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Abstract. Calibration of computer models for structural dynamics is often an important task
in creating valid predictions that match observational data. However, calibration alone will
lead to biased estimates of system parameters when a mechanism for model discrepancy is
not included. The definition of model discrepancy is the mismatch between observational data
and the model when the ‘true’ parameters are known. This will occur due to the absence
and/or simplification of certain physics in the computer model. Bayesian History Matching
(BHM) is a ‘likelihood-free’ method for obtaining calibrated outputs whilst accounting for model
discrepancies, typically via an additional variance term. The approach assesses the input space,
using an emulator of the complex computer model, and identifies parameter sets that could
have plausibly generated the target outputs. In this paper a more informative methodology is
outlined where the functional form of the model discrepancy is inferred, improving predictive
performance. The algorithm is applied to a case study for a representative five storey building
structure with the objective of calibrating outputs of a finite element (FE) model. The results
are discussed with appropriate validation metrics that consider the complete distribution.

1. Introduction

Bayesian History Matching (BHM) is a ‘likelihood-free’ method for calibrating computer
models (here defined as simulators) under the assumption of model discrepancy, i.e. given
the simulator was evaluated with the ‘true’ parameter set there would still be a difference
between these predictions and observed data. This is important as without considering this
source of uncertainty parameter inferences and output predictions will be biased. The approach
is ‘likelihood-free’ meaning that input and output combinations can be removed and added
iteratively without invalidating the analysis. Furthermore, this means that the considered
parameter domain can be truncated based on physical understanding of the parameters, reducing
non-identifiability issues and non-physical inferences.

The technique, originally developed in the oil industry [1], has been applied to fields such
as Galaxy formation [2, 3], complex social models of HIV transfer in populations [4, 5] and
climate science [6, 7]. However, the approach has not been investigated for structural dynamics
problems to the authors’ knowledge. In addition, the methodology does not contain a mechanism
for inferring the functional model discrepancy form after calibration. Consequently, this paper
proposes an importance sampling based technique for inferring functional model discrepancies,
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modelled as Gaussian Processes (GP)s, when a posterior distribution for the parameters is
known. The approach is applied to a representative building structure whereby it is shown to
be effective in identifying model discrepancy.

2. Bayesian History Matching

BHM seeks to calibrate a statistical model of the form shown in Eq. (1).

zj(x) = ηj(x,θ) + δj + ej (1)

Where zj(x) is the jth observational output given inputs x, ηj(x,θ) is the jth simulator
given x and parameters θ. The model discrepancy and observational uncertainty are δj and ej
respectively. The model assumes that the simulator, discrepancy and observational uncertainty
are independent and does not seek to define the model discrepancy’s functional form.

In order to calibrate Eq. (1) the parameter space of the simulator is explored in iterations
called waves. During a wave simulator outputs are assessed for different parameter combinations
using an implausibility metric and discarded if above a threshold value T . Due to the
method requiring assessment of a large parameter space a computationally efficient emulator
is utilised reducing the computational burden of evaluating the simulator. Here a GP emulator
is implemented; a Bayesian, non-parametric, regression model. A key benefit of using a GP
emulator is that it will fit known simulator runs exactly whilst inferring code uncertainty when
the emulator predicts away from known simulator runs — in keeping with the brevity of this
paper the reader is referred to [8, 9] for more mathematical details on GPs. The GP emulator
is constructed as in Eq. (2).

ηj(x,θ) ∼ GPj

(

m(x,θ) , k((x,θ), (x′,θ′)
)

(2)

Where the emulator GP prior is defined by a mean m(x,θ) and covariance function
k((x,θ), (x′,θ′)) which have a set of hyperparameters φη. The predictive GP emulator mean
E (GPj (x ,θ)) and code uncertainty, Vc(x,θ) = V (GPj (x ,θ)) are then incorporated in an
implausibility metric. The formulation stated in Eq. (2) assumes univariate GP emulators for
each output, however multivariate GPs could be implemented [10]. The implausibility metric
assesses the distance between observations and simulator outputs, weighted by the process’s
uncertainties, defined in Eq. (3).

Ij(x,θ) =
|zj(x)− E (GPj (x ,θ))|

(Vo,j + Vm,j + Vc,j(x,θ))
1/2

(3)

Where, Vo, Vm and Vc(x,θ) are the variances associated with the observational, model
discrepancy and code uncertainties respectively. By including code uncertainty Vc(x,θ) into
Eq. (3) parameter space is retained until the emulator predictions are more certain for that
particular parameter region. The observational uncertainty Vo can often be estimated from
observational data, although expert judgement may also be used. Model discrepancy uncertainty
Vm can be more challenging to define, but should be elicited from expert judgement.

The implausibility metric presented in Eq. (3) provides a quantity for every parameter
combination, input and output, however a single value is required for each parameter
combination in order to decide whether it should be removed. Several extensions of the
implausibility metric that deal with multiple outputs and inputs can be considered such
as a maximum or multivariate implausibility metric [4]. Here a multivariate implausibility
metric for either the inputs or outputs, Eqs. (4) and (5) is utilised. This is equivalent to
taking the Mahalanobis distance, standard practice in outlier analysis [11], which assesses
the Euclidean distance of the principle components. The maximum can be taken over either
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Algorithm 1 Bayesian History Matching for Wave k

θk ∼ GMLHC ⊲ Draw parameters from GMLHC
yk = η(x,θk) ⊲ Run the simulator at parameters
Draw n samples θk

s ∼ U
(

min(θk),max(θk)
)

⊲ Sample parameter space
for j = 1 : no. of outputs do

Train and validate GPj

(

x ,θk
)

⊲ Train and validate emulators
[

E
(

GPj

(

x ,θk
s

))

, Vc,j(x,θ
k
s)
]

= GPj

(

x ,θk
s

)

⊲ Predictions at n samples of θk

Calculate Ij(x,θ
k
s) ⊲ Assess implausibility of samples

end for

Calcualate Imax(θ
k
s)

for m = 1 : n do

if Imax(θ
k
s,m) < T then

θk
nI = θk

s,m ⊲ Keep non-implausible samples
end if

end for

bounds = [min(θk
nI),max(θk

nI)] ⊲ Obtain new GMLHC bounds
if any (V k

c,j(x,θ) < (Vo,j + Vm,j)) or isempty(θk
nI) then

Stop ⊲ Stop if stopping criteria are met
end if

Eqs. (4) and (5) to collapse the metric to a single value for each parameter combination; where
Vj(x,θ) = Vo,j + Vm,j + Vc,j(x,θ).

Imulti(θ)j = (zj(x)− E (GPj (x ,θ)))T (Vj(x,θ))
−1 (zj(x)− E (GPj (x ,θ))) (4)

Imulti(x,θ) = (zj(x)− E (GPj (x∗ ,θ∗)))
T (Vj(x,θ))

−1 (zj(x)− E (GPj (x∗ ,θ∗))) (5)

The parameter space is excluded when the implausibility metric is above a threshold T , where
the rejection criteria for a particular parameter combination θ is defined in Eq. (6).

I(θ)

{

≤ T if θ ∈ θnI ,

> T if θ ∈ θI
(6)

The threshold value depends on the type of implausibility metric being considered. For
individual implausibilities Ij(x,θ) a sensible threshold T is Pukelsheim’s 3σ rule — stating that
any continuous unimodal distribution will contain at least 99.5% of probability mass within three
standard deviations away from the mean [12]. For multivariate implausibilities the threshold T
is set as a high percentile (i.e. α > 95%) from a chi-squared distribution with either j or the
input size x degrees of freedom, i.e. T = F−1

χ2 (α) — the output from a chi-squared quantile

function. This can be thought of as performing a frequentist hypothesis test on the parameter
combination, using a chi-squared (χ2) test.

The parameter space in each iteration is sampled in order to assess the rejection criteria. Here
samples are drawn from a uniform distribution bounded by the initial parameter domain. This
works effectively with a Latin Hypercube Design (LHD) based approach. In this scenario the
initial parameter space bounds are used, in conjunction with a simulator budget, to construct
a LHD — here a Generalised Maximum Latin Hypercube Design (GMLHD) is used [13].
An emulator is constructed from the simulator runs and its output assessed at parameter
combinations sampled from a uniform distribution. A set of these sample parameters are rejected
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(a) (b)

(c)

Figure 1. BHM waves k = 1, 2, 4 for the numerical example. Top panels show the observational
data with ±√

Vo + Vm shaded region against the simulator and emulator predictions, trained
using the simulator runs η(θk) (·). The bottom panels show the implausibility I(θk

s) against the
threshold T = 3, where green regions are non-implausible and red implausible. Panel (a), (b)
and (c) show waves k = 1, 2, 4 respectively.

based on the implausibility metric and criteria, with the bounds of the non-implausible region
determined. A new wave can then be run with a LHD constructed from these bounds.

Finally, a stopping criteria is constructed, based on two outcomes; all the space is deemed
implausible or the emulator variance in the non-implausible region is less than the remaining
uncertainties, i.e. Vc,j(x,θnI) < Vo,j + Vm,j , which indicates that the emulator is at least as
certain about its predictions as the modeller is with the uncertainties due to model discrepancy
and observation variability. The stated approach to BHM can be defined in Algorithm 1.

To illustrate BHM, Algorithm 1 is applied to a simple numerical example — see Fig. 1 (where
the sampling stage is replaced with a uniform grid). The examples shows that during each wave
new simulator evaluations are added, decreasing the code uncertainty of the emulator. This in
turn leads to increased parts of the parameter space begin discarded, until the implausibility
metric identifies two non-implausibility regions for this example, i.e. the areas where the
simulator crosses the observational uncertainty bounds.

2.1. Approximate Posterior Sampling

Approximate posterior samples can be obtained from the non-implausible space identified from
the final wave using an importance sampling approach. Importance sampling is a method for
obtaining unbiased estimates of expectation integrals, but can also be formulated to approximate
a posterior density p(θ | z) = p(z |θ)p(θ)/p(z) when the evidence p(z) cannot be calculated.
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The technique samples a set of independent draws from an unnormalised proposal distribution
θq ∼ q̃ (where q̃ is the unnormalised proposal) which are subsequently used to form a set
of unnormalised weights, shown in Eq. (7). The posterior distribution is then estimated by
normalising the weights as presented in Eq. (8).

w̃(θq) =
p(z |θq)p(θq)

q̃(θq)
(7)

p(θ | z) ≈ w̃(θq)
1
n

∑n
i=1 w̃(θq)

(8)

However, as BHM does not involve a likelihood, an approximation is formed as defined in
Eq. (9) — the product of multivariate Gaussian distributions over z(x) for the set of inputs
x. This assumes that the sources of uncertainty are approximately normally distributed. The
proposal distribution can be formulated as a multivariate Gaussian distribution as presented in
Eq. (10).

p(z |θ) ≈ L(θ) =
M
∏

j=1

N (z(x) |Ej (GP (x ,θ)), Vj(x,θ)) (9)

q̃(θ) = N (θ |µnI , κΣnI) (10)

Where µnI and ΣnI are the sample mean and variance-covariance from the non-implausible
set after the last wave, and κ is an inflation parameter to ensure good coverage of the space.
The choice of prior p(θ) depends on the modellers beliefs from the last wave. However it is often
reasonable to assume a constant prior over the final non-implausible set, as it is often a fraction
of the original parameter domain. This means the weights in Eq. (8) become w̃ = L(θq)/q̃(θq)
where θq are a number of samples from q̃, with the constant prior essentially truncating the
proposal samples to be within the final non-implausible domain.

Lastly the approximate posterior from Eq. (8) can be re-sampled in order generate direct
samples from the posterior. This involves drawing Nq samples where the probability of
occurrence is defined by the normalised weights w(θq) = w̃(θq)/

1
n

∑n
i=1 w̃(θq).

3. Model Discrepancy Inference via Importance Sampling

BHM provides a mechanism for calibrating additive model discrepancy and identifying the
approximate parameter posterior. The method does not provide a mechanism for inferring
the model discrepancy functional form and correcting output predictions. Here an importance
sampling methodology is proposed in order to infer model discrepancy uncertainty, assumed to
be distributed as a GP.

Once the approximate posterior distribution is inferred samples θ(i) ∼ p(θ |Z,xz) can
be propagated through the emulator such that samples of the calibrated simulator output

distribution are obtained p(y
(i)
∗,j |x∗,yj ,xz,θ

(i), φ̂η,j) — φ̂η,j are the jth emulator’s Maximum

Likelihood Estimate (MLE) estimate of the hyperparameters and Z is a matrix of the outputs
zj(x)|j=1:Nout

. Here it is assumed that all the emulators accurately capture the simulators

functional form meaning the hyperparameters φ̂η,j can be treated as fixed rather than being

marginalised; as already assumed within BHM. For this reason φ̂η,j are dropped from notation.
The desired calibrated and bias corrected distribution for the jth output is

p(z∗,j |x∗, Z,yj ,xz). To obtain samples from this distribution GP models that map from yj

to zj given θ are constructed such that p(z∗,j |x∗, Z,yj ,xz,θ,φδ,j) is formed. The uncondi-
tional distribution requires marginalising out the model discrepancy hyperparameters φδ,j and
parameters θ as shown in Eq. (11).
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Algorithm 2 Importance Sampling Model Discrepancy Inference

for j = 1 : Nout do

Training;

for i = 1 : Ns do

Predict p(y
(i)
j |yj ,xz,θ

(i), φ̂η,j)
for k = 1 : Nφ do

Sample φ
(i,k)
δ,j ∼ q (φ)δ,j

w̃
(i,k)
j = p(zj |y(i)

j ,xz,θ
(i),φ

(i,k)
δ,j )

end for

end for

Normalise weights w
(i,k)
j = w̃

(i,k)
j /

∑Ns

i=1

∑Nφ

k=1 w̃
(i,k)
j

Prediction;

for i = 1 : Ns do

Predict p(y
(i)
∗,j |x∗,yj ,xz,θ

(i), φ̂η,j)
for k = 1 : Nφ do

Predict ẑ
(i,k)
∗,j and Σ

(i,k)
z∗,j from p(z

(i,k)
∗,j |x∗, Z,yj ,xz,θ

(i),φ
(i,k)
δ,j )

end for

end for

Predict the approximation of p(z∗,j |x∗, Z,yj ,xz) via Eqs. (13) and (14)
end for

p(z∗,j |x∗, Z,yj ,xz) =

∫
(
∫

p(z∗,j |x∗, Z,yj ,xz,θ,φδ,j)p(φδ,j) dφδ

)

p(θ |Z) dθ (11)

Equation (11) is intractable meaning that approximation methods are required in order
to obtain samples from p(z∗,j |x∗, Z,yj ,xz). The proposed approach approximates the two
integrals in Eq. (11) using importance sampling; although this can also be thought of as Bayesian
model averaging [14, 15] — where a set of models are weighted by their evidence.

Importance sampling approximations for the two integrals in Eq. (11) are performed,
setting unnormalised proposal distributions for θ and φδ,j . The unnormalised parameter

proposal q̃θ(θ
(i)) is defined as the approximate posterior distribution from BHM, such that

θ(i) ∼ p(θ |Z,xz) are Ns re-sampled parameters, all of which are equally likely, i.e. q̃θ(θ
(i)) ∝ 1.

The model discrepancy hyperparameter proposal distribution is chosen to be equal to the prior,

i.e. q̃φ(φ
(i,k)
δ,j ) = p(φ

(i,k)
δ,j ); where Nφ hyperparameter samples φ

(i,k)
δ,j are obtained for the ith

parameter sample θ(i). These choices of proposal distributions mean that the unnormalised

weights become w̃
(i,k)
j = p(zj |y(i)

j ,xz,θ
(i),φ

(i,k)
δ,j ).

For the jth output the method begins by propagating the ith parameter sample θ(i) ∼
p(θ |Z,xz) through the GP emulator in order to obtain the samples y

(i)
j . Subsequently, for

the ith parameter sample, hyperparameter samples φ
(i,k)
δ,j ∼ q̃φ(φ

(i,k)
δ,j ) are used in construct Nφ

GP regression models, mapping from y
(i)
j to zj . The marginal likelihood of the ith, kth GP

model is equal to w̃
(i,k)
j . This process is repeated such that a set of unnormalised weights and

unnormalised predictive means ẑ
(i,k)
∗,j and covariances Σ

(i,k)
z∗,j are obtained. The unconditional
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(a) (b)

Figure 2. Representative five storey building structure. Panel (a) show the test setup and
panel (b) presents an example of the pseudo-damage, added masses, applied to the first floor.

bias corrected predictions, p(z∗,j |x∗, Z,yj ,xz), are then approximated as Eq. (12) — where
the mean and variance are obtained by the laws of total expectation and variance Eqs. (13)
and (14).

p(z∗,j |x∗, Z,yj ,xz) ≈ N
(

E
(

z∗,j |x∗, Z,yj ,xz

)

,V
(

z∗,j |x∗, Z,yj ,xz

))

(12)

E
(

z∗,j |x∗, Z,yj ,xz

)

=

Ns
∑

i=1

Nφ
∑

k=1

w
(i,k)
j ẑ

(i,k)
∗,j (13)

V
(

z∗,j |x∗, Z,yj ,xz

)

=

Ns
∑

i=1

Nφ
∑

k=1

w
(i,k)
j (Σ

(i,k)
z∗,j + ẑ

(i,k)
∗,j ẑ

(i,k)T
∗,j )

− E
(

z∗,j |x∗, Z,yj ,xz

)

E
(

z∗,j |x∗, Z,yj ,xz

)T
(14)

This process is summarised in Algorithm 2. It is noted that other importance sampling based
approaches to marginalising the hyperparameters from a GP are adaptive importance sampling
[16], where the proposal is iterative amended in order to improve convergence, and Sequential
Monte Carlo (SMC) [17]. These techniques could be implemented to provide faster convergence
of the approximations.

4. Representative Five Storey Building Structure

Calibration of five bending modes of a representative five storey building structure was performed
using BHM in conjunction with the proposed model discrepancy importance sampling approach.
Modal testing was performed on the structure made from aluminium 6082 subject to different
pseudo-damage extents as shown in Fig. 2. These pseudo-damage extents were added masses
m = {0, 0.1, . . . , 0.5}kg fixed to the first floor of the structure demonstrated in Fig. 2b. The
structure was excited with 409.6Hz bandwidth Gaussian noise via an electrodynamic shaker, with
sample rate and sample time chosen to allow a frequency resolution of 0.05Hz. Accelerometers
were placed at each of the five floors in order to obtain the first five bending modes. 40 averages
were acquired for each measurement and ten repeats were performed for each damage extent, in
order to obtain an understanding of the underlying modal frequency distributions.

The observational data z(xz) used within the calibration process were the mean natural
frequencies when xz = {0, 0.3, 0.5}kg. The unseen validation set were the full repeat
measurements of z(xz) as well as those from the {0.1, 0.2, 0.4}kg pseudo-damage extents, with
the inputs collectively denoted as x∗.
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Parameter Lower Bound Upper Bound

Elastic Modulus E 63.9GPa 78.1GPa
Poisson’s Ratio ν 0.297 0.363
Density ρ 2493kg/m3 3047kg/m3

Table 1. The prior parameter bounds for BHM on the five storey representative building
structure.

Uncertainty ω1 ω2 ω3 ω4 ω5

Observational Vo 3× 10−5 0.02 0.09 0.05 0.01
Model Discrepancy Vm 1.5 0.01 0.01 1 1

Table 2. The process uncertainties defined in the implausibility measure utilised for performing
BHM on the five storey representative building structure.

The simulator η(x,θ) was a modal Finite Element Analysis (FEA) model where the five
bending natural frequencies were extracted as a set of outputs y. Evaluations of the simulator
were acquired for the six damage extents x = {0, 0.1, . . . , 0.5}kg and a range of parameter θ

values within a set of prior bounds; set as ±10% of typical material properties for aluminium
6082 as shown in Table 1. Simulator runs for parameter combinations determined by a fifty
point, three dimensional GMLHD, were implemented as training data for five independent GP
emulators, with a separate ten point three dimensional GMLHD used to generate validation
data.

4.1. Bayesian History Matching

BHM was implemented using GMLHDs to provide training data for five independent GP
emulators. Each emulator was constructed from linear mean and Matérn 3/2 covariance
functions. Exploration of the parameter domain was performed via 100, 000 samples from
uniform distributions over the bounds. A multivariate implausibility (Eq. (4)) was implemented,
with the non-implausibility criteria being when the maximum multivariate implausibility for all
five outputs (the five natural frequencies) was less than the 99% quantile for a three degree of
freedom χ2-distribution (reflecting the size of xz). The observational Vo,j and model discrepancy
Vm,j uncertainties, set for the first BHM wave are displayed in Table 2 and were estimated from
the experimental output variance for the training inputs and from the modeller’s judgement
respectively.

The stopping criteria was met after one wave as the code uncertainty for each of the five
emulators had an order of magnitude ≈ 10−4. This low level of code uncertainty indicates that
the emulators had captured the simulator behaviour well with diagnostic checks [18] evidencing
that the emulators were valid. After the first wave a non-implausible space ≈ 2.3% of the original
space was identified.

When the stopping criteria had been met approximate posterior densities can be formed using
importance sampling and re-sampling. A Gaussian proposal distribution with κ = 2 was used
to generate 100, 000 samples with which to assess the normalised weights. 100, 000 samples were
subsequently obtained by re-sampling the distribution. Figure 3a presents the marginal and
joint pairwise posterior distributions, with a linear relationship between low density and high
elastic modulus values and a relatively insensitive effect from Poisson’s ratio in the pairwise
joint distributions. The marginal posterior distribution for each parameter show bi-modal
distributions. The pairwise joint posteriors indicate that these modes correspond to opposite
ends of the marginal distribution, for example the elastic modulus modal value around 72GPa
corresponds to density mode around 2500kg/m3 and the two Poisson’s ratio modes around 0.3
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(a) (b)

Figure 3. Marginal and pairwise joint posterior distributions for: (a) the parameters identified
by the first wave of BHM and (b) the hyperparameters for the fifth natural frequency; where a
darker shade represents a higher probability.

and 0.36. These results show the methods ability to account multi-modal behaviour within the
defined parameter domain.

The output distributions for each of the five natural frequencies were obtained via Monte
Carlo sampling the posterior parameter distribution. 1, 000 samples were taken from the re-
sampled parameter posterior distributions and propagated through each of the five emulators
in order to obtain realisations of the output distributions. As the code uncertainty across all
emulators was extremely low ≈ 10−4, the emulator mean was taken as deterministic. It is noted
that if the emulator variances were not several orders of magnitude lower than the combined
observational and model discrepancy uncertainties to be deemed negligible, posterior sampling
of the GP should be implemented (as shown in [19]). The mean predictions of the GP emulators
for the 1000 Monte Carlo realisations are presented in Fig. 4 against the observational data
used within BHM z(xz) with ±cσ(Vo,j + Vm,j) bounds, where cσ is the standard deviation
associated with 99% probability mass of a standard normal (assuming output distributions to
be approximately Gaussian). Figure 4 demonstrates that all five outputs are within the defined
uncertainty bounds. However, large discrepancies between the experimental observations and
simulator (represented by the five emulator’s mean predictions) occur, especially for the first and
fifth natural frequencies. This illustrates that the simulator has model form errors, that would
lead to incorrect parameter inference if model discrepancy was not considered in the calibration
process.

4.2. Model Discrepancy Inference

The proposed importance sampling methodology was applied to the BHM outputs. Here
Nφ = 100 and Ns = 1000, with the model discrepancy GPs being zero mean and Matérn
3/2 covariance functions. The hyperparameter priors were Gaussian distributed — logωx,j ∼
N (0, 6) (covariance roughness parameter), log σ2

f j ∼ N (V (zj), 4) (covariance signal variance)

and log σ2
nj ∼ N (Vo,j − 5, 6) (the noise variance) — stating that a low noise and smooth model

discrepancy solution is expected.
Figure 5 presents the predictive output distributions after the importance sampling approach.

This demonstrates that the model discrepancy has been inferred correctly for the second to fifth
natural frequencies. On the other hand the first natural frequency fails to fit the 0.1 and 0.2kg
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Figure 4. 1000 samples of the BHM predictive outputs, p(y
(i)
∗,j |x∗,yj ,xz,θ

(i), φ̂η,j) given

θ(i) ∼ p(θ |Z,xz). The error bars indicate the defined model discrepancy and observation
variances.

mass states. This is likely due to a lack of information about these point in the training set.
It would be expected that with inclusion of these data points predictions would be improved.
The posterior distribution over the hyperparameters is estimated from the weights; Fig. 3b
demonstrate these distributions for the fifth natural frequency, where the type I and II maximum
likelihoods are clearly indicated within the pairwise joint densities, where each refers to the noise
and roughness invariant solutions.

Validation metrics were applied to the output predictions, with the Normalised Mean Squared
Error (NMSE)s between the mean predictions and observational data being 145.11, 0.51, 0.25,
0.34 and 0.94. These indicate very good mean fits, apart from the first natural frequency.
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Figure 5. BHM predictive outputs with the marginalisation of model discrepancy and GP
hyperparameters via importance sampling — prior proposal.

Statistical distance metrics that assess the distance between two distributions were quantified.
Firstly, the area metric, the area between the two Cumulative Density Function (CDF)s [20],
was applied as shown in Fig. 6a. This metric showed small frequency distances across all
predictions, with the 0.1 and 0.2kg mass states for the first natural frequency being the largest.
Secondly, Hellinger distances, the integral of the L2-norm between two Probability Density
Function (PDF)s [21], were applied, Fig. 6b. The units of this metric are normalised distances
and show relatively large distances for all but the first natural frequency’s 0, 0.3, 0.4 and 0.5kg
predictions. This is due to a larger predictive variances than observational variances, likely
caused by the high level of uncertainty due to both the parameter and model discrepancy
inferences.
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Figure 6. Statistical distances applied to the bias corrected predictions. Panel (a) are the area
metrics when compared to empirical ten point observational CDFs. Panel (b) are the Hellinger
distances when compared to KDEs of the observational data. Both metrics are calculated via
numerical integration.

5. Conclusions

Model discrepancy must be accounted for, and inferred, when calibrating structural dynamics
simulators. This paper presented a BHM methodology for calibrating simulators in the presence
of additive, uniform model discrepancy. In addition, an importance sampling based approach has
been developed and demonstrated as an effective method for inferring the uncertainty associated
with the model discrepancy functional form.

This technique has been applied to a representative five storey building structure where
it has been shown to be effective for both calibration and inference of model discrepancy. The
importance sampling methodology captured the model discrepancy improving predictive quality
for the majority of outputs. However, for the first natural frequency, where the training data was
not representative of the functional behaviour, the predictive distributions failed to capture two
input points. This would be improved by more informative training data. In addition, due to
the high level of uncertainty, the output predictions had a larger variance than the observations
leading to large Hellinger distances. These would be improve by increased training observations,
or by improving the model form errors within the simulator.

Lastly, further work should be conducted in improving the computationally efficient in the
model discrepancy importance sampling. This would allow fewer GP models to be constructed
making the approach more practical for scenarios where more observational data is available.
Furthermore multivariate GPs should be investigated as priors for the emulators and model
discrepancies. This may improve parameter and model discrepancy inferences when there is
dependency between outputs.
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