and lifetime of161

this peak are similar to the 110◦C TL peak in quartz (Schmidt et al., 2018) and may indicate some162

contamination of the signal by quartz. After this peak decays by about two half-lives, or about163

1.2 × 104 s, the T1/2 of this sample increases logarithmically with time at a similar rate to J1007164

(Fig. 3b).165

Samples J0994, J0996, J0997, and J1000 showed a logarithmic increase in T1/2, but at delay166

times greater than ∼ 105 s, T1/2 values were offset to lower temperatures, despite a similar rate of167

growth (see Supplementary Materials). This behavior is related to a loss of TL centered at ∼ 180 ◦C168

and extending up to ∼ 300 ◦C, though the reason for this loss is unclear. Because of the irregular169

behavior at shorter durations and because all samples exhibited logarithmic increases in T1/2 with170

delay times >∼ 105 s, we consider only those longest three delay points for each aliquot in the171

following analysis.172

The T1/2 fading data were used to constrain the ρ′ values of these samples (Huntley, 2006),173

assuming that tunneling proceeds via the excited state (Jain et al., 2012, 2015). Note that for a174

given fading dataset, this assumption will produce higher best-fit ρ′ values than if ground-state175

tunneling were assumed (cf. Biswas et al., 2018). Best-fit ρ′ values were determined by simulating176

irradiation and fading at room temperature (T = 18◦C) with Eq. 2. The n(r′) array for each177

sample allowed to evolve through time with an ordinary differential equation solver in MATLAB;178

see Brown et al. (2017) for more details on this approach. We used the following parameter values:179

the attempt-to-tunnel frequency factor P0 = 4.6 × 1014 s−1 (p. 168; Brown, 2017); the attempt-180

to-escape frequency factor s = 4.2 × 1012 s−1 (the Debye frequency of K-feldspar; Anderson and181

Liebermann, 1966; Anderson, 1995); and the characteristic dose D0 = 1.6 kGy (Brown et al., 2017).182

Three variables were solved for by minimizing the misfit between observed and simulated T1/2183

values: the thermal depth of the excited state Ee was allowed to vary between 0.75 and 1.20 eV;184

the ground state depth Eg could vary betweeen 1.70 and 2.15 eV, and ρ could vary between 5×1025185

and 5 × 1027 m−3, which translates to a ρ′ value of 4.2 × 10−2 and 2.1 × 10−4 for Ee = 1.1 eV.186

Following optimization to find the best-fit ρ′ value for each sample (Table 2), the simulated T1/2187

values closely match observations of room temperature fading on timescales of days to weeks, with188

an average coefficient of determination of R2 = 0.90 ± 0.12 (see Supplementary Materials for all189
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results).190

This approach also reproduces the form of fading within individual glow curve temperature191

ranges, as shown in Fig. 4. The observations in Fig. 4b come from sample J0165, a bedrock-192

extracted K-feldspar sample examined in detail within Brown and Rhodes (2017). The model193

parameters in panel b represent typical values for our samples. This figure illustrates how Eq. 2194

generally replicates the decay form of regenerative TL curves during room temperature storage.195

At lower glow curve temperatures, the decay is not logarithmic but has a decreasing slope when196

plotted on a semi-log plot. Moving to higher glow curve temperatures, the curves resemble inverted197

sigmoids and eventually flat lines (i.e., no decay). Notice that at some bins, these data could be198

approximately fitted to distinct g-values, but we favor our approach of fitting the fading TL curves199

to a single ρ′ value as being more parsimonious and physically meaningful (Kars et al., 2008). This200

can be contrasted with the approach of Biswas et al. (2018), who divided their feldspar TL glow201

curves into discrete temperature bin ranges and independently fitted data within each range to the202

kinetic expression of Guralnik et al. (2015). The approach of Biswas et al. (2018) implies that the203

feldspar TL curve represents not a continuum of stability arising from different tunneling distances204

(as we assume here), but instead a series of unrelated traps, each governed by individual kinetic205

parameters (see also Sanderson, 1988; Pagonis et al., 2014).206

The motivating question for this section is the degree to which fading rates control T1/2 values.207

To address this question, we plot the T1/2 and ρ′ values for every aliquot in Fig. 5. We make two208

observations about these results. The first is the lack of correlation between the variables. For209

comparison with Fig. 2, we perform a linear regression. The MSWD value for this regression, 3.47,210

is well outside the 95% confidence interval range: 0.457−1.750 (Mahon, 1996), which implies a bad211

fit. The second observation is that the variance of the T1/2 values decreases with higher ρ′ values,212

such that at high ρ′ values only high values of T1/2 exist. One possible interpretation is that at213

higher ρ′ values, room-temperature fading may place a limit on the stability of the natural TL curve.214

In other words, while much of the variation found at lower ρ′ values may be explained by other215

factors (e.g., geologic temperature or dose rate), at higher ρ′ values the fading rate may prevent216

lower temperature regions of the TL curve from populating. This unstable region is illustrated in217

blue in Fig. 5.218

6. Conclusions219

Brown et al. (2017) recently showed that feldspar samples with similar geologic dose rates and220
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very different burial temperatures (−4 − 60◦C) exhibit a linear relationship between the position221

of the TL leading edge, T1/2, and geologic temperature. In the present study, we have presented222

feldspars from a glacial valley that have been at atmospheric temperatures for at least several223

thousand years, but that exhibit a wide range of geologic dose rates, from 0.9 to 8.8 Gy/ka. These224

samples show a linear relationship between Ḋ and T1/2. The slope of the best-fit line, -2.38 ± 0.50225

◦C Gy−1 ka−2, provides a first approximation at the magnitude of this effect, which should prove226

to be a useful correction when differentiating between thermal and non-thermal controls on natural227

TL shapes. The poor fit between ρ′ and T1/2 indicates that for these samples, the primary control228

on the minimum stability of TL is not fading. However, the lack of low T1/2 values for samples with229

high ρ′ values (i.e., the lack of natural TL populations at low-temperatures when fading is high)230

may indicate that fading can, nonetheless, prevent sites from accumulating in nature Valla et al.231

(2016), to the extent that the T1/2 is affected. All of these effects are consistent with the kinetic232

model referenced at the beginning of this paper, where tunneling to the nearest neighbor is the233

primary loss pathway for trapped charge.234

For future work in feldspar TL thermochronology, we recommend one of two approaches when235

collecting samples and interpreting results. By choosing a site with uniform lithology, and pre-236

sumably similar fading rates and environmental dose rates, these effects might be minimized. Al-237

ternately, if differences in dose rate between samples are significant or if samples experience high238

fading rates, the position of the leading edge of emissions (T1/2) may require correction (e.g., using239

the slope of the best-fit line to normalize T1/2 values). In the case of high dose rates, T1/2 values240

might be lower than for samples at the same temperature but with lower dose rates. In the case of241

high fading rates, the T1/2 values might be higher than expected due to fading-induced instability242

in the low-temperature regions of the glow curve.243
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surement temperatures at half-maximum intensity) shown in red. Those least stable344

traps would have some mean lifetime τ . In green are curves with lesser minimum345
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2 The T1/2 values from natural TL curves (β = 5 ◦C/s) show a linear dependence upon347

the geologic dose rate as predicted by theory: at higher dose rates, the T1/2 value for348

the leading edge of TL emissions shifts to lower temperatures. The interpretation is349

that traps of lower stability can remain occupied due to the high dose rate. . . . . . 17350

3 The TL responses after room temperature fading are shown for samples J1003 (a)351
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lation with ρ′ values derived from room-temperature fading measurements. However,359

note that while a wide range of T1/2 values are observed at lower ρ′ values, at higher360

ρ′ values (i.e., higher fading rates) natural T1/2 values are higher. This is suggested361

by the blue region which may represent an unstable region wherein fading is too great362
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Figure 1: Thermoluminescence curves that would result following preheats of increasing temperature or
duration are shown. The stability of the least stable occupied traps giving rise to the blue curve can be
described with the T1/2 metric (lower of the two measurement temperatures at half-maximum intensity)
shown in red. Those least stable traps would have some mean lifetime τ . In green are curves with lesser
minimum lifetimes and in pink are curves with greater minimum lifetimes.
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Figure 2: The T1/2 values from natural TL curves (β = 5 ◦C/s) show a linear dependence upon the geologic
dose rate as predicted by theory: at higher dose rates, the T1/2 value for the leading edge of TL emissions
shifts to lower temperatures. The interpretation is that traps of lower stability can remain occupied due to
the high dose rate.
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Figure 3: The TL responses after room temperature fading are shown for samples J1003 (a) and J1007 (b).
The T1/2 values of these curves are plotted as a function of effective fading time within the insets. Notice
how the peak centered at 103 ◦C complicates the behavior of sample J1003.
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Figure 4: Comparison of simulated (a) and measured (b) TL decay as a function of storage time at room
temperature. Different curves represent different glow curve temperatures. The same delay times and glow
curve temperatures are shown in each panel.
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Figure 5: The T1/2 values from natural TL curves (β = 5 ◦C/s) do not show a significant correlation with ρ′

values derived from room-temperature fading measurements. However, note that while a wide range of T1/2

values are observed at lower ρ′ values, at higher ρ′ values (i.e., higher fading rates) natural T1/2 values are
higher. This is suggested by the blue region which may represent an unstable region wherein fading is too
great for charge to accumulate at lower regions of the TL glow curve.
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