

This is a repository copy of The interactive role of income (material position) and income rank (psychosocial position) in psychological distress : a 9-year longitudinal study of 30,000 UK parents.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/150352/

Version: Accepted Version

Article:

Garratt, E.A. orcid.org/0000-0001-5974-4141, Chandola, T., Purdam, K. et al. (1 more author) (2016) The interactive role of income (material position) and income rank (psychosocial position) in psychological distress : a 9-year longitudinal study of 30,000 UK parents. Social Psychiatry and Psychiatric Epidemiology, 51 (10). pp. 1361-1372. ISSN 0933-7954

https://doi.org/10.1007/s00127-016-1255-y

This is a post-peer-review, pre-copyedit version of an article published in Social Psychiatry and Psychiatric Epidemiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00127-016-1255-y

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

	1	Abstract
1 2	2	Purpose Parents face an increased risk of psychological distress compared with adults
3	3	without children, with material and psychosocial stressors. Past research suggests that
4 5	4	absolute income (material position) and income status (psychosocial position) influence
6 7	5	psychological distress, but their combined and interactive effects on psychological distress are
8	6	unknown. This research aims to tease apart the roles of material and psychosocial factors in
9 10	7	relation to psychological distress in adults.
11 12	8	Methods We used fixed-effects panel models to examine longitudinal associations between
13	9	psychological distress (measured on the Kessler scale) and absolute income, regional income
$14 \\ 15$	10	rank (a proxy for status) and their interaction, using data from 29,107 parents included in the
16 17	11	UK Millennium Cohort Study (2003-2012).
18 19	12	Results Psychological distress was predicted by an interaction between absolute income and
20	13	income rank: higher absolute incomes were associated with lower psychological distress
21 22	14	across the income spectrum, while the benefits of higher income rank were evident only in the
23 24	15	highest income parents. Parents' psychological distress was therefore affected by a
25	16	combination of material and psychosocial factors.
26 27	17	Conclusions Debates considering the importance of income to psychological distress miss the
28 29	18	fact that both material and psychosocial factors contribute to distress. Parents with higher
30	19	absolute incomes reported lower psychological distress across the income spectrum,
31 32	20	demonstrating the importance of material factors. Conversely, parents' income status was
33 34	21	associated with psychological distress only among higher-income parents, suggesting that
35	22	psychosocial factors are more relevant to distress in more advantaged parents. Policy and
36 37	23	therapeutic interventions could therefore consider the material and psychosocial impacts of
38 39	24	income on psychological distress.
40 41	25	
42	26	Keywords: Health Inequalities; Mental health; Relative Income; Relative Rank; Social
43 44	27	Status.
45 46	28	
47	29	Word count: 4,492 words
48 49	30	
50 51	31	
52		
53 54		
55 56		
57		
58 59		
60 61		
62		2
ьз 64		
65		

1	1. Introduction
2	In the context of widening income inequality [1] and the impact of psychological distress on
3	health and economic outcomes [2, 3], addressing the negative association between income
4	and psychological distress is a research priority. Higher levels of distress are consistently
5	reported in adults with lower incomes [4] and lower socioeconomic status [5]. Whether this
6	association primarily reflects the importance of income as a material resource, or the
7	psychosocial relevance of income as a status measure has prompted considerable debate.
8	Psychological well-being is more closely associated with people's perceived economic
9	standing than their absolute incomes [6], suggesting that income-related status comparisons
10	that induce shame, anxiety, and psychosocial stress could explain the negative association
11	between income and psychological distress [7-9]. Associations between income inequality
12	and several mental health outcomes reinforces this possibility [10-13], while research linking
13	poverty with experiences of shame both in the UK and across economically and culturally
14	diverse settings reinforces the fundamental importance of social comparisons [14, 15].
15	
16	These patterns might be particularly important in parents, as families with children typically
17	have lower incomes than families without children [16], and the transition to parenthood
18	confers a range of stressors which may amplify the underlying risks of psychological distress
19	[17–19]. This could explain why 33 per cent of UK mothers and 16 per cent of UK fathers
20	experienced an episode of depression before their children were 8 years old [20], higher than
21	the general population prevalence (11 per cent) [4]. This is significant because parental
22	distress presents risks to their children's well-being [21-23]. In this study we examined the
23	influence of income-related material and psychosocial factors on psychological distress in
24	parents of young children.
25	
26	1.1 Characteristics of income and status comparisons
27	Past research has not clearly identified why income-based status comparisons are detrimental
28	to psychological distress [24]. The income rank hypothesis states that the psychological
29	implications of people's ordinal rank position within the income distribution is important [25,
30	26]. Income rank is a purely psychosocial measure as it solely captures income position,
31	thereby distinguishing rank theory from mean-based conceptualisations of income position,
32	which combine both psychosocial and material elements, making it impossible to isolate the
33	true relevance of psychosocial factors [27-30]. In this study we therefore focus on exploring
34	the roles of absolute income and income rank.
35	

The income rank hypothesis is founded on evolutionary psychology and cognitive science. In primates, rank-based social comparisons cause social defeat among low-ranking group members. Adaptive appeasement behaviors termed Involuntary Defeat Syndrome (IDS) developed in low-ranking animals to signal the absence of threat and discourage physical aggression from higher-ranking animals [31]. These submission displays are observed in adults, children, and non-human primates, which suggests a fundamental basis [32–34]. In humans, income-based status comparisons replicate the rank-based comparisons that determine status in non-human primates. Although the IDS response promoted peaceful relations in our group-living past, in contemporary societies it carries maladaptive consequences [35]. Experiences of defeat are associated with affective disorders in humans and non-human primates [34, 36], further suggesting that psychological distress among lower-income people results from rank-based status comparisons that instigate feelings of inferiority and defeat.

The income rank hypothesis is reinforced by research in cognitive science. When people make relative judgments (for example, their income position in relation to others') it is theorised that they first visualise a distribution of stimuli (others' incomes) from memory, then sequentially compare their own position (their own income) with each of these stimuli, remembering the number of stimuli higher than their own. This captures the person's ranked status position, providing a direct evaluation of social position. If people naturally make judgments based on rank, then associations between income and psychological distress are more likely to reflect rank-based ordinal comparisons than more demanding calculations of distance from the 'average' person. This is particularly relevant in crowded parts of the income distribution where differences between incomes are small, so evaluating distance from the average may be especially challenging. In contrast, the difficulty of making ordinal rank-based comparisons is independent of the characteristics of the income distribution. Accumulating evidence for the rank model across diverse judgments including those relating to pain [37], gratitude [38], personality [39], mental health symptoms [40] and information-seeking [41], galvanizes support for sensitivity to social rank as a general cognitive capacity.

An emerging body of evidence reports that low rank is associated with higher psychological distress [42], greater depressive symptoms [43] and a higher likelihood of suicidal thoughts and suicide attempts [44], independent of absolute income. Furthermore, associations between income rank and allostatic load strengthen the pathway between rank, stress and psychological distress, strongly suggesting that income rank relates to health [45, 46]. In the

current study we build on existing evidence using fixed-effects panel models to provide a more robust examination of the potential role of income rank on psychological distress.

- A related question that has received little research attention is the possibility that absolute income interacts with income status to influence psychological distress. Income status may be more relevant to psychological distress at either lower incomes (because income status could counteract the negative effects of material disadvantage on distress, implicating material pathways) or higher incomes (because income status might be more desirable to higher-income people, implicating psychosocial pathways [47]). Existing evidence is inconclusive: evidence from children found that higher household income rank was longitudinally related to lower behavioural problems only in children living in the highest-income households [48], while in cross-sectional research, affluence status (based on ownership of material goods) was more strongly associated with psychosomatic symptoms in less affluent adolescents [49]. Substantial methodological differences between studies make it difficult to reconcile these inconsistent results. Determining whether income status is more closely associated with psychological distress at lower or higher absolute incomes is important when considering how best to develop appropriate policy and therapeutic interventions aimed at reducing the negative consequences of status comparisons on psychological distress. A more rigorous examination of potential interactions between absolute income and income status is therefore warranted.

б

1.4 Purpose of the study

We examined two research questions:

> (1) Is income status associated with psychological distress among parents of young children?

(2) Do absolute income and income status interact to influence parents' psychological distress?

We hypothesised that (1) lower income rank would be associated with higher psychological distress in parents, independent of absolute income; (2) absolute income and income rank would interact to influence psychological distress: at higher absolute incomes, lower-ranking parents would report greater psychological distress than higher-ranking parents, while at lower absolute incomes, psychological distress would be less closely associated with income status. If plotted graphically, levels of psychological distress by absolute income for high- and low-ranking parents are expected to converge at lower absolute incomes and diverge at higher absolute incomes.

2	2.1 Data and participants
3	We used four waves of data from the Millennium Cohort Study (MCS), a multidisciplinary
4	study of 19,000 UK children born in 2000-01 and followed up at 3, 5, 7 and 11 years. Parents
5	are interviewed to provide information about themselves, their child, and the household.
6	Using stratification and clustering, the sampling strategy over-represented wards in
7	disadvantaged areas, the smaller UK countries, and high ethnic minority populations [50].
8	The sample included all children born in the 398 selected wards during the sampling period,
9	who were established residents and remained in the UK at 9 months of age. The inclusion of
10	continuous measures of household income, psychological distress, and covariates makes the
11	dataset well suited to our study' aims.
12	
13	We included parents with complete information on psychological distress, household income
14	and covariates. On average, income data was unavailable for 11.9 per cent of households
15	between 2003 and 2012. This was imputed by the data holder using interval regression based
16	on demographic and household characteristics, reducing missing income data to less than two
17	per cent at each survey wave [50]. Missing covariate data were ascribed the characteristics
18	reported in previous waves. Missing data reduced the sample by 16.6 per cent to 83,395
19	observations from 29,107 parents, and an examination of nonresponse concluded that
20	respondents and non-respondents were comparable [51]. Parents with 'other' educational
21	qualifications were excluded (n=1,647, 1.9 per cent) as these are incomparable with other
22	qualifications. Our results were unaffected by this (available on request).
23	
24	2.2 Measures
25	2.2.1 Absolute income
26	Absolute income A_i captures total household income after tax but before housing costs, then
27	adjusted for family size and composition using the modified OECD equivalence scales ² ,
28	following standard practice [42, 44, 45]. These adjustments serve to approximate spending
29	power, which allows the roles of material resources and psychosocial measures of income to
30	be clearly separated. Absolute income was log transformed to reduce skew, then normalised
31	between 0 and 1.
32	
33	

2. Methods

 $^{^{2}}$ The modified Organisation for Economic Co-operation and Development equivalence scales grant the first adult a value of 0.67, subsequent adults 0.33, children aged 14-18 a value of 0.33 and children aged under 14 years 0.20. These values are summed and equivalised income is derived by dividing total household income by the household equivalisation factor.

1 <u>2.2.2 Income rank</u>

Income rank identifies each parent's ordinal position in the income distribution by capturing the proportion of parents with lower incomes than their own, within the 12 UK regions. Regional income comparisons account for geographical differences in incomes and living costs, and capture the influence of similar others who form the majority of social interactions. Regional reference groups are widely used in research on income comparisons and mental health [42, 44, 49], and an exploration of comparison groups has found that overall health was most clearly associated with income defined within regions than other comparison groups [46]. Income rank R_i captures the income position P_i of parent i divided by the size of comparison group n to identify the proportion of lower-ranking parents [52]:

$$R_i = \frac{P_i - 1}{n - 1}$$

Income rank was normalised between 0 and 1 to control for region size. Differences between absolute income and income rank reflect variation in regional income distributions where the same absolute income confers a higher rank in lower-income regions.

18 <u>2.2.4 Kessler scale</u>

Parental distress was assessed using the six-item Kessler scale of nonspecific psychological distress, a screening tool developed to identify clinically significant distress in population surveys. Parents reported how often they felt depressed, hopeless, restless or fidgety, worthless, nervous and everything being an effort during the past 30 days, answering on a five-point scale. Overall scores range from 0-24, where higher scores indicate greater distress. Screening tools are well-suited for population surveys where levels of distress are generally low [53], and the good performance of the Kessler scale has previously been established [54– 56]. Scores were log transformed to reduce skew.

28 2.3 Data analysis

We used linear fixed-effects panel models to examine longitudinal associations between income and parents' psychological distress in 83,395 observations from 29,107 parents. Fixed-effects panel models are a type of longitudinal model that capture how change in one variable over time is associated with change in another variable over time. We examined the effects of changes in absolute income and income rank on changes in parents' psychological distress. Statistical analyses can be biased if variables that are correlated with the predictor or outcome variables are not observed so cannot be controlled (eg: if a genetic predisposition to

psychological distress is associated with income). The influence of these variables is known as unobserved heterogeneity, and the main strength of fixed-effects panel models is to reduce the influence of time-constant unobserved heterogeneity. Two opposing assumptions can be made about this unobserved heterogeneity: the fixed-effects assumption allows unobserved variance to be associated with the predictors (if genetic factors are associated with income), whereas the random-effects assumption considers predictors and unobserved variance to be independent (genetic factors are not associated with income). Although the random-effects specification is preferred because coefficient estimates have smaller standard errors, we used the fixed-effects specification because unobserved variance may be associated with parents' incomes. Formal empirical comparison of the specifications using the Hausman test confirmed this decision. Fixed-effects panel models remove the influence of time-constant observed and unobserved characteristics. Time-varying characteristics (age, disability status, housing tenure, marital status, education, working status) were included at each wave to account for parents' changing characteristics, which also controls for life events such as changing employment or marital status that might influence incomes or psychological distress. This allows associations between income and distress to be examined independently of potential confounding variables while adjusting for changes to the sample over time. We used linear models to utilise the full range of Kessler scores. Logistic fixed-effects panel models exploring serious psychological distress are restricted to examining cases where this binary measure of distress changes over time, which removes a large proportion of observations, dramatically reducing statistical power and compromising analyses. Count models are also unsuitable as they ignore detail on the severity of distress. Models were specified to predict psychological distress from a constant term, fixed effects of absolute income, income rank, and covariates. All models adjusted for the sampling design, clustering of parents within families, and covariates. We normalised the income variables between 0 and 1, which makes no difference to the distribution of values, the size of coefficients, or standard errors but gives absolute income and income rank the same

- 30 interpretation, making comparisons clearer. Fixed-effects panel models assume that residuals
- 31 are normally distributed with means of zero; graphical inspection confirmed these
- 32 assumptions were met for all models. All analyses were undertaken using Stata 13 software33 [57].
- 3.

1 <u>2.3.1 Modelling strategy</u>

Descriptive statistics of parents' characteristics were examined first (Table 1). To explore our first research question, we examined individual associations between continuous Kessler scores and absolute income and income rank (Models 1-2, Table 2). This is the most conservative method of comparing the strength of association between the income variables and psychological distress because there is no possibility of bias due to residual confounding between income variables. Comparing goodness-of-fit tests captures the unique characteristic of each income variable to identify whether absolute income or income rank is most strongly associated with psychological distress. Because the income variables are correlated, we undertook a detailed examination of multicollinearity, which demonstrated that multicollinearity did not present a problem to our analyses (available on request). As a robustness check, we then considered whether non-linear (squared) income variables fitted the data better (Models 3-4, Table 2). We next examined income rank, after controlling for absolute income (Model 5, Table 2).

This captured the unique association between psychological distress and income rank, independent of absolute income. This strategy first compared the strength of association between psychological distress and the income variables, then confirmed that this association did not reflect shared variance between income variables. Comparing the fit of models that contain a single income variable provides a clear and direct way of identifying the income variable that is more closely associated with psychological distress, with no possible influence of multicollinearity. This step also serves to directly separate the roles of material (absolute income) and psychosocial (income rank) factors.

To examine our second research question we explored interactions between absolute income and income rank to determine whether income status was more strongly associated with psychological distress at lower or higher absolute incomes (Model 6, Table 3). To confirm the robustness of our results, we also conducted a series of sensitivity analyses (available as online resources).

31 2.3.2 Model fit

Model fit was compared using Akaike's Information Criterion (AIC), which captures model
fit adjusted for complexity. Differences above two indicate improved fit in models with
smaller values [58]. R-squared values were not considered because the explanatory power of
the intercepts is removed in fixed-effects panel models, making these values artificially low.

	1	3. Results
1 2	2	Sample characteristics are shown in Table 1. Parents' Kessler scores were comparable
3	3	between waves 2-4 and increased thereafter; absolute income increased progressively and
4 5	4	more substantially in wave 5; and income rank was comparable throughout. An increasing
6 7	5	proportion of parents had higher-level qualifications, were married or cohabiting, female,
8	6	home owners, had no disability and worked. Throughout, parents' Kessler scores were lower
9 10	7	at higher absolute incomes (not shown).
11 12	8	
13	9	Table 2 displays the results of linear fixed-effects panel models examining associations
15	10	between income and parents' log-transformed psychological distress, expressed as
16 17	11	exponentiated coefficients. Kessler scores have been log transformed, so exponentiated
18 19	12	coefficients are reported to show the estimated change in Kessler scores following a one-unit
20	13	increase in income (from being the lowest- to the highest-income parent). Dividing each
2⊥ 22	14	exponentiated coefficient by 100 therefore captures the influence of a percentage point
23 24	15	increase in income. Exponentiated values lower than one indicate lower Kessler scores among
25	16	higher-income parents. Higher incomes were associated with significantly lower
26 27	17	psychological distress: a one percentage point increase in absolute income (approximately
28 29	18	\pounds 11.48 per week) was associated with 0.356 per cent lower Kessler scores (Model 1), while a
30	19	one percentage point increase in income rank was associated with 0.077 per cent lower
31 32	20	Kessler scores (Model 2). A nonlinear effect of absolute income was evident and model fit
33 34	21	improved significantly (Model 3). Nonlinear effects of income rank (Model 4) were
35	22	nonsignificant and model fit was unchanged.
37	23	
38 39	24	When including both absolute income and income rank (Model 5), income rank remained
40 41	25	significantly associated with Kessler scores and AIC figures indicated improved model fit
42	26	over models containing main and non-linear effects of income. The coefficient for income
43 44	27	rank became positive after controlling for absolute income, suggesting that increasing income
45 46	28	status was surprisingly associated with higher psychological distress.
47	29	
48 49	30	Finally, significant interactions between absolute income and income rank (Model 6)
50 51	31	demonstrated that the positive effect of income rank was stronger at higher absolute incomes.
52	32	AIC values indicated that Model 6 was the best fitting model. Figure 1 illustrates this
54	33	interaction between absolute income and income rank. Parents with the lowest absolute
55 56	34	incomes had the highest Kessler scores, regardless of their income rank. As absolute incomes
57 58	35	increased, Kessler scores became more clearly associated with rank. At the highest absolute
59	36	incomes, Kessler scores were significantly lower in high- than low-ranking parents. The
60 61 62		10
63 64 65		

vertical columns in Table 3 show the mean predicted Kessler scores by absolute income for low-, middle- and high-ranking parents. Among low-ranking parents, increasing absolute incomes conferred a 63.48 per cent reduction in predicted Kessler scores from the lowest to the highest-income parents (6.55 to 2.39). This effect was stronger for high-ranking parents, whose predicted Kessler scores decreased by 69.76 per cent from the lowest to the highest-income parents (6.55 to 1.98). Equivalently, the horizontal rows show the mean predicted Kessler scores for low-, middle-, and high-ranking parents at different levels of absolute income. At the lowest absolute incomes, predicted Kessler scores were equal across rank groups (6.55). At the highest absolute incomes, predicted Kessler scores decreased by 17.19 per cent from low-ranking to high-ranking parents (2.39 to 1.98). Both absolute income and income rank therefore related to psychological distress, but the substantive effects of absolute income outweighed those of income rank.

We conducted a series of sensitivity analyses to confirm the robustness of our results. First, all analyses were repeated in which income rank was defined within comparison groups of (a) countries (England, Scotland, Wales, Northern Ireland); and (b) the UK. All results were replicated using both comparison groups (Online Resource 1). This replication demonstrates that our results are not sensitive to a specific geographical comparison group, and that absolute income could not be interpreted as a national-level measure of income status. Second, we estimated all models using logistic fixed-effects panel models where Kessler scores above 12 denote clinically significant psychological distress [56], and all results were replicated (Online Resource 2). Third, the interaction reported in Model 6 could reflect non-linear effects of the income variables, not true interactions between absolute income and income rank. The interaction was robust after including non-linear income variables, confirming the strength of the interaction between absolute income and income rank on psychological distress (Online Resource 3). Fourth, log-transforming the Kessler scores can result in graphical plots that diverge and might produce spurious interactions. The interactions in Figure 1 were replicated using untransformed Kessler scores, confirming their validity (Online Resource 4). Collectively these analyses confirm and strengthen our main result that parents' psychological distress was best predicted by an interaction between parents' absolute incomes and their regional income rank.

4. Discussion In this study we examined longitudinal associations between income and psychological distress in parents of young children. Our first research question explored whether parents' income status is associated with psychological distress. Our first hypothesis was supported: psychological distress was lower in parents with higher income status, even after accounting for the role of absolute income. Our second research question examined the possibility that absolute income interacts with income status to influence parents' psychological distress. Our second hypothesis, that psychological distress would be more closely associated with income status at higher absolute incomes, was supported: at lower absolute incomes, psychological distress was not associated with parents' income status, while at higher absolute incomes, psychological distress was lower in higher-status parents.

4.1 Theoretical implications

Our results contribute to debates over the relevance of material or psychosocial factors to the negative association between income and psychological distress by demonstrating that both material and psychosocial factors are associated with psychological distress. Among the lowest-income parents, psychological distress was clearly associated with absolute income but not income rank, suggesting that psychosocial factors are not strongly relevant to psychological distress at low incomes. In contrast, higher income rank was associated with lower psychological distress for parents with the highest incomes.

The importance of income rank to psychological distress only at the highest incomes
replicates evidence from children which found that higher household income rank was
associated with lower behavioural problems only in children living in the highest-income
households [48]. Differences in income status – implicating psychosocial pathways –
therefore appeared to be more salient to higher-income parents, reinforcing evidence that both
status seeking and preferences for higher-ranking over higher absolute incomes are greater at
higher incomes [47, 59].

We used fixed-effects panel models, which provide the most rigorous means of examining income rank and psychological distress using survey data, so our results provide a stronger test of the role of income status than past research. Nonetheless, our results broadly corroborate previous research reporting lower psychological distress in higher-ranking adults [42–44]. Our findings conversely contrast with cross-sectional evidence that adolescents' affluence status (based on ownership of material goods) was more strongly associated with psychosomatic symptoms in less affluent adolescents [49]. This discrepancy probably reflects methodological and age differences that preclude direct comparisons between studies.

The greater importance of income status to higher-income parents is also consistent with reports of high levels of anxiety and depression in advantaged adolescents, which might reflect over-emphasis on the values of status, wealth and success [60, 61]. Conversely, the comparative unimportance of rank effects on psychological distress among lower-income parents is consistent with evidence that poverty focuses people on their immediate material needs and can diminish cognitive function [62–64]. This mechanism is not well understood, so our observation that psychosocial factors were important to psychological distress only among higher-income parents adds insight to this possibility.

4.2 Policy implications

Two key policy implications follow from our results. The first is the importance of addressing low absolute incomes, as psychological distress was progressively lower at higher absolute incomes, independent of income status. Families with children typically have lower incomes than those without children, potentially placing them at risk from material disadvantage and psychological distress. Incomes should therefore be increased where possible. Second, the association between income rank and psychological distress in higher-income parents suggests that the psychosocial consequences of social status in higher-income groups deserve recognition. Therapeutic interventions should attempt to reduce both the tendency to make social comparisons and the value placed on social comparisons [65, 66] to reduce the negative impact of low rank on psychological distress among higher-income people.

4.3 Strengths and limitations

Our study's main strength is its longitudinal design and fixed-effects panel analyses. We examined the effects of income on psychological distress after controlling for both measured and unmeasured characteristics, allowing a direct examination of the impact of income on psychological distress. Past studies of income rank have used less stringent methods, so our work provides the most rigorous examination of rank theory. The large MCS population also confers the statistical power required to explore previously untapped interactions between absolute income and income status.

Our study's main limitation is the reliance on self-reported psychological distress, which could be artificially inflated by negative affectivity in distressed parents. Nonetheless, the Kessler scale performs well in general populations [54, 56] and income rank relates to both self-reported and clinically-measured physical health outcomes [45, 46], suggesting that associations between income rank and psychological distress are not due to negative affectivity in low-ranking parents.

Income rank was defined using regional comparison groups. Our aims were not to examine different comparison groups, and the appropriate specification of comparison groups is an important area for future research. However, people with similar characteristics tend to group geographically, locality defines group membership in non-human species [67], and regional income comparisons are relevant to psychological distress [42, 44]. Furthermore, a recent comparison of reference groups found that relative income was more closely associated with adults' self-rated health and allostatic load when calculated within regions than other comparison groups [46]. Nonetheless, a review of comparison groups found that income inequality is more strongly associated with health outcomes when defined at a larger geographic scale [68]. To explore this possibility we replicated all analyses, defining income rank within (a) countries, and (b) the UK. Unlike past research [68], all results were replicated and the size of coefficients in all models were extremely similar across the three comparison groups, demonstrating the suitability of regional reference groups and confirming that our results are not confined to regional income comparisons (Online Resource 1). These contrasting results may reflect differences in the outcomes examined, as the current analyses explored psychological distress while evidence for stronger associations between nationally defined income inequality and health outcomes considered both mental and physical health. The characteristics of social comparisons thought to underpin our results might operate differently for mental and physical health outcomes, a possibility that merits further research attention.

We controlled for changes in employment and marital status over time as these life events may confound or mediate the associations between income and psychological distress. Future research should examine the relevance of absolute income and income status to psychological distress following a broader range of life events, including bereavement and serious illness.

4.4 Conclusions

In this study we undertook the first exploration of rank theory in parents. Using fixed-effects panel models, higher absolute incomes were associated with lower psychological distress, while higher income rank was associated with lower psychological distress only among higher-income parents. Both income-related material and psychosocial factors are therefore relevant to psychological distress, but psychosocial factors are more relevant to advantaged parents. Consequently, policy and therapeutic interventions aimed at supporting parents with young children should consider both the material and psychosocial impacts of income on psychological distress.

	1		
1 2	2		
3 4 5	3		
6 7	4		
8 9	5		
10 11 12	6		
13 14	7		
15 16	8		
17 18 19	9		
20 21	10		
22 23	11		
24 25 26	12		
27 28	13		
29 30	14		
31 32 33	15		
34 35	16		
36 37	17		
38 39 40	18		
41 42	19		
43 44	20		
45 46	21	Conflicts of interest	
47 48	22	On behalf of all authors, the corresponding author states that there is no conflict of interest.	
49 50	23		
51 52	24		
52			
54			
55 56			
57			
58 59			
60			
₀⊥ 62			15
63			
64 65			

	1		5. References
1	2	1.	Ortiz I, Cummins M (2011) Global inequality: Beyond the bottom billion. UNICEF,
∠ 3	3		New York
4	4	2.	CASE (2012) How mental health loses out in the NHS. London School of Economics
5	5		and Political Science, The Centre for Economic Performance
6	6	3.	WHO (2003) Investing in mental health. World Health Organization, Geneva
./	7	4.	McManus S, Meltzer H, Brugha T, et al. (2009) Adult psychiatric morbidity in
0 9	8	~	England, 2007: Results of a household survey. The NHS Information Centre, Leeds
10	9 10	5.	Lorant V, Deliège D, Eaton W, et al. (2003) Socioeconomic inequalities in depression.
11	10	6	A meta-analysis. Am J Epidemiol 157:98–112. doi: 10.1093/aje/kwi182 Theodossicy L Zangalidis A (2000) The angial gradient in health. The affect of
12	11	0.	absolute income and subjective social status assessment on the individual's health in
13	12		Europe Econ Hum Biol 7.229–237 doi: 10.1016/j.ehb 2009.05.001
14 15	13	7.	Allan S. Gilbert P. Goss K (1994) An exploration of shame measures-II
16	15		Psychopathology. Pers Individ Dif 17:719–722. doi: 10.1016/0191-8869(94)90150-3
17	16	8.	Layte R, Whelan CT (2014) Who feels inferior? A test of the status anxiety hypothesis
18	17		of social inequalities in health. Eur Sociol Rev 30:525–535. doi: 10.1093/esr/jcu057
19	18	9.	Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: A
20 21	19		theoretical investigation and synthesis of laboratory research. Psychol Bull 130:355-
22	20		391. doi: 10.1037/0033-2909.130.3.355
23	21	10.	Burns JK, Tomita A, Kapadia AS (2014) Income inequality and schizophrenia:
24	22		Increased schizophrenia incidence in countries with high levels of income inequality.
25	23	11	Int J Soc Psychiatry 60:185–96. doi: 10.1177/0020764013481426
20 27	24	11.	Johnson SL, Wibbels E, Wilkinson R (2015) Economic inequality is related to cross-
28	25		national prevalence of psychotic symptoms. Soc Psychiatry Psychiatr Epidemiol. doi:
29	20 27	12	10.100//S00127-015-1112-4 Marshall A. Jivrai S. Nazroo I. et al. (2014) Does the level of wealth inequality within
30	27	12.	an area influence the prevalence of depression amongst older people? Health Place
31	20		27.194–204 doi: 10.1016/i healthplace 2014.02.012
32	30	13.	Pickett KE, James OJ, Wilkinson RG (2006) Income inequality and the prevalence of
34	31	101	mental illness: A preliminary international analysis. J Epidemiol Community Health
35	32		60:646–647. doi: 10.1136/jech.2006.046631
36	33	14.	Purdam K, Garratt EA, Esmail A (2015) Hungry? Food insecurity, social stigma and
37	34		embarrassment in the UK. Sociology. doi: 10.1177/0038038515594092
38 39	35	15.	Walker R, Kyomuhendo GB, Chase E, et al. (2013) Poverty in Global Perspective: Is
40	36		Shame a Common Denominator? J Soc Policy 42:215–233. doi:
41	37	1.0	10.1017/S0047279412000979
42	38	16.	DWP (2013) Households Below Average Income: An analysis of the income
43	39	17	distribution 1994/95 – 2011/12. DWP, London Tousis M. Formula P. (2001) Unkinding times Alternate work askedules and work life
44 45	40 41	17.	halance, I Fam Econ Issues 22:101, 119, doi: 10.1023/A:1016626028720
46	42	18	Ventura IN (1987) The stresses of parenthood reexamined Fam Relat 36.26–29 doi:
47	43	10.	10 2307/584642
48	44	19.	Cowan CP. Cowan PA (1995) Interventions to ease the transition to parenthood: Why
49	45	- / 1	they are needed and what they can do. Fam Relat 44:412–423. doi: 10.2307/584997
50 51	46	20.	Davé S, Petersen I, Sherr L, Nazareth I (2010) Incidence of maternal and paternal
52	47		depression in primary care: a cohort study using a primary care database. Arch Pediatr
53	48		Adolesc Med 164:1038–1044. doi: 10.1001/archpediatrics.2010.184
54	49	21.	Goodman SH, Rouse MH, Connell AM, et al. (2011) Maternal depression and child
55	50		psychopathology: A meta-analytic review. Clin Child Fam Psychol Rev 14:1–27. doi:
50 57	51	~~	10.1007/s10567-010-0080-1
58	52	22.	Kiernan KE, Huerta MC (2008) Economic deprivation, maternal depression, parenting
59	53		and children's cognitive and emotional development in early childhood. Br J Sociol
60			
61 62			16
63			
64			
65			

	1		59:783–806. doi: 10.1111/j.1468-4446.2008.00219.x
1	2	23.	Luoma I, Tamminen T, Kaukonen P, et al. (2001) Longitudinal study of maternal
2	3		depressive symptoms and child well-being. J Am Acad Child Adolesc Psychiatry
3	4		40:1367–1374. doi: 10.1097/00004583-200112000-00006
4 5	5	24.	Wagstaff A, van Doorslaer E (2000) Income inequality and health: what does the
5	6		literature tell us? Annu Rev Public Health 21:543–567. doi:
7	7		10.1146/annurev.publhealth.21.1.543
8	8	25.	Boyce CJ, Brown GDA, Moore SC (2010) Money and happiness: Rank of income, not
9	9		income, affects life satisfaction. Psychol Sci 21:471–475. doi:
10	10		10.1177/0956797610362671
11	11	26.	Subramanian S V, Kawachi I (2004) Income inequality and health: What have we
12	12		learned so far? Epidemiol Rev 26:78–91. doi: 10.1093/epirev/mxh003
⊥3 14	13	27.	Bjornstrom EES (2011) The neighborhood context of relative position, trust, and self-
⊥4 15	14		rated health. Soc Sci Med 73:42-49. doi: 10.1016/j.socscimed.2011.05.014
16	15	28.	Yitzhaki S (1979) Relative deprivation and the Gini Coefficient. Q J Econ 93:321–324.
17	16		doi: 10.2307/1883197
18	17	29.	Deaton A (2001) Relative deprivation, inequality, and mortality. Princeton NJ:
19	18		Princeton University
20	19	30.	Clark A, Masclet D, Villeval M-C (2008) Effort and comparison income:
21	20		Experimental and survey evidence. Institute for the Study of Labor, Bonn
22	21	31.	Taylor PJ, Gooding P, Wood AM, Tarrier N (2011) The role of defeat and entrapment
23	22		in depression, anxiety, and suicide. Psychol Bull 137:391–420. doi: 10.1037/a0022935
24 25	23	32.	Keltner D, Young R, Buswell BN (1997) Appeasement in human emotion, personality,
26	24		and social practice. Aggress Behav 23:359-374. doi: 10.1002/(SICI)1098-
27	25		2337(1997)23:5<359::AID-AB5>3.0.CO;2-D
28	26	33.	Belsky J, Domitrovich CE, Crnic K (1997) Temperament and parenting antecedents of
29	27		individual differences in three-year-old boys' pride and shame reactions. Child Dev
30	28		68:456–466. doi: 10.1111/j.1467-8624.1997.tb01951.x
31	29	34.	Shively CA, Laber-Laird K, Anton RF (2000) Behaviour and physiology of social
32	30		stress and depression in female cynomolgus monkeys. In: Kawachi I, Kennedy BP,
33	31		Wilkinson RG (eds) Soc. Popul. Heal. reader. Vol. 1 Income Inequal. Heal. The New
34 25	32		Press, New York, pp 405–420
36	33	35.	Price JS, Gardner R, Erickson M (2004) Can depression, anxiety and somatization be
37	34		understood as appeasement displays? J Affect Disord 79:1-11. doi: 10.1016/S0165-
38	35		0327(02)00452-4
39	36	36.	Siddaway AP, Taylor PJ, Wood AM, Schulz J (2015) A meta-analysis of perceptions
40	37		of defeat and entrapment in depression, anxiety problems, posttraumatic stress
41	38		disorder, and suicidality. J Affect Disord 184:149–159. doi: 10.1016/j.jad.2015.05.046
42	39	37.	Watkinson P, Wood AM, Lloyd DM, Brown GDA (2013) Pain ratings reflect
43 11	40		cognitive context: A range frequency model of pain perception. Pain 154:743–749. doi:
44 45	41		10.1016/j.pain.2013.01.016
46	42	38.	Wood AM, Brown GDA, Maltby J (2011) Thanks, but I'm used to better: A relative
-0 47	43		rank model of gratitude. Emotion 11:175-180. doi: 10.1037/a0021553
48	44	39.	Wood AM, Brown GDA, Maltby J, Watkinson P (2012) How are personality
49	45		judgments made? A cognitive model of reference group effects, personality scale
50	46		responses, and behavioral reactions. J Pers 80:1275–1311. doi: 10.1111/j.1467-
51	47		6494.2012.00763.x.
52	48	40.	Melrose K, Brown GDA, Wood AM (2013) Am I abnormal? Relative rank and social
53 F1	49		norm effects in judgments of anxiety and depression symptom severity. J Behav Decis
ン ユ 55	50		Mak 26:174–184. doi: 10.1002/bdm.1754
56	51	41.	Taylor MJ, Vlaev I, Maltby J, et al. (2015) Improving social norms interventions:
57	52		Rank-framing increases excessive alcohol drinkers' information-seeking. Heal Psychol.
58	53		doi: 10.1037/hea0000237
59	54	42.	Wood AM, Boyce CJ, Moore SC, Brown GDA (2012) An evolutionary based social
60			
61			17
0∠ 63			
03			

	1		rank explanation of why low income predicts mental distress: A 17 year cohort study					
1	2		of 30,000 people. J Affect Disord 136:882-888. doi: 10.1016/j.jad.2011.09.014					
2	3	43.	Hounkpatin HO, Wood AM, Brown GDA, Dunn G (2015) Why does income relate to					
3	4		depressive symptoms? Testing the income rank hypothesis longitudinally. Soc Indic					
4	5		Res 124:637–655. doi: 10.1007/s11205-014-0795-3					
5	6	44.	Wetherall K, Daly M, Robb KA, et al. (2015) Explaining the income and suicidality					
6	7		relationship: Income rank is more strongly associated with suicidal thoughts and					
/	8		attempts than income. Soc Psychiatry Psychiatr Epidemiol 50:929–937. doi:					
8	9		10 1007/s00127-015-1050-1					
9 10	10	45	Daly M Boyce C Wood AM (2015) A social rank explanation of how money					
11	11	15.	influences health Heal Psychol 34:222–230 doi: 10.1037/hea0000098					
12^{-1}	12	46	Hounknatin HO, Wood AM, Dunn G (2016) Does income relate to health due to					
13	12	40.	nounkpatin 110, wood Aw, Dunn O (2010) Does income relate to heatin due to					
14	13		psychosocial of material factors? Consistent support for the psychosocial hypothesis					
15	14		150.76 84 dais dais 10.1016/i accessimed 2015 12.008					
16	15	47	150:76–84. doi: doi:10.1016/j.socscimed.2015.12.008					
17	16	47.	Mujcic R, Frijters P (2013) Economic choices and status: measuring preferences for					
18	17	40	income rank. Oxf Econ Pap 65:47–73. doi: 10.1093/oep/gpr065					
19	18	48.	Garratt E, Chandola T, Purdam K, Wood AM Income and Social Rank Influence UK					
20	19		Children's Behavioral Problems: A Longitudinal Analysis. Child Dev.					
21	20	49.	Elgar FJ, De Clercq B, Schnohr CW, et al. (2013) Absolute and relative family					
22	21		affluence and psychosomatic symptoms in adolescents. Soc Sci Med 91:25-31. doi:					
23	22		10.1016/j.socscimed.2013.04.030					
24 25	23	50.	Hansen K, Johnson J, Calderwood L, et al. (2014) Millennium Cohort Study: A guide					
25 26	24		to the datasets (Eighth Edition) first, second, third, fourth and fifth Surveys. Centre for					
20	25		Longitudinal Studies, London					
2.8	26	51.	Plewis I (2007) Non-response in a birth cohort study: The case of the Millennium					
29	27		Cohort Study. Int J Soc Res Methodol 10:325–334. doi: 10.1080/13645570701676955					
30	28	52.	Brown GDA. Gardner J. Oswald A. Oian J (2008) Does wage rank affect employees'					
31	29		well-being? Ind Relat (Berkeley) 47:355–389. doi: 10.1111/j.1468-					
32	30		232X 2008 00525 x					
33	31	53	Korten A. Henderson S (2000) The Australian National Survey of Mental Health and					
34	32	55.	Well-Being Common psychological symptoms and disablement Br I Psychiatry					
35	22		177.225 230 doi: 10.1102/bip.177.4.225					
36	24	54	Cill SC Butterworth D Dodgers B Mackinnon A (2007) Validity of the mental health					
37	25	54.	component scale of the 12 item Short Form Health Survey (MCS 12) as measure of					
38	20		component scale of the 12-ftell Short-Form Health Survey (MCS-12) as measure of					
39 40	20		to 1010/ mental disorders in the general population. Psychiatry Res 152:05–71. doi:					
40 /11	3/	~ ~	doi:10.1016/j.psychres.2006.11.005					
41 42	38	55.	Kessler RC, Andrews G, Colpe LJ, et al. (2002) Short screening scales to monitor					
43	39		population prevalences and trends in non-specific psychological distress. Psychol Med					
44	40		32:959–976. doi: 10.1017/S0033291702006074					
45	41	56.	Kessler RC, Barker PR, Colpe LJ, et al. (2003) Screening for serious mental illness in					
46	42		the general population. Arch Gen Psychiatry 60:184–189. doi:					
47	43		10.1001/archpsyc.60.2.184					
48	44	57.	StataCorp. (2013) Stata Statistical Software: Release 13.					
49	45	58.	Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of					
50	46		model complexity and fit. J R Stat Soc B 64:583–639. doi: 10.1111/1467-9868.00353					
51	47	59.	Paskov M, Gërxhani K, van de Werfhorst HG (2013) Income inequality and status					
52	48		anxiety. Amsterdam Institute for Advanced Labour Studies, Amsterdam					
53	49	60.	Luthar SS, Becker BE (2002) Privileged but pressured? A study of affluent youth.					
54	50		Child Dev 73:1593–1610. doi: 10.1111/1467-8624.00492					
55	51	61	Luthar SS (2003) The culture of affluence: Psychological costs of material wealth					
50 57	52	511	Child Dev 74:1581–1593 doi: 10.1046/i.1467-8624.2003.00625 x					
57 58	52	62	Mani A Mullainathan S Shafir F Zhao I (2013) Poverty impedes cognitive function					
59	55	02.	Science (80.) 341.976-80 doi: 10.1126/science 12380/1					
59	54		Science (60-) 541.7/0-00. 001. 10.1120/science.1250041					
61								
62			18					
63								

	1	63.	Mullainathan S, Shafir E (2013) Scarcity: Why having too little means so much. Al	len
1	2		Lane, London	
2	3	64.	Shah AK, Mullainathan S, Shafir E (2012) Some consequences of having too little.	
3	4		Science (80-) 338:682–685. doi: 10.1126/science.1222426	
4 5	5	65.	White JB, Langer EJ, Yariv L, Welch JC (2006) Frequent social comparisons and	
5	6		destructive emotions and behaviors: The dark side of social comparisons. J Adult D	ev
7	7		13:36–44. doi: 10.1007/s10804-006-9005-0	
8	8	66.	Johnson EI, Swendsen JD (2014) Perceived social status and early adolescents'	
9	9		responses to negative daily events. J Child Fam Stud 24:1593–1604. doi:	
10	10		10.1007/s10826-014-9963-y	
11	11	67.	Sapolsky RM, Alberts SC, Altmann J (2000) Hypercortisolism associated with soci	al
⊥∠ 13	12		subordinace or social isolation among wild baboons. In: Kawachi I, Kennedy BP,	
14	13		Wilkinson RG (eds) Soc. Popul. Heal. reader. Vol. 1 Income Inequal. Heal. The Ne	W
15	14 1 E	69	Press, New York, pp 421–432 Willingson DC, Dislott KE (2006) Income incomelity and nonvelotion health. A review	
16	15	08.	witkinson RG, Pickett KE (2006) income inequality and population health: A revie	W
17	10		and explanation of the evidence. Soc Schwed $02.1708-1784$. doi: 10.1016/j.socscimed 2005.08.036	
18	17		10.1010/J.socsciffied.2005.08.050	
19 20	10			
21	17			
22				
23				
24				
25				
20 27				
28				
29				
30				
31				
32				
33 34				
35				
36				
37				
38				
39				
40 41				
42				
43				
44				
45				
46				
4 / 4 8				
49				
50				
51				
52				
53				
54 55				
56				
57				
58				
59				
60				
0⊥ 62				19
63				
64				
65				

-	1	Table Captions
1 2 2	2	Table 1 displays descriptive statistics of the predictor variables outcome variable and all
4	-	covariates at each survey wave included in the analyses
5 6	4	
7 8	5	Table 2 displays coefficient estimates, standard errors and measures of model fit for linear
9 10	6	fixed-effects panel models predicting parents' log-transformed Kessler scores from
11	7	exponentiated coefficients of absolute income, income rank, non-linear income terms, and
12 13	8	interactions between absolute income and income rank. All models are fully adjusted for
14 15	9	covariates.
16	10	
17	11	Table 3 displays mean predicted Kessler scores by interactions between absolute income and
19 20	12	income rank.
21	13	
22	14	
24 25	15	
26		
28	16	Figure Captions
29 30	17	Fig 1 Displays marginal effects of the interaction between absolute income and regional
31 32	18	income rank tertile on parents' predicted log-transformed Kessler scores. The point estimates
33 34	19	represent these marginal effects at each decile of the absolute income distribution for parents
35	20	whose regional income rank was defined as low, medium or high. 95 % confidence intervals
36 37	21	are displayed to show the uncertainty surrounding each point estimate.
38 39		
40 41	22	
42	23	
43 44		
45 46		
47		
48 49		
50 51		
52		
53 54		
55		
56 57		
58		
59 60		
61		
62 63		20
64		
65		

6. Tables

3 Table 1 Descriptive statistics of parents' characteristics at waves 2-5 of the MCS

^		Way	ve 2 (2003)	Wave	3 (2006)	Wave	4 (2008)	Wave 5	5 (2012)
		n	n=27,364	I	1=20,083	n	=24,150	n	=21,590
Income	Median absolut	e income	70	11	70	11	70	11	70
meome	(f/week)		300.40		325.88		356 19		526.68
	Median rank		500.40		525.00		550.17		520.00
	position		0.53		0.54		0 54		0.53
	Missing	306	1 11	206	0.54	357	1.48	0	0.00
Region	Mean number o	f parents	2 297	200	2 224	551	2 013	0	1 799
Region	Range	i parents	2,297	7	2,22 4 5/1 3 783	60	2,013	60	1,799
	Missing	3	0.01	2	0.01	4	0.02	11	0.05
	Moon	5	2.10	L	2.06	4	2.04	11	2.06
Kessler	Dongo		0.24		0.24		0.24		5.90
score	Kange	C 100	0-24	2 (02	12.90	2 166	0-24 14-25	1 710	0-24
A	Missing	0,122	22.21	3,083	15.80	3,400	14.55	1,/18	/.95
Age	Mean (years)		33.30		35.33		37.41		41.23
	Range	50	14-72	2	16-//	2	1/-/5	0	18-79
<u></u>	Missing	52	0.19	3	0.01	3	0.01	0	0.00
Sex	Male	12,505	45.36	11,875	44.50	10,691	44.25	8,826	40.86
	Female	15,062	54.64	14,810	55.50	13,469	55.75	12,775	59.14
	Missing	0	0.00	0	0.00	0	0.00	0	0.00
Disability	Yes	5,627	20.41	6,069	22.74	5,585	23.12	4,058	18.79
status	No	20,595	74.71	19,407	72.73	17,415	72.08	17,419	80.64
	Missing	1,345	4.88	1,209	4.53	1,160	4.80	124	0.057
Education	University	9,347	33.91	9,564	35.84	9,277	38.40	9,199	42.59
	College	4,064	14.74	3,957	14.83	3,668	15.18	3,303	15.29
	School	9,713	35.23	9,094	34.08	7,895	32.68	6,631	30.70
	No								
	qualifications	3,840	13.93	3,603	13.50	2,978	12.33	2,288	10.59
	Missing	603	2.19	467	13.50	342	1.42	180	0.83
Working	In work	18,965	68.80	19,030	71.30	18,043	74.68	16,397	75.91
status	Not in work	8,600	31.20	7,653	23.68	6,116	25.31	5,204	24.09
	Missing	2	0.01	2	0.01	1	0.00	0	0.00
Housing	Owner	18,889	68.92	18,442	69.11	17,060	70.61	14,794	68.49
tenure	Private renter	1,789	6.49	1,929	7.23	1,796	7.43	2,136	9.89
	Social renter	5,888	21.36	5,520	20.69	4,680	19.37	3,938	18.23
	Other	972	3.53	732	2.74	565	2.34	399	1.85
	Missing	29	0.11	62	0.23	59	0.24	334	1.55
Marital	Married	18.876	68.47	18.136	67.96	16.346	67.66	14.420	66.76
status	Cohabiting	5.646	20.48	5.794	21.71	5,187	21.47	4.321	20.00
	Single	1 641	5 95	1 766	6.62	1 487	6.15	1 276	5 91
	Divorced	1,011	5.55	1,700	0.02	1,107	0.12	1,270	5.71
	separated or								
	widowed	644	2.34	986	3 69	1.129	4 67	1.574	7 29
	Missing	760	2.54	3	0.01	1,12)	0.05	1,574	0.05
Total cases	11100III2	700	n=27.564	5	0.01	11	0.05	10	0.05
Useable cas	65	20.610	7/ 81	22 800	85 /18	20 3/8	84 24	19 610	90.87
Uscable cas		20,019	/4.01	22,009	12 4 1	20,340	07.24	17,017	70.07

Table 2 Linear fixed-effects panel regression analyses of parents' log-transformed Kessler

scores predicted by exponentiated coefficients of absolute income and income rank and non-

3	linear income te	erms, adjusted	for covariates	(n=83,394)

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	
Fixed effects (exponentiated coefficients, se)							
Absolute income	0.644***		0.944		0.366***	0.365***	
Absolute income	(0.019)		(0.120)		(0.019)	(0.019)	
Income		0.923***		0.966	1.496***	1.845***	
rank		(0.015)		(0.050)	(0.044)	(0.077)	
Non-linear terms (e	exponentiated	d coefficients	, se)				
Absolute income			0.729**				
squared			(0.072)				
Income rank				0.957			
squared				(0.044)			
Interaction effects	(exponentiate	ed coefficient	s, se)				
Absolute income						0.901***	
X Middle rank						(0.018)	
Absolute income						0.828***	
X High rank						(0.024)	
Goodness-of-fit							
AIC	102,282	102,649	102,265	102,649	101,957	101,879	
* p<0.05, ** p<0.01, *	*** p<0.001						

AIC = Akaike's Information Criterion

All regressions contained controls of age, sex, disability status, housing tenure, marital status,

education and working status.

Table 3 Mean predicted Kessler scores by interactions between absolute income and income

rank (Model 6)

	Mean	Predic	cted Kessler	Percentage reduction		
Income quintile	equivilised weekly income	Low rank	Middle rank	High rank	in Kessler scores between low- and high-ranking parents (%)	
Lowest incomes	£12.86	6.55	6.55	6.55	0.00	
20 th percentile	£100.84	5.35	5.24	5.15	3.70	
40 th percentile	£202.97	4.37	4.20	4.06	7.27	
60 th percentile	£285.58	3.58	3.36	3.19	10.70	
80 th percentile	£555.55	2.92	2.69	2.51	14.00	
Highest incomes	£1,146.74	2.39	2.16	1.98	17.19	
Percentage reduction scores between parent and high absolute inco	63.48	67.07	69.76			

Figure 1 Slope of the marginal effects of interactions between absolute income and income rank on parents' log-transformed Kessler scores

Supplementary material for manuscript "The Interactive Role of Income (material position) and Income Rank (psychosocial position) in Psychological Distress: A 9-year Longitudinal Study of 30,000 UK Parents". Social Psychiatry and Psychiatric Epidemiology. Elisabeth A. Garratt¹, Tarani Chandola, Kingsley Purdam, Alex M. Wood.

Online Resource 1

This supplementary material replicates all analyses included in the manuscript, defining income rank and distance from the mean using comparison groups defined by (a) countries (England, Scotland, Wales, Northern Ireland); and (b) the UK. This was only possible for parents living in England because Wales, Scotland, Northern Ireland are defined as regions and not subdivided any further, so their comparison groups are the same for region, country, and the UK.

¹ Corresponding author. Nuffield College, New Road, Oxford, England OX1 1NF. Tel +4418 6527 8517. Fax: +44 1865 278621. Email <u>elisabeth.garratt@nuffield.ox.ac.uk</u>

Table 1 Linear fixed-effects panel regression analyses of parents' log-transformed Kessler scores predicted by exponentiated coefficients of absolute income, income rank, non-linear income terms and income interactions, adjusted for covariates, using country comparison groups, England only (n=47,731)

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
Fixed effects (expone	ntiated coeffi	cients, se)				
Absolute	0.653***		1.102		0.357***	0.355***
income	(0.026)		(0.186)		(0.027)	(0.027)
Country income		0.905**		0.969	1.550***	1.938***
rank		(0.022)		(0.072)	(0.069)	(0.118)
Non-linear terms (ex	ponentiated c	oefficients, se	e)			
Absolute income			0.654***			
squared			(0.084)			
Country income				0.942		
rank squared				(0.060)		
Interaction effects (ex	xponentiated of	coefficients, s	se)			
Absolute income X						
Country middle						0.900***
rank						(0.027)
Absolute income X						0.822***
Country high rank						(0.033)
Goodness-of-fit						
AIC	56,432	56,617	56,433	56,639	56,277	56,231

Table 2 Linear fixed-effects panel regression analyses of parents' log-transformed Kessler scores predicted by exponentiated coefficients of absolute income, income rank, non-linear income terms and income interactions, adjusted for covariates, using UK comparison groups, England only (n=47,731)

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
Fixed effects (expone	entiated coeffi	cients, se)				
Absolute	0.653***		1.102		0.365***	0.364***
income	(0.026)		(0.186)		(0.027)	(0.027)
Country income		0.905**		0.951	1.515***	1.929***
rank		(0.021)		(0.070)	(0.066)	(0.117)
Non-linear terms (ex	ponentiated c	oefficients, se	e)			
Absolute income			0.654***			
squared			(0.084)			
UK income rank				0.959		
squared				(0.061)		
Interaction effects (effects)	xponentiated of	coefficients, s	se)			
Absolute income X						0.883***
UK middle rank						(0.026)
Absolute income X						0.806***
UK high rank						(0.032)
Goodness-of-fit						
AIC	56,432	56,616	56,433	56,639	56,285	56,233

Figure 1 Slope of the marginal effects of interactions between absolute income and income rank defined within comparison groups of (a) UK (b) Country (c) Region on parents' log-transformed Kessler scores, parents living in England only

Supplementary material for manuscript "The Interactive Role of Income (material position) and Income Rank (psychosocial position) in Psychological Distress: A 9-year Longitudinal Study of 30,000 UK Parents". Social Psychiatry and Psychiatric Epidemiology. Elisabeth A. Garratt¹, Tarani Chandola, Kingsley Purdam, Alex M. Wood.

Online Resource 2

This supplementary material replicates all analyses included in the manuscript using logistic fixedeffects panel models using standard cut-offs, where Kessler scores above 12 denoted serious psychological distress [56]. These models are not entirely equivalent to the models reported in them manuscript because logistic fixed-effects panel models are unable to correct for clustering for parents within families, so standard errors may be slightly overestimated. Additionally, because fixed-effects panel models retain only cases that change over time, a large proportion of cases are excluded when estimating a binary measure of psychological distress. This serves to decrease the sample size and reduce statistical power, which could account for the small differences in the coefficient estimates.

Table 1 Logistic fixed-effects panel regression analyses of parents' log-transformed Kessler scores predicted by exponentiated coefficients of absolute income, income rank, non-linear income terms and income interactions, adjusted for covariates (n=5,693)

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
Fixed effects (expone	ntiated coeffi	cients, se)				
Absolute	0.429**		0.952		0.224**	0.190***
income	(0.127)		(1.128)		(0.108)	(0.093)
Incomo ronk		0.787		0.603	1.757	3.729*
Income rank		(0.160)		(0.300)	(0.576)	(1.831)
Non-linear terms (ex	ponentiated c	oefficients, se	e)			
Absolute income			0.463			
squared			(0.513)			
Income rank				1.376		
squared				(0.748)		
Interaction effects (ex	xponentiated	coefficients, s	se)			
Absolute income X						0.684
middle rank						(0.148)
Absolute income X						0.513*
high rank						(0.168)
Goodness-of-fit						
AIC	3,871	3,878	3,873	3,880	3,870	3,871

¹ Corresponding author. Nuffield College, New Road, Oxford, England OX1 1NF. Tel +4418 6527 8517. Fax: +44 1865 278621. Email <u>elisabeth.garratt@nuffield.ox.ac.uk</u>

Supplementary material for manuscript "The Interactive Role of Income (material position) and Income Rank (psychosocial position) in Psychological Distress: A 9-year Longitudinal Study of 30,000 UK Parents". Social Psychiatry and Psychiatric Epidemiology. Elisabeth A. Garratt¹, Tarani Chandola, Kingsley Purdam, Alex M. Wood

Online Resource 3

This supplementary material replicates Model 6 with additional controls for non-linear income variables.

Table 1 Linear fixed-effects panel regression analyses of parents' log transformed Kessler scores predicted by exponentiated coefficients of interactions between absolute income and income status, adjusted for covariates and non-linear income terms (n=83,394)

Model 6				
With absolute				
ome	income			
ared	squared			
nts, se)	squarea			
0.823	0.351***			
(0.111)	(0.019)			
868***	2.472***			
(0.078)	(0.185)			
fficients, s	se)			
916***	0.878***			
(0.019)	(0.019)			
873***	0.838***			
(0.025)	(0.024)			
Non-linear income terms (exponentiated				
470***				
(0.051)				
	0.753***			
	(0.042)			
101,780	101,840			
L	01,780			

* p<0.05, ** p<0.01, *** p<0.001

¹ Corresponding author. Nuffield College, New Road, Oxford, England OX1 1NF. Tel +4418 6527 8517. Fax: +44 1865 278621. Email <u>elisabeth.garratt@nuffield.ox.ac.uk</u>

Supplementary material for manuscript "The Interactive Role of Income (material position) and Income Rank (psychosocial position) in Psychological Distress: A 9-year Longitudinal Study of 30,000 UK Parents". Social Psychiatry and Psychiatric Epidemiology. Elisabeth A. Garratt¹, Tarani Chandola, Kingsley Purdam, Alex M. Wood

Online Resource 4

This supplementary shows the interaction terms included in Model 6 using log-transformed and untransformed Kessler scores to explore the possibility that log-transforming the Kessler scores can result in plots that diverge and might produce spurious interactions.

Figure 1 Slope of the marginal effects of interactions between absolute income and income rank on parents' (a) Log-transformed (b) Untransformed Kessler scores

¹ Corresponding author. Nuffield College, New Road, Oxford, England OX1 1NF. Tel +4418 6527 8517. Fax: +44 1865 278621. Email <u>elisabeth.garratt@nuffield.ox.ac.uk</u>

