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Abstract

We consider the optimal stopping problem with non-linear f-expectation (induced by a
BSDE) without making any regularity assumptions on the payoff process £ and in the case
of a general filtration. We show that the value family can be aggregated by an optional
process Y. We characterize the process Y as the £f-Snell envelope of £&. We also establish
an infinitesimal characterization of the value process Y in terms of a Reflected BSDE with
¢ as the obstacle. To do this, we first establish some useful properties of irregular RBSDES,

in particular an existence and uniqueness result and a comparison theorem.

Keywords: backward stochastic differential equation, optimal stopping, f-expectation,
non-linear expectation, aggregation, dynamic risk measure, American option, strong
E7-supermartingale, Snell envelope, reflected backward stochastic differential equation,
comparison theorem, Tanaka-type formula, general filtration

1. Introduction

The classical optimal stopping probem with linear expectations has been largely studied.
General results on the topic can be found in El Karoui (1981) ([12]) where no regularity
assumptions on the reward process £ are made.

In this paper, we are interested in a generalization of the classical optimal stopping problem
where the linear expectation is replaced by a possibly non-linear functional, the so-called
f-expectation (f-evaluation), induced by a BSDE with Lipschitz driver f. For a stopping
time S such that 0 < .S < T a.s. (where 7" > 0 is a fixed terminal horizon), we define
V(S) :=ess sup 5577(57), (1.1)
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where Tg 1 denotes the set of stopping times valued a.s. in [S,T] and E§T(~) denotes the
conditional f-expectation/evaluation at time S when the terminal time is 7.

The above non-linear problem has been introduced in [16] in the case of a Brownian
filtration and a continuous financial position/pay-off process £ and applied to the (non-
linear) pricing of American options. It has then attracted considerable interest, in par-
ticular, due to its links with dynamic risk measurement (cf., e.g., [2]). In the case of a
financial position/payoff process &, only supposed to be right-continuous, this non-linear
optimal stopping problem has been studied in [37] (the case of Brownian-Poisson filtration),
and in [1] where the non-linear expectation is supposed to be convex. To the best of our
knowledge, [19] is the first paper addressing the stopping problem (1.1) in the case of a
non-right-continuous process £ (with a Brownian-Poisson filtration); in [19] the assumption
of right-continuity of ¢ from the previous literature is replaced by the weaker assumption
of right- uppersemicontinuity (r.u.s.c.).

In the present paper, we study problem (1.1) in the case of a general filtration and
without making any regularity assumptions on &, which allows for more flexibility in the
modelling (compared to the cases of more regular payoffs and/or of particular filtrations).

The usual approach to address the classical optimal stopping problem (i.e., the case
f=0in (1.1), or the case when f is linear) is a a direct approach, based on a direct study
of the value family (V(S))se7; 1 1" An important step in this approach is the aggregation
of the value family by an optional process.

The approach used in the literature to address the non-linear case (where f is not
necessarily linear) is an RBSDE-approach, based on the study of a related non-linear Re-
flected BSDE and on linking directly the solution of the non-linear Reflected BSDE with
the value family (V(5),S € Tor) (and thus avoiding, in particular, more technical aggre-
gation questions). This approach was first introduced in [16] in the case when the reward
process is continuous, and later used to study the right-continuous case (cf. [37]) and the
right-uppersemicontinuity (cf. [19]). 2

Neither of the two approaches is applicable in the general framework of the present
paper and we adopt a new approach which combines some aspects of both the approaches.
Our combined approach is the following: First, with the help of some results from the
general theory of processes, we show that the value family (V(S5), S € To,r) can be aggre-
gated by a unique right-uppersemicontinuous (right-u.s.c.) optional process (V;)icpo,r]- We
characterize the value process (Vi);c(o,7] as the ET-Snell envelope of &, that is, the smallest

'This direct approach was later used in [1] in the case of a convex non-linear expectation. However, it
is not adapted to deal with the non-convex case, as noted in Remark 9.1.
2 Actually, this RBSDE approach is not appropriate to the completely irregular case (cf. Remark 10.1).



strong £/-supermartingale greater than or equal to £&. Then, we turn to establishing an
infinitesimal characterization of the value process (V;)c(o,r] in terms of a RBSDE where
the pay-off process £ from (1.1) plays the role of a lower obstacle. We emphasize that this
RBSDE-part of our approach is far from mimicking the one from the r.u.s.c. case; we have
to rely on very different arguments here due to the complete irregularity of the process &.

Let us recall that Reflected BSDEs have been introduced by El Karoui et al. in the
seminal paper [13] in the case of a Brownian filtration and a continuous obstacle, and
then generalized to the case of a right-continuous obstacle and/or a larger stochastic basis
than the Brownian one in [23], [4], [17], [24], [37]. In [19], we have formulated a notion
of Reflected BSDE in the case where the obstacle is only right-u.s.c. (but possibly not
right-continuous) and the filtration is the Brownian-Poisson filtration and we have shown
existence and uniqueness of the solution. In the present paper, we show that the existence
and uniqueness result from [19] still holds in the case of a completely irregular obstacle and
a general filtration. In the recent paper [28], existence and uniqueness of the solution (in
the Brownian framework) is shown by using a different approach, namely a penalization
method.

We also establish a comparison result for RBSDEs with irregular obstacles and general
filtration. Due to the complete irregularity of the obstacles and the presence of jumps,
we are led to using an approach which differs from those existing in the literature on
comparison of RBSDEs (cf. also Remark 9.2); in particular, we first prove a generalization
of Gal’chouk-Lenglart’s formula (cf. [18] and [32]) to the case of convex functions, which
we then astutely apply in our framework in order to establish the comparison theorem. We
also show an £7-Mertens decomposition for strong £7-supermartingales, which generalizes
to our framework the ones provided in the literature (cf. [19] or [3]|). This result, together
with our comparison theorem, helps in the study of the non-linear operator Reff which
maps a given (completely irregular) obstacle to the solution of the RBSDE with driver f.
By using the properties of the operator Reff, we show that Ref/[¢], that is, the (first
component of the) solution to the reflected BSDE with irregular obstacle £ and driver f, is
equal to the £f-Snell envelope of ¢, from which we derive that it coincides with the value
process (Vi);cjo,r) of problem (1.1).

Finally, we illustrate how this result can be applied to the problem of pricing of American
options with irregular pay-off in an imperfect market model with jumps. Some examples of
digital American options are given as particular cases.

The rest of the paper is organized as follows: In Section 2 we give some preliminary
definitions and some notation. In Section 3 we revisit the classical optimal stopping prob-
lem with irregular pay-off process £ and a general filtration. We first give some general
results such as aggregation, Mertens decomposition of the value process, Skorokhod condi-



tions satisfied by the associated non decreasing processes; then, we characterize the value
process of the classical problem in terms of the solution of a RBSDE associated with a
general filtration, with completely irregular obstacle and with a driver f which does not
depend on the solution. In Section 4, we prove existence and uniqueness of the solution for
general Lipschitz driver f, an irregular obstacle & and a general filtration. In Section 5,
we present the formulation of our non-linear optimal stopping problem (1.1). In Section
6, we provide some results on the particular case where the payoff € is right-u.s.c., from
which we derive an £7-Mertens decomposition of £7-strong supermartingales in the (gen-
eral) framework of a general filtration (cf. Section 7). We then turn to the study of the
case where £ is completely irregular. Section 8 is devoted to the direct part of our approach
to this problem; in particular, we present the aggregation result and the Snell character-
ization. Section 9 is devoted to establishing some properties of RBSDEs with completely
irregular obstacles, which will be used to establish an infinitesimal characterization of the
value process of our problem (1.1) in the completely irregular case; more precisely, we first
provide a comparison theorem (Subsection 9.2); then, using this result together with the
Ef Mertens decomposition, we establish useful properties of the non-linear operator Reff
(Subsection 9.3). In Section 10, using the results shown in the previous sections, we derive
the infinitesimal characterization of the value of the non-linear optimal stopping problem
(1.1) with a completely irregular payoff £ in terms of the solution of our general RBSDE
from Section 4. In Section 11 we give a financial application to the pricing of American
options with irregular pay-off in an imperfect market model; we also give a useful corollary
of the infinitesimal characterization, namely, a priori estimates with universal constants for
RBSDEs with irregular obstacles and a general filtration.

2. Preliminaries

Let T' > 0 be a fixed positive real number. Let £ = R"\{0},& = B(R"\{0}), which we
equip with a o-finite positive measure v. Let (£, F, P) be a probability space equipped with
a right-continuous complete filtration IF' = {F;: t € [0,T]}. Let W be a one-dimensional
IF-Brownian motion W, and let N (dt, de) an IF-Poisson random measure with compensator
dt @ v(de), supposed to be independent from W. We denote by N(dt, de) the compensated
measure, i.e. N(dt,de) := N(dt,de) —dt @ v(de). We denote by P the predictable g-algebra
on Q x [0,7]. The notation L?(Fr) stands for the space of random variables which are
Fr-measurable and square-integrable. For ¢t € [0, 7], we denote by T; 7 the set of stopping
times 7 such that P(t <7 < T) = 1. More generally, for a given stopping time S € 7o 7,
we denote by 7sr the set of stopping times 7 such that P(S <7 <T) =1.

We use also the following notation:

e L2 is the set of (&, B(R))-measurable functions £ : E — R such that [|¢||2 := [, [¢(e)|?v(de) <
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0o. For € € L2, k € L2, we define (¢, k), := [, {(e)k(e)v(de).

e IH? is the set of R-valued predictable processes ¢ with ||¢||%,. := E [fOT |¢t|2dt} < 0.

e JH? is the set of R-valued processes [ : (w,t,e) € (Q x [0,T] x E) + Il;(w, e) which are
predictable, that is (P® &, B(R))-measurable, and such that HZHJHQ =F [fo :12 dt] < 0.

e Asin [19], we denote by S? the vector space of R-valued optional (not necessarily cadlag)
processes ¢ such that [|¢]|32 := Eless SUPre7g 1 |#-|?] < oo. By Proposition 2.1 in [19], the
mapping ||-||s2 is a norm on &2, and §? endowed with this norm is a Banach space.

e Let M? be the set of square integrable martingales M = (My)¢epo,r) with Mo = 0.
This is a Hilbert space equipped with the scalar product (M, M)y = E[MpM] (=
E[(M,M")7] = E([M, M'|7)), for M, M’ € M? (cf., e.g., [35] IV.3). For each M € M?,
we set H]WH?V12 = E(M2).

e Let M?1 be the subspace of martingales h € M? satisfying (h, W). = 0, and such that,
for all predictable processes | € IH2,

// N(ds,de)); =0, 0<t<T as. (2.1)

Remark 2.1. Note that condition (2.1) is equivalent to the fact that the square bracket
process [h, [, [z 1s(e)N(ds,de)]; is a martingale (cf. the Appendiz for additional comments
on condition (2. 1))

Recall also that the condition (h,W). = 0 is equivalent to the orthogonality of h (in
the sense of the scalar product (-,-)pg2) with respect to all stochastic integrals of the form
Jo zsdWs, where z € H? (cf. e.g., [35] IV. 3 Lemma 2). Similarly, the condition (2.1)
18 equivalent to the orthogonality of h with respect to all stochastic integrals of the form
Jo [z ls(e)N(ds,de), where | € HZ (cf., e.g. , Lemma 12.1 in the Appendiz).

We recall the following orthogonal decomposition property of martingales in M? (cf. Lemma
I11.4.24 in [26]).

Lemma 2.1. For each M € M?, there exists a unique triplet (Z,1,h) € H? x H? x M+
such that

/ ZsdW +/ /lt N(dt, de —l—ht, Vit e [O,T] a.s. (2.2)

Definition 2.1 (Driver, Lipschitz driver). A function f is said to be a driver if
f:Qx[0,T] xR?x L2 = R; (w,t,y,2,k) = flw,t,y,2,k) is P® B(R?) @ B(L2)—
measurable, with E[fOT f(t,0,0,0)%dt] < +occ.

A driver f is called a Lipschitz driver if moreover there erists a constant K > 0 such
that dP @ dt-a.e., for each (y1,21,Kk) € R? x L2, (yo, 20, k2) € R? x L2,

|f(w7taylazla kl) - f(wat7y2322a k2)| < K(’yl - Z/2| + |Zl - 22| + Hkl - kZHl/)



Definition 2.2 (BSDE, conditional f-expectation). We have (cf., e.g., Remark 12.1
in the Appendiz) that if f is a Lipschitz driver and if € is in L?(Fr), then there exists a
unique solution (X,m,1,h) € 8% x H? x IH2 x M** to the following BSDE:

—dXy = f(t, Xy, T, lp)dt — mdWy — [ li(e)N(dt,de) — dhy;  Xp = €.

For t € [0,T], the (non-linear) operator St{T(~) . L2(Fr) — L2(F;) which maps a given
terminal condition & € L?(Fr) to the position X; (at time t) of the first component of the
solution of the above BSDE is called conditional f-expectation at time t. As usual, this
notion can be extended to the case where the (deterministic) terminal time T is replaced by
a (more general) stopping time T € To 1, the time t is replaced by a stopping time S such
that S < 7 a.s. and the domain L?(Fr) of the operator is replaced by L*(F;).

We now pass to the notion of Reflected BSDE. Let T' > 0 be a fixed terminal time. Let f
be a driver. Let £ = (§);e[o,r] be a process in S2.

We define the process (£;);co,r) by & = limsupgy o4 &, for all ¢ € (0,T]. We recall
that ¢ is a predictable process (cf. [6, Thm. 90, page 225]). The process ¢ is left-u.s.c. and
is called the left upper-semicontinuous envelope of &.

Definition 2.3 (Reflected BSDE). A process (Y, Z,k,h, A,C) is said to be a solution
to the reflected BSDE with parameters (f,€), where f is a driver and & is a process in S2,
if, (Y, Z,k,h,A,C) € S? x H? x H? x M*>+ x §? x §2,

— d)/t = f(t,Y;g, Zt, k‘t)dt + dAt + dCt, — thWt — / k‘t(e)N(dt, de) — dht, 0 S t S T,
E
(2.3)
Yr=¢&r as., and Yy > & for allt € [0,T], a.s.,

A is a nondecreasing right-continuous predictable process with Ag = 0 and such that

T
/0 1{Yt_>§t}dA§ =0 as and (Yo —E)(AY— A% ) =0 a.s. for all predictable T € 7o,

(2.4)
C is a nondecreasing right-continuous adapted purely discontinuous process with Cy— =0
and such that (Y; — & )(Cr — Cr—) =0 a.s. for all 7 € Tor. (2.5)

Here A€ denotes the continuous part of the process A and A% its discontinuous part.

Equations (2.4) and (2.5) are referred to as minimality conditions or Skorokhod conditions.
For real-valued random variables X and X,,, n € IV, the notation "X, 1 X" stands for

"the sequence (X,,) is nondecreasing and converges to X a.s.".

For a ladlag process ¢, we denote by ¢y and ¢;— the right-hand and left-hand limit of

¢ at t. We denote by A ¢y = ¢y, — ¢ the size of the right jump of ¢ at ¢, and by

Ady := ¢y — ¢ the size of the left jump of ¢ at t.



Remark 2.2. In the particular case where & has left limits, we can replace the process (£,)
by the process of left limits (§—) in the Skorokhod condition (2.4).

Remark 2.3. If (Y, Z,k,h, A,C) is a solution to the RBSDE defined above, by (2.3), we
have ACy = Yy — Yiy, which implies that Yy > Y4, for all t € [0,T). Hence, Y is r.u.s.c.
Moreover, from Cr — Cr— = —(Yr+ —Y;), combined with the Skorokhod condition (2.5),
we derive (Yr — &) (Yo —Y;) =0, a.s. for all 7 € To. This, together with Yy > & and
Y; > Y as., leads to Y, =Y, V& a.s. forall e Tor.

Definition 2.4. LetT € Tor. An optional process (¢¢) is said to be right upper-semicontinuous
(resp. left upper-semicontinuous) along stopping times if for all stopping time 7 € Tor and
for all non increasing (resp. non decreasing) sequence of stopping times (7,) such that

Tn 4 7 (resp. T, 1 7) a.s., ¢ > limsup,,_, ¢, a.s..

Remark 2.4. If € is left-u.s.c. along stopping times, then the process A is continuous.?

Indeed, let T € Tor be a predictable stopping time. For each martingale M, we have
E[AM;/F.-] =0 a.s. Moreover, since A is predictable, we have E[AA;/F.-] = AA; a.s.
By (2.3), we get

E[AY;/F.-]=—-AA; = —AATl{YT_ gy as (2.6)

Hence, on {Y,— = £}, we have E|Y,;/F,-]-Y,- = E[AY,/F,- ] = —AA; <0 a.s. Since &
is left-u.s.c. along stopping times, we thus derive that £ < E[&,/F,-] < E[Y;/F,-] <Y~
a.s. on {Y,~ =E_}, and the inequalities are even equalities. Hence, E[Y;/F.-] =Y.~ a.s.
on {Y,- =&} By (2.6), we derive that AA; = 0 a.s. This equality being true for every
predictable stopping time 7 € To, it follows that A is continuous.

3. The classical optimal stopping problem

In this section, we revisit the classical (linear) optimal stopping problem with irregular
pay-off process and a general filtration.

3.1. The classical linear optimal stopping problem revisited

Let (&t)iefo,r] be a process belonging to S2, called the reward process or the pay-off
process. For each S € Ty 1, we define the value v(S) at time S by

v(S) :=esssup E[¢; | Fsl. (3.1)

T€Ts,T

3This property (together with our main result Theorem 10.1) generalizes a well-known result shown
under an additional (right-u.s.c.) assumption on the process £ in the literature on classical linear optimal
stopping problems (cf. [12] or Proposition B.10 in [29]), and in the literature on reflected BSDEs (cf.
Theorem 3.4 in [19]).



Lemma 3.1. (i) There exists a ladlag optional process (vi)icpo, ] which aggregates the fam-
ily (v(5))seror (i-e. vs =v(S) a.s. forall S € Tor).

Moreover, the process (vt);cjo,r) is the smallest strong supermartingale greater than or
equal to (§t)efo,1)-

(ii) We have vg = &g V vsy a.s. for all S € Tor.

(iii) * For each S € Tor and for each X € (0,1), the process (vi)epo,r) is a martingale on
[S,72], where 73 == inf{t > S, \vy < &}.

Proof.  These results are due to classical results of optimal stopping theory. For a sketch
of the proof of the first two assertions, the reader is referred to the proof of Proposition
A5 in the Appendix of [19] (which still holds for a general process & € S?). The last
assertion corresponds to a result of optimal stopping theory (cf. [33], [12] or Lemma 2.7
in [29]). Its proof is based on a penalization method (used in convex analysis), introduced
by Maingueneau (1978) (cf. the proof of Theorem 2 in [33]), which does not require any
regularity assumption on the reward process &. O

Remark 3.1. It follows from (ii) in the above lemma that A vs = 1y, Atvg a.s.

Remark 3.2. Let us note for further reference that Maingueneau’s penalization approach
for showing the martingale property on [S,72] (property (ii) in the above lemma) relies
heavily on the convezity of the problem.

Lemma 3.2. (i) The value process V of Lemma 3.1 belongs to S? and admits the following
(Mertens) decomposition.:

vy =9+ My — Ay — Cy—, forallt €[0,T] a.s., (3.2)

where M € M?, A is a nondecreasing right-continuous predictable process such that
Ay = 0, E(A%) < 00, and C is a nondecreasing right-continuous adapted purely
discontinuous process such that Co— = 0, E(C%) < oo.

(ii) For each T € Tor, we have AC, = 1y, = ACT as.

(iii) For each predictable T € To 1, we have AA, = 1{1}77:5 }AAT a.s.

*Note that in the case of a not necessarily non-negative pay-off process & this result holds up to a
translation by the martingale Xs := Elesssup, ¢, . &+ | Fs] (cf. e.g. Appendix A in [31]). More precisely,

the property holds for ¥ := v 4+ X and §~ =&+ X.



Proof. By Lemma 3.1 (i), the process (vt).(o,7] is a strong supermartingale. Moreover, by
using martingale inequalities, it can be shown that Elesssupger; . lug|?] < cH|§H|§Q Hence,
the process (v¢);e[o,7) 18 in S? (a fortiori, of class (D)). Applying Mertens decomposition for
strong supermartingales of class (D) (cf., e.g., [7, Appendix 1, Thm.20, equalities (20.2)])
gives the decomposition (3.2), where M is a cadlag uniformly integrable martingale, A is a
nondecreasing right-continuous predictable process such that Ay = 0, E(Ar) < oo, and C'is
a nondecreasing right-continuous adapted purely discontinuous process such that Cy_ = 0,
E(Cr) < oo. Based on some results of Dellacherie-Meyer [7] (cf., e.g., Theorem A.2 and
Corollary A.1 in [19]), we derive that A € §? and C' € S2, which gives the assertion (i).

Let 7 € To,r. By Remark 3.1 together with Mertens decomposition (3.2), we get AC; =
—Ajv; as. It follows that AC: = 1y, _¢ AC: a.s., which corresponds to (ii).

Assertion (iii) (concerning the jumps of A) is due to El Karoui ® ([12, Proposition 2.34])
Its proof is based on the equality Ag = ATé a.s., for each S € Ty and for each A € (0,1)
(which follows from Lemma 3.1 (iii) together with Mertens decomposition (3.2)). O

The following minimality property for the continuous part A¢ is well-known from the
literature in the "more regular" cases (cf., e.g., [30] for the right-u.s.c. case). In the case of
completely irregular £, this minimality property was not explicitly available. Only recently,
it was proved by [28] (cf. Proposition 3.7) in the Brownian framework. Here, we generalize
the result of [28] to the case of a general filtration by using different analytic arguments.

Lemma 3.3. The continuous part A° of A satisfies the equality f(;[ 1{ut_>Ef}dA§ =0 a.s.

Proof.  As for the discontinuous part of A, the proof is based on Lemma 3.1 (iii) , and
also on some analytic arguments similar to those used in the proof of Theorem D13 in [27].
We have to show that fOT(vt, — &,)dAS = 0 a.s. Lemma 3.1 (iii) yields that for each
S € To,r and for each A € (0,1), we have Ag = AT@ a.s. Without loss of generality, we
can assume that for each w, the map t — Af(w) is continuous, that the map ¢ — v;(w) is
left-limited, and that, for all A € (0,1)NQ and ¢t € [0,7) N Q, we have A;(w) = A_»(w).

Tt

"Note that the proof in El Karoui [12] is given for nonnegative pay-off &, To pass from this to the
more general case where £ might take also negative values, we apply the result by El Karoui [12] with
€ := £ + X (which is non-negative) and © := v + X, where the process X = (X;) is defined by X; :=
Eless SUD 7 1 &7 |F¢]. We then notice that the Mertens process (A, C) from the Mertens decomposition
of v is the same as the Mertens process (fl, C’) from the Mertens decomposition of ¥ (indeed, only the
martingale parts of the two decompositions differ by X). Moreover, we see that the set {v.— = £_} is the
same as the set where v is replaced by ¢ and £ is replaced by & (this is due to the fact that X is a martingale
and thus has left limits; so X; = Xi—).



Let us denote by J(w) the set on which the nondecreasing function ¢ — Af(w) is “flat™
J(w):={t€(0,T), 36 >0 with A s(w) = A7 5(w)}. Since the set J(w) is open, it can
be written as a countable union of disjoint intervals: J(w) = U;(a;(w), fi(w)). We consider

J (W) == Us(ai(w), Bi(w)] = {t € (0,T], 36 >0 with AS 5(w) = Af(w)}. (3.3)

We have fo dA fw) = Zi(A%i(w)(w) - A;i(w)(w)) = 0. Hence, the nondecreasing
function t — AC( ) is “fHat” on J(w). We introduce

K(w) :=={t € (0,T] s.t. v;_(w) > & (w)}

We next show that for almost every w, K(w) C J(w), which clearly provides the desired
result. Let t € K(w). Let us prove that ¢ € J(w). By (3.3), we thus have to show that there
exists § > 0 such that A¢ ;(w) = Af(w). Since t € K(w), we have v;—(w) > &,(w). Hence,
there exists 6 > 0 and A € (0,1) NQ such that ¢t —§ € [0,7) N Q and for each r € [t — 6, 1),
Moy (w) > & (w). By definition of 7} 4(w), it follows that 7 ;(w) > t. Now, we have
Ai} 6(w) = Af s5(w). Since the map s — Ag(w) is nondecreasing, we get Af(w) = Af_s(w),

which implies that ¢ € J(w). We thus have K(w) C J(w), which completes the proof. [

Remark 3.3. We note that the martingale property from assertion (iii) of Lemma 3.1 is
crucial for the proof of the minimality conditions for the process A (namely, for the proofs
of Lemma 3.2 assertion (iit), and for Lemma 3.3).

3.2. The classical linear optimal stopping problem with an additional instantaneous reward
In this subsection, we extend the previous results to the case where, besides the reward
process &, there is an additional running (or instantaneous) reward process f € IH?. More
precisely, let (§)¢c[0,7] be a process belonging to S2, called the reward process or the pay-off
process. Let f = (ft)icp,r] be a predictable process with E[fOT f2dt] < +oo, called the
instantaneous reward process. For each S € Ty, we define the value V(S) at time S by

V(S) :=esssup E[¢; + / fudu | Fsl. (3.4)
T€Ts,T

This is equivalent to V(S) + fos fudu = esssup, 1, . Bl + [) fudu | Fs]. Hence, the

results of the previous subsection can be applied with & replaced by & + [; fudu and v(S)

replaced by V(S) + fOS fudu. Here is a brief summary.

Lemma 3.4. (i) There exists a ladlag optional process (Vi)ic[o, 1] which aggregates the fam-
ily (V(9))seror (i-e. Vs =V(S) a.s. forall S €Tor).
Moreover, the process (Vi + fot fudu)te[U,T] 15 the smallest strong supermartingale
greater than or equal to (& + fg Judw)iepo -
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(ii) We have Vg = &5V Vey a.s. for all S € Tor.
Remark 3.4. It follows from (i) in the above lemma that A Vs = 1y ¢} A4 Vs a.s.

Lemma 3.5. (i) The value process V of Lemma 3.4 belongs to S? and admits the following
(Mertens) decomposition.:

t
Vi=Vy— / fudu+ My — Ay — Cy—, for allt €[0,T] a.s., (3.5)
0

where M € M?, A is a nondecreasing right-continuous predictable process such that
Ay = 0, E(A%) < 00, and C is a nondecreasing right-continuous adapted purely
discontinuous process such that Co— = 0, E(C%) < oo.

(ii) For each T € To, we have AC: = 1y, —¢ yAC; a.s.

(iii) For each predictable T € To 1, we have AA, = 1{VT7:§ }AAT a.s.

Lemma 3.6. The continuous part A of A satisfies the equality fOT 1{vf,_>2t}dAf =0 a.s.

3.8. Characterization of the value function as the solution of an RBSDE

In this subsection, we show, using the above lemmas, that the value process V of
the classical optimal stopping problem (3.4) solves the RBSDE from Definition 2.3 with
parameters the driver process (f;) and the obstacle (&). We also prove the uniqueness of
the solution of this RBSDE. To this aim, we first provide a priori estimates for RBSDEs

in our general framework.

Lemma 3.7 (A priori estimates). Let (Y!, Z1 k', ht, AL, CY) (resp. (Y2, Z2%,k? h% A2 C?))
€ 82X H? x H2 x M?*+ xS8%x S8? be a solution to the RBSDE associated with driver f'(w,t)
(resp. f2(w,t)) and with obstacle &. We set Y :==Y' —Y? Z .= 7' — 72, A := A — A2,
C:=C"—C? k:=k — k2 h:=h'—h% and f(w,t) := fY(w,t) — f2(w,t). There exists

¢ > 0 such that for all € > 0, for all 8 > 6% we have

1Z15 < 21 F113, 1KIE,s < 21715 and Al e < 2 FI3 (3.6)
~ 2 ~
1Y ll5 < 4e(1 +12¢%)|| £ (3.7)
The proof is given in the Appendix.
Using these a priori estimates, the lemmas from the previous subsection, and the or-

thogonal martingale decomposition (Lemma 2.1), we derive the following "infinitesimal
characterization" of the value process V.
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Theorem 3.1. Let V' be the value process of the optimal stopping problem (3.4). Let A
and C be the non decreasing processes associated with the Mertens decomposition (3.5)
of V.. There exists a unique triplet (Z,k,h) € IH? x IH2 x M?*L such that the process
(V,Z,k,h, A, C) is a solution of the RBSDE from Definition 2.3 associated with the driver
process f(w,t,y,2,k) = fit(w) and the obstacle (&). Moreover, the solution of this RBSDE
s unique.

Proof. By Lemma 3.4 (ii), the value process V corresponding to the optimal stopping
problem (3.4) satisfies Vp = V(T') =& a.s. and V; > &, 0 <t < T, a.s. By Lemma 3.5 (ii),
the process C of the Mertens decomposition of V' (3.5) satisfies the minimality condition
(2.5). Moreover, by Lemma 3.5 (iii) and Lemma 3.6, the process A satisfies the minimality
condition (2.4). By Lemma 2.1, there exists a unique triplet (Z,k, h) € IH? x IH? x M+
such that dM; = Z;dW; + fE kt(e)N(dt, de) + dhy. The process (V, Z,k,h, A,C) is thus a
solution of the RBSDE (2.3) associated with the driver process (f;) and the obstacle &.
The uniqueness of the solution follows from the a priori estimates (cf. Lemma 3.7),

together with classical arguments (cf. step 5 of the proof of Lemma 3.3 in [19]). O

We are interested in generalizing this result to the case of the optimal stopping problem
(1.1) with non-linear f-expectation (associated with a non-linear driver f(w,t,y,z,£)). To
this purpose, we first establish an existence and uniqueness result for the RBSDE from
Definition 2.3 in the case of a general (non-linear) Lipschitz driver f(w,t,v, 2, k).

4. Existence and uniqueness of the solution of the RBSDE with an irregular
obstacle and a general filtration in the case of a general driver

In Theorem 3.1, we have shown that, in the case where the driver does not depend on
Y, z, and K, the RBSDE from Definition 2.3 admits a unique solution. Using this result to-
gether with the above a priori estimates from Lemma, 3.7, we derive the following existence
and uniqueness result in the case of a general Lipschitz driver f(¢,y, z, k).

By the a priori estimates from Lemma 3.7 and using similar arguments to those used
in the right-u.s.c. case (cf. proof of Theorem 3.4 in [19]), we derive the following result:

Theorem 4.1 (Existence and uniqueness). Let ¢ be a process in S? and let f be a
Lipschitz driver. The RBSDE with parameters (f,€) from Definition 2.3 admits a unique
solution (Y, Z,k,h, A,C) € 8% x H? x IH? x M?>+ x 8% x §2.

Remark 4.1. In [28], the above result is shown in a Brownian framework by using a pe-
nalization method. Our approach provides an alternative proof of this result.

We now provide a useful property of the solution of an RBSDE.
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Lemma 4.1 (£/-martingale property of Y). Let & be a process in S and let f be a
Lipschitz driver. Let (Y, Z, k, h, A,C) be the solution to the reflected BSDE with parameters
(f,€) as in Definition 2.3. For each S € Tor and for each ¢ > 0, we set

Tg:=inf{t > S,Y; < & +¢€}. (4.1)
The process (Y;) is an E/-martingale on [S, 7§].

Proof.  The proof in our case is identical to that of Lemma 4.1 (i7) in [19] (which does
not require any regularity assumption of £). It is therefore omitted. O

Remark 4.2. In the case where £ is nonnegative, the above result holds true also on the
stochastic interval [S, 2], where X € (0,1) and 73 := inf{t > S : \Y; < &}. Note that in
the case where £ > 0 , we have Y >0 (asY > & > 0); hence, \Yr < Yp =&r a.s. and T§
18 finite a.s.

5. Optimal stopping with non-linear f-expectation: formulation of the problem

Let (&¢)te[o,r] be a process in S2. Let f be a Lipschitz driver. For each S € Tor, we
define the value at time S by

V(S) :==ess sup 53;7(57). (5.1)

TETs,T

We make the following assumption on the driver (cf., e.g., Theorem 4.2 in [36]).
Assumption 5.1. Assume that dP ® dt-a.e. for each (y, z, ki, k2) € R? x (L?)2,

Fty, 2, k) — ft,y, 2, k) > (0775R k4 — k),

where 0 : [0, T] x @ x R2 x (L2)2 = L2; (w, t,y, 2, ki, ko) — 0970 (w, ) is o P @ B(RY) ®
B((L?)?)-measurable mapping, satisfying H@?’Z’h’b(-)Hy < C for all (y,z ki, k) € R? x

(L?)?, dP ®@dt-a.e., where C is a positive constant, and such that 9%"’Z’k1’k2(e) > —1, for all
(y, 2, k1, k2) € R? x (L?)?, dP ® dt ® dv(e) — a.e.

We recall that under Assumption 5.1 on the driver f, the functional Sg ~(+) is nonde-
creasing (cf. |36, Thm. 4.2] and Remark 12.1 in the Appendix).
As mentioned in the introduction, the above optimal stopping problem has been largely
studied: in [16], and in [2], in the case of a continuous pay-off process &; in [37] in the case
of a right-continuous pay-off; and recently in [19] in the case of a right-u.s.c. pay-off process
€. In this section, we do not make any regularity assumptions on £ (cf. also Remark 2.2).
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We begin by addressing the simpler case where the payoff is assumed to be right w.s.c.
This preliminary study of the right u.s.c. case will allow us to establish an £/-Mertens
decomposition for strong £f-supermartingales with respect to a general filtration (extending
the existing results from the literature; cf. [3] and [19]). This will be an important result
for the treatment of the non-linear optimal stopping problem in the case of a completely
wreqular pay-off.

6. Optimal stopping with non-linear f-expectation: the right u.s.c. case

Let f be a Lipschitz driver satisfying Assumption 5.1. The following result relies cru-
cially on an assumption of right-uppersemicontinuity of .

Lemma 6.1. Let £ € S?, supposed to be right u.s.c. Let (Y, Z,k, h, A,C) be the solution to
the reflected BSDE with parameters (f,€) as in Definition 2.3. Let S € Tor and let € > 0.
Let 7§ be the stopping time defined by (4.1), that is, 7 = inf{t > §,Y; < & +¢}. We have

Yee < &g+ as. (6.1)

Proof.  The proof of this result in our case of a general filtration is identical to that of
[19, Lemma 4.1(i)] in the case of a Brownian-Poisson filtration. O

By the previous lemma together with Lemma 4.1, we derive the following result:

Theorem 6.1 (Characterization theorem in the r.u.s.c. case). Let (&)icp0,1] be a pro-
cess in 82, supposed to be right u.s.c. Let (Y, Z k,h, A, C) be the solution to the reflected
BSDE with parameters (f,€) as in Definition 2.3.

(i) For each stopping time S € Tor, we have

Yg =ess sup SéT(f.r) a.s. (6.2)
TGTS,T ’

(it) Moreover, the stopping time 7§, defined by 7& :=inf{t > S, Y; < & + €}, satisfies
Ys < 55775 (6rs) + Le  aus., (6.3)

where L is a constant which only depends on T and the Lipschitz constant K of f.
In other words, 75 is an Le-optimal stopping time for problem (6.2).

In other words, the process (Y;) aggregates the value family (V' (S),S € To,r) defined by (5.1), that is
Ys =V(S) as. for all S € To,r.
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Proof.  Let us show the inequality (6.3). Since by Lemma 4.1, the process (Y;) is an

a.s. Since £ is right u.s.c., we can appl
< g , pply

Lemma 6.1. Using this, the monotonicity property of the conditional f-expectation and the

&/-martingale on [9,7§], we get Yg = Eg - (Yre

a priori estimates for BSDEs (cf. [36] which still hold in our case of a general filtration), we
derive that Yg = gé,Tg(YTé) < 5575 (§rg +¢) < 5§7T§ (§5) + Le  a.s., where L is a positive
constant depending only on T and the Lipschitz constant K of the driver f; this gives
the desired inequality (6.3). Moreover, as € is an arbitrary nonnegative number, we get
Vs < esssuprery, 5577(&) a.s.

It remains to show the converse inequality. Let 7 € Tgr. By Lemma 12.2 in the Appendix,
the process (Y;) is a strong £/-supermartingale. Hence, for each 7 € Tsr, we have Yg >
5£7T(YT) > Egﬁ(&) a.s., where the second inequality follows from the inequality ¥ > £
and the monotonicity property of £/(-). By taking the supremum over 7 € Ts7, we get
Yg > esssup ey Egj(&) a.s. We thus get the equality (6.2), which ends the proof. O

We now investigate the question of the existence of optimal stopping times for the
optimal stopping problem (6.2). We first provide an optimality criterion.

Lemma 6.2 (Optimality criterion). Let & be a process belonging to S?, and let f be a
Lipschitz driver satisfying Assumption 5.1. Let S € Tor and 7° € Tgr. If Y is a strong
ET-martingale on [S, 7*] with Ve« = &« a.s., then the stopping time T* is optimal at time
S (ie. Yo = Egﬁ*(&*) a.s.). The converse statement also holds true, if, in addition, the

inequality from Assumption 5.1 is strict (that is, 095 > _1).

Proof.  The proof of this result is identical to the one in the case of a Brownian-Poisson
filtration, given in [19, Proposition 4.1 | (which does not require any regularity assumption
on &). It is therefore omitted. O

We now show that if £ is assumed to be r.u.s.c. and also l.u.s.c. along stopping times,
then there exists an optimal stopping time. Let S € 7o 7. Let us recall the definition of 7§
from before: 7§ := inf{t > S5,Y; < & + ¢}. We notice that 7§ is non-increasing in €. Let
(en) be a non-increasing positive sequence converging to 0. We set

The random time 7g is a stopping time in 7g7. We also set
79 = inf{t > SY; = &}.

We notice that 75" < Tg a.s. for all n. Hence, by passing to the limit, we get 7¢ < Tg a.s.
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In the following theorem we show that, under the additional assumption that & is l.u.s.c.
along stopping times, the stopping time 7g is an optimal stopping time at time S. We also
show that the stopping times 7g and Tg coincide.

Theorem 6.2 (Existence of optimal stopping time). Let (&,0 <t <T) be an r.u.s.c.
process in S? and let f be a Lipschitz driver satisfying Assumption 5.1. We assume, in ad-
dition, that (&) is Lu.s.c. along stopping times. Then, the stopping time Tg is S-optimal,
in the sense that it attains the supremum in (6.2). Moreover, Tg = Tg a.s.

Proof. By applying Fatou’s lemma for BSDEs (cf. Lemma A.5 in [11] 7), we obtain

: f I f .
h;ri)sogp 857@” (ﬁTgn) < &5y ( hyrln_)solip §T§n) < &5y (&) as., (6.4)
where the last inequality follows from the lu.s.c. (along stopping times) property of &
and from the monotonicity of 5§+S(-). On the other hand, from Eq. (6.3) in Theorem

6.1, we have Yg < limsup,,_, &l (§T§n) a.s. From this, together with (6.4), we get

S,’Tgn
Ys < Sfﬁs (5;5) a.s., which shows that 75 is an optimal stopping time.

Let us now prove the equality 7g = Tg a.s. We have already noticed that 7¢ < Tg
a.s. It remains to show the converse inequality. Note that for each S € Tor, Yg is
equal a.s. to the value at time S of the linear optimal stopping problem associated with
the pay-off process (&) and the instantaneous reward process (f;) defined by fi(w) =

flw,t, Y- (w), Zy(w), kt(w)), that is

-

Ys = esssup E[¢; +/ fudu | Fs] a.s.. (6.5)
T€7TS‘,T S

It is not difficult to see that 7g is also optimal for this linear optimal stopping problem.

Now, from classical results on linear optimal stopping, TSO is the minimal optimal stopping

time for problem (6.5); hence, we have #g > 70 a.s., which completes the proof. O

7. £f-Mertens decomposition of strong £f-supermartingales with respect to a
general filtration

By using the above characterization of the solution of the RBSDE with an r.u.s.c. obsta-
cle as the value function of the non-linear optimal stopping problem (5.1) (cf. Theorem 6.1),

"Note that Fatou’s lemma for (non-reflected) BSDEs, shown in [11] in the case of a Brownian-Poisson
filtration, still holds true in our framework of a general filtration.
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we derive an £7-Mertens decomposition of strong £f-supermartingales, which generalizes
the one provided in [19] (cf. Theorem 5.2 in [19]) to the case of a general filtration.®

As mentioned before, this is an important property in the present work which will allow
us to address the non-linear optimal stopping problem in the completely irregular case (cf.
Section 9.3, more precisely the proof of Proposition 9.1, and also Theorem 10.1).

Theorem 7.1 (£/-Mertens decomposition). Let (V;) be a process in S?. Let f be a
Lipschitz driver satisfying Assumption 5.1. The process (Y3) is a strong E -supermartingale
if and only if there exists a nondecreasing right-continuous predictable process A in S? with
Ag = 0 and a nondecreasing right-continuous adapted purely discontinuous process C in S?
with Co_ = 0, as well as three processes Z € IH?, k € H2 and h € M?>~*, such that

—dY; = f(t, Y:, Z4, k’t)dt—FdAt—l—dCt—thWt—/ /{:t(e)N(dt, de)—dht, 0<t<T. (71)
E

This decomposition is unique. Moreover, a strong £ -supermartingale is necessarily r.u.s.c.

Proof.  Assume that (Y;) is a strong £/-supermartingale. By the same arguments as in
[19] (cf. Lemma 5.1 in [19]), it can be shown that the process (Y;) is r.u.s.c. Let S € To 7.
Since (Y;) is a strong £f-supermartingale, we have Yg > 8§T(YT) a.s. for all 7 € Tgr. We
derive that Yg > esssup ;. SKJ;T(YT) a.s. Now, by definition of the essential supremum,
Ys < esssuprerg ngT(YT) a.s., since S € Tgr. Hence, Yg = esssup, cr, 5577(5/7) a.s. By
Theorem 6.1, the process (Y;) coincides with the solution of the reflected BSDE associated
with the (r.u.s.c.) obstacle (Y;), and thus admits the decomposition (7.1).

The converse follows from Lemma 12.2 in the Appendix. O

8. Optimal stopping with non-linear f-expectation in the completely irregular
case: the direct part of the approach

We now turn to the study of the non-linear optimal stopping problem (5.1) in the more
difficult case where (&) is completely irreqular. Since the process (&) is not r.u.s.c., the
inequality Yre < &z +¢ (i.e. inequality (6.1)) does not necessarily hold (not even in the
simplest case of linear expectations; cf., e.g., [12]). This prevents us from adopting here
the approach used in the r.u.s.c. case to prove an infinitesimal characterization of the value
of the non-linear optimal stopping problem in terms of the solution of an RBSDE. Thus,

8An £/-Mertens decomposition was also shown in [3] (at the same time as in [19]) in the case of a driver
f(t,y, z) which does not depend on £ by using a different approach.

17



when £ is completely irregular, we have to proceed differently. We use a combined approach
which consists in a direct part and an RBSDE-part. This section is devoted to the direct
part of our approach to the non-linear optimal stopping problem (5.1).

8.1. Preliminary results on the value famaily

Let us first introduce the definition of an admissible family of random variables indexed
by stopping times in 7o 7 (or 7o r-system in the vocabulary of Dellacherie and Lenglart [5]).

Definition 8.1. We say that a family U = (U(S), S € To.r) is admissible if it satisfies the
following conditions

1. forall S € Tor, U(S) is a real-valued Fs-measurable random variable.

2. forall S,S" € Tor, US)=U(Y) a.s. on {S=5"}.
Moreover, we say that an admissible family U is square-integrable if for all S € Tor, U(S)
15 square-integrable.

Lemma 8.1 (Admissibility of the family V). The family V = (V(5),S € Tor) de-

fined in (5.1) is a square-integrable admissible family.

Proof.  The proof uses arguments similar to those used in the "classical" case of linear
expectations, combined with some properties of f-expectations.

For each S € 7o 1, V(S) is an Fs-measurable square-integrable random variable, due to the
definitions of the conditional f-expectation and of the essential supremum. Let us prove
Property 2 of the definition of admissibility. Let S and S’ be two stopping times in 7o 7.
We set A := {S = 5’} and we show that V(S) = V(5’), P-a.s. on A. For each 7 € Tgr,
we set 74 ;=714 + T14.. We have 74 > S a.s. By using the fact that S = 5" a.s. on A,
the fact that 74 = 7 a.s. on A, and a standard property of conditional f-expectations (cf.,
e.g., Proposition A.3 in [21] which can be extended without difficulty to the framework of
general filtration), we obtain

1AEL (&) = 14 (6] = €L 0 614) = €L 6nu1a) = 1aEL  [60,] < 1aV(S),
where f7(t,y, z,k) == f(t,y, 2, K)1jz<;}- By taking the esssup over T, we get 14V (S)

<
14V (S"). We obtain the converse inequality by interchanging the roles of S and S’. O

Lemma 8.2 (Optimizing sequence). For each S € To 1, there exists a sequence (T )nen
of stopping times in Tgr such that the sequence (€§ 7. (6r.))nen is nondecreasing and

V(S) =lim, o0 T €L (&) aus.
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Proof.  Due to a classical result on essential suprema, it is sufficient to show that, for
each S € Tor, the family (g, (§7), 7 € Tsr) is stable under pairwise maximization. Let
us fix S € Tor. Let 7 € Tgr and 7" € Tgr. We define A := {5§T,(£T/) < Sgﬁ(&)} and
v:=7144+7"14c. Wehave A € Fgand v € Tgr. We compute 1AE§V(§,,) = 55}1“(5,,114) =
ELFA(E1A) = 14EL (&) as. Similarly, we show 148 (&) = 1€ (). 1t follows
that Sévy(ﬁy) = S§T(§T)1A + 5§7T, (&)1 pe = Egﬁ(é})\/ Eéﬁ,(fﬂ), which shows the stability
under pairwise maximization and concludes the proof. g

Definition 8.2 (£f-supermartingale family). An admissible square-integrable family U :=
(U(S), S € Tor) is said to be an ET -supermartingale family if for all S,S" € Tor such that

S < S a.s., we have 5§7S,(U(S')) <U(S) a.s.

Definition 8.3 (Right-uppersemicontinuous family). An admissible familyU := (U(S), S €
To.r) is said to be a right-uppersemicontinuous (along stopping times) family if, for any

(Tn) nonincreasing sequence in Tor and any T in Tor such that T = lim | 7,, we have

U(r) > limsup,,_,., U(m,) a.s.

Lemma 8.3. LetU := (U(S), S € Tor) be an &' -supermartingale family. Then, (U(S), S €
To.r) is a right-uppersemicontinuous (along stopping times) family.

Proof.  Let 7 € 7o and let (7,) be a nonincreasing sequence of stopping times such
that lim, 4007 = 7 a.s. and for all n € IN, 7, > 7 a.s. on {7 < T}, and such that
lim,, o0 U(7,) exists a.s. As U is an &f-supermartingale family and as the sequence
(7,) is nonincreasing, we have giTn(U(Tn)) < EI,TRH(U(THH)) < U(r) a.s. Hence, the
sequence (€f,Tn(U(Tn)))n is nondecreasing and U(7) > lim 1 &{Tn(U(Tn)). Hence, by the
property of continuity of BSDEs with respect to terminal time and terminal condition
(cf. [36, Prop. A.6] which still holds in the case of a general filtration), we get U(7) >
My o0 L7, (U(T0)) = Efr(limys o0 U(mn)) = limp_400 U(7y) a.s. By Lemma 5 of
Dellacherie and Lenglart [5] ?, the family U is thus right-u.s.c. (along stopping times). [J

Theorem 8.1. The value family V = (V(S), S € To,r) defined in (5.1) is an &/ -supermartingale
family. In particular, V- = (V(S), S € Tor) is a right-u.s.c. (along stopping times) family
i the sense of Definition 8.3.

9The chronology © (in the vocabulary and notation of [5]) which we work with here is the chronology
of all stopping times, that is, © = To,r; hence [0] = © = To, 7.
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Proof.  We know from Lemma 8.1 that V is a square-integrable admissible family. Let
S € Tor and S" € Tgp. We will show that Egs,(V(S')) < V(S) a.s., which will prove
that V is an £f-supermartingale family. By Lemma 8.2, there exists a sequence (7p)neN
of stopping times such that 7, > 5" a.s. and V(5') = lim, 00 1 €£,7Tn (&5,) a.s. By the
continuity and the consistency properties of f-expectation, we get

E55(V(S) = Efg(lim &L (6,) = lim € g (Eh . (&)) = lim &L (&) <V(S).

Hence, V is an £7-supermartingale family. This property, together with Lemma 8.3, yields
that V' is a right-u.s.c. (along stopping times) family. O

8.2. Aggregation and Snell characterization

Using the above results on the value family V' = (V(S5), S € To.r), we show the following
theorem, which generalizes some results of classical optimal stopping theory (more precisely,
Lemma 3.4 (1)) to the case of an optimal stopping problem with f-expectation.

Theorem 8.2 (Aggregation and Snell characterization). There ezists a unique right-
uppersemicontinuous optional process, denoted by (Vi)cor), which aggregates the value
family V.= (V(S), S € Tor). Moreover, (Vi)iejor) is the E7-Snell envelope of the pay-off
process &, that is, the smallest strong £ -supermartingale greater than or equal to €.

Proof. By Theorem 8.1, the value family V = (V(S), S € Tor) is aright-u.s.c. family (or
a right-u.s.c. Top-system in the vocabulary of Dellacherie-Lenglart [5]). Applying Theorem
4 of Dellacherie-Lenglart ([5]), gives the existence of a unique (up to indistinguishability)
right-u.s.c. optional process (V;).e(o,r) which aggregates the value family (V(S), S € Tor).
From this aggregation property, namely the property Vg = V(S) a.s. for each S € Ty 1, and
from Theorem 8.1, we deduce that the process (V})te[O’T} is a strong £f-supermartingale.
Moreover, we have Vg = V(S) > £g a.s. for each S € 7o 7, which implies that V; > &, for
all t € [0,77], a.s.

Let us now prove that the process (Vi)cor) is the smallest strong Ef-supermartingale
greater than or equal to £. Let (V/).ejo,r) be a strong &7 -supermartingale such that V/ > &,
forall t € [0,77, a.s. Let S € Tor. We have V! > &, a.s. forall 7 € Tgr. Hence, ngT(VT’) >

Sgﬁ(&) a.s., where we have used the monotonicity of the conditional f-expectation. On
the other hand, by using the strong £7-supermartingale property of the process (V/ )telo,1]5
we have V{ > SQT(VT’) a.s. for all 7 € Tgp. Hence, V§ > SQT(&) a.s. for all 7 €
Ts,r. By taking the essential supremum over 7 € Tgr in the inequality, we get V§ >
€SS SUP ey Egj(f.r) = V(S) = Vg a.s. Hence, for all S € 7o, we have V§ > Vs as.,
which yields that V) > V4, for all ¢ € [0,T], a.s. The proof is thus complete. O
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9. Non-linear Reflected BSDE with completely irregular obstacle and general
filtration: useful properties

Our aim now is to establish an infinitesimal characterization of the value process of the
non-linear problem (5.1) in terms of the solution of a non-linear RBSDE (thus generalizing
Theorem 3.1 from the classical linear case to the non-linear case). In order to do so, we first
need to establish some results on non-linear RBSDEs with completely irreqular obstacles,
in particular, a comparison result for such RBSDEs. This section is devoted to these results
(this is the RBSDE-part of our approach to problem (5.1)). The results from this section
extend and complete our work from [19], where an assumption of right-uppersemicontinuity
on the obstacle is made. Let us note that the proof of the comparison theorem from [19]
cannot be adapted to the completely irregular framework considered here; instead, we rely
on a Tanaka-type formula for strong (irregular) semimartingales which we also establish.

Remark 9.1. (A "bottle-neck" of the direct approach) One might wonder whether the
infinitesimal characterization for the non-linear optimal stopping problem (5.1) can be 0b-
tained by pursuing the direct study of the value process (Vi) of problem (5.1), similarly to
what was done in the classical linear case in Sub-section 3.1. In the classical case, we ap-
plied Mertens decomposition to (Vi); then, we showed directly the minimality properties for
the processes A% and A° (cf. Lemmas 3.2 and 3.3) by using the martingale property on
the interval [S, 73] from Lemma 3.1(iii), which itself relies on Maingueneau’s penalization
approach (cf. also Remarks 3.3 and 3.2). In the non-linear case, Mertens decomposition
is generalized by the £F-Mertens decomposition (cf. Theorem 7.1). However, the ana-
logue in the non-linear case of the martingale property of Lemma 3.4[(iii)] (namely, the
ET-martingale property) cannot be obtained via Maingueneau’s approach (not even in the
case of nonnegative & and under the additional assumption f(t,0,0,0) = 0 which ensures
the non-negativity of ) due to the lack of convexity of the functional 7.

9.1. Tanaka-type formula

The following lemma will be used in the proof of the comparison theorem for RBSDEs
with irregular obstacles. The lemma can be seen as an extension of Theorem 66 of 35,
Chapter IV] from the case of right-continuous semimartingales to the more general case of
strong optional semimartingales.

Lemma 9.1 (Tanaka-type formula). Let X be a (real-valued) strong optional semimartin-
gale with decomposition X = Xo+ M+ A+ B, where M is a local (cadlag) martingale, A is a
right-continuous adapted process of finite variation such that Ag = 0, B is a left-continuous
adapted purely discontinuous process of finite variation such that Bo =0. Let f : R — R
be a convex function. Then, f(X) is a strong optional semimartingale. Moreover, denoting
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by f' the left-hand derivative of the convez function f, we have

f(Xt) = f(XO) + 0.4 f,(Xs—>d(As + MS) + 0.) f/(XS)st+ + K,

where K is a nondecreasing adapted process (which is in general neither left-continuous nor
right-continuous) such that

AK; = f(X3) — (X)) = f1(Xi-)AX; and ALKy = f(Xiy) — f(Xe) — /(X)) AL Xy

Proof. Our proof follows the proof of Theorem 66 of [35, Chapter IV] with suitable
changes.

Step 1. We assume that X is bounded; more precisely, we assume that there exists N € IN
such that |X| < N. We know (cf. [35]) that there exists a sequence (fy,) of twice continu-
ously differentiable convex functions such that (f,,) converges to f, and (f},) converges to

f’ from below. By applying Gal’chouk-Lenglart’s formula (cf., e.g., Theorem A.3 in [19])
to fn(X¢), we obtain for all 7 € To 1

FalX) = fulXo)+ [ Fo(Xo)d(As+ M)+ [ fu(X)dByy + K7, as., where (9.1)

(0,7] [0,7)
K= 3 [falX0) = fuXes) = FGOAX] + 30 [fulXes) = ful(X0) = FU(X)ALX,]
0<s<t 0<s<T
v I x yaoae, ey, as.
2 Jio,1]

(9.2)
We show that (K7') is a convergent sequence by showing that the other terms in Equation
(9.1) converge. The convergence f(o,r] (X )d(Ags + M) vd f(oﬂ ' (Xs—)d(As + My)
is shown by using the same arguments as in the proof of [35, Thorem 66, Ch. IV]. The
convergence of the term f[o,r) 11 (Xs)dBsy, which is specific to the non-right-continuous
case, is shown by using dominated convergence. We conclude that (K7) converges and
we set K, := lim,_,oo K. The process (K;) is adapted as the limit of adapted processes.
Moreover, we have from Eq. (9.2) and from the convexity of f,, that, for each n, K{* is
nondecreasing in ¢. Hence, the limit K; is nondecreasing.
Step 2. We treat the general case where X is not necessarily bounded by using a localization
argument similar to that used in [35, Th. 66, Ch. IV]. O

9.2. Comparison theorem

Theorem 9.1 (Comparison). Let £ € 82, & € S? be two processes. Let f and f' be Lip-
schitz drivers satisfying Assumption 5.1. Let (Y, Z,k,h, A,C) (resp. (Y',Z' K W, A'",C"))
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be the solution of the RBSDE associated with obstacle & (resp. &) and with driver f (resp.
) If& <&, 0<t<Tas and f(t,Y/,Z,, k) < f'(t,Y/, Z}, k), 0 <t <T dP ®dt-a.s.,
then, Y} <Y/, 0<t<T a.s.

Proof. We set }_/t = Y;j — }/tlﬂ Zt = Zt - Zé, ];t = kt — ké, At = At - Aé, ét = Ct — Cé,
Et = ht - h;ﬁv and th = f(t, }/t—a Zt7 kt) - f/(t7 E/tl—a Zé? k{f) Then,
—dﬁ = ﬁdt + dAt + dét_ - thWt - / ]_ﬂt(e)N(dt, de) — dilt, with Y/T = fT — féw
_ E _
Applying Lemma 9.1 to ¥;" and noticing that Y, =0 (as & < &), we obtain

Y;’ — / 1{Ys_>O}ZSdWS / / 1{YS_>0}ES(€)N(dS, de) — / 1{YS_>0}dFL3
(¢,T] tT)JE (t,T]

+ / 1{Y3_>0}fsd5 + / 1{YS_>0}dAs + / 1{}75>0}dc_'s + (Kt — KT).
(T (t,T) [t,T)

)

(9.3)
We Set 5t = f(tzyz—yztyyli?:fy't(,t!yvtfvztykt) 1{}71577&0} and 6t = f(tvi/t—7Zt7]<3Zti:‘;(£t7Y:f—yztvkt) 1{Zt7£0}

Due to the Lipschitz-continuity of f, the processes § and 3 are bounded. We note that f; =
515}715 + /StZt + f(YVt/—a Zév kt) - f()/tl—v Zéa k‘li,,‘) + Pt where Yt = f(y;f,—a Zéa kylf) - f,(Y;t/—7 Zé? kllf)
Using this, together with Assumption 5.1, we obtain

[ <6Ye+ BiZs + (v, ki)y + ¢ 0<t<T, dP®dt— a.e., (9.4)

Y/ 20kl k ) )
where we have set v, := 0,'~"""""". For 7 € Tor, let T, be the unique solution of the

following forward SDE dI'; s = I'; [58d5+BSdWS+fE %(e)N(ds, de)] with initial condition
(at the initial time 7) I'; ; = 1. To simplify the notation, we denote I'z ; by I's for s > 7.

By applying Gal’chouk-Lenglart’s formula to the product (I';Y;"), and by using that
(he, W) =0, we get

T
FTYT+ — *(MT — MT) — / FS(}/;E(SS + ZS]‘{YS_>O}53 —_ fs]‘{YS_>O})dS

T T T
— 76 X 7 A ¢ d7_
_,_/T stl{ys_>0}dAs + Z I‘s,l{ys_>0}AAs —/T Is_dK; —/T I's_dK, (9.5)

T<s<T

T
+/ Tilgy,0ydCs — /rde+ > ALAY

T7<s<T

where the process M is defined by M MW+MN+Mh with Mt : fo 1{y >0}Z +

V,E Bs)dWy, and MY := [} [, T (e)1gy, w0y +Yiivs(e)) ~(ds,de), and M} := [/ Ui 1y _sopdhs.
Note that by classical arguments (Wthh use Burkholder-Davis-Gundy inequalities), the
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stochastic integrals MW, MY and M" are martingales. Hence, M is a martingale (equal
to zero in expectation).

By definition of T', we have I'; = 1, which gives that I',Y.* = Y.+, Moreover, we have
STy oydCs = [T T 15 00ydCs — [T 1y, 16ydCY. For the first term, it holds
JI Ty 2ydCs = 0. Tndeed, {Y, > 0} = {V; > Y/} C {Y, > &} (as Y] > & > &,).
This, together with the Skorokhod condition for C gives the equality. For the second
term, it holds —fTT Lsliy,503dC; < 0, as I' > 0 and dC’ is a nonnegative measure.
Hence, fTTFsl{YS>0}dC'S < 0. Similarly, we obtain fTTFs,l{YS_w}dflg < 0. Indeed,
ST 1y gydAS = [TT 1y g dAS — [TT 1(y 4 dAY. For the first term, we
have fTT T 1y, -0ydAS = 0. This is due to the fact that {Y,- > 0} = {V,;- > Y] } C
{Yoo > &} (as Y] > &L > &, and hence Y/ > &), together with the Skorokhod con-
dition for A°. For the second term, we have —f;p FS,I{YS_>0}dA;C < 0. We also have
— fTT Is_dK¢ <0and — fTT dKSt < 0. Hence,

T

YT+ <= (Mr— M) - / PS(Ystés + Zsl{?5,>0}58 - fsl{?s,>0})d5

B T B (9.6)

+ > Tyl g AA, —/ T dK$™ — Y ATAY
T<s<T T T7<s<T
We compute the last term Y. __ . AT AYH
Let (ps) be the point process associated with the Poisson random measure N (cf. [7,
VIII Section 2. 67|, or [25, Section III §d]). We have ATy = T's_~vs(ps) and AY;" =
, _ - -

1{5757>0}]€5(p5) — 1{}757>0}AA5 + AKS + 1{3‘/57>0}Ah5. Hence,

> ALAY =
T<s<T
= Z stl{Yg_>0}’Ys(ps)ks(p8)_ Z st'Vs(ps)(l{Yg_>0}AAs_AK;L__1{}73_>0}Ah8>
T<s<T T<s<T
T - _ -
_ /T [E Do Ly sope(@hs()N(ds,de) — 3 Ty 7e(po) (L, sy A4, — AKS™ — 15 g Ahy)

T<s<T
T B 5 T B
:/ /EFS1{Y§_>0}%(e)k‘s(e)N(d8,de)+/ Ds-Liy, o1 {vs: ks)uds
- Z Fs—l{?5,>0}75<pS>AAs+ Z s s(ps) AKS ™ + Z Ps—l{Y5,>0}'Ys(p8)ABs-
T<s<T T<s<T T<s<T

(9.7)
By plugging this expression in equation (9.6) and by putting together the terms in ”ds”,
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the terms in ”ng’_”, and the terms in "AA,”, we get

T
Yq—+ < - (MT - M'r) - / Fs—(}/;t(ss + Zsl{}_/sf>0}185 + 1{YS,>0} <757 ks>1/ - fsl{Y57>0})d5

+ > Taly coy(1+7(pa)AA, — > Too(1+7:(ps) AKS™
T<s<T T<s<T

T .
-3 - [ alh [ g @S],

T 0 JE ©.8)
where M; := fg I5 Fs_1{psi>0}*ys(e)lgs(e)]v(ds,de). Note that by classical arguments (as
for M above), the stochastic integral M is a martingale, equal to zero in expectation.

We have — [T Ty (VP15 oop0s+ Zsliy, w0y Bs+ 1y, _sop (s, Ris)o — Folgy,_sop)ds <
fTT Ds—1iy, ~o1psds, due to the inequality (9.4). The term — > 7 T's— (1475 (ps)) AKS™
is nonpositive, as 1 + s > 0 by Assumption 5.1. The term > _ 7 stl{f/s_>0}(1 +
vs(ps))AA, is nonpositive, due to 1 + 5 > 0, to the Skorokhod condition for AA, and
to AAL > 0 (the details are similar to those for dC' in the reasoning above). Since h €
M?L by Remark 2.1, we derive that the expectation of the last term of the above in-
equality (9.8) is equal to 0. Moreover, the term fTT I‘S_l{yyw}gosds is nonpositive, as
ws = f(Y], ZL kL) — f/(Y], ZL K,) <0 dP ®@ds-a.s. by the assumptions of the theorem. We
conclude that E[Y,F] < 0, which implies Y, = 0 a.s. The proof is thus complete. O

Remark 9.2. Note that due to the irreqularity of the obstacles, together with the presence
of jumps, we cannot adopt the approaches used up to now in the literature (see e.g. [13],
[4], [37] and [19]) to show the comparison theorem for our RBSDE.

9.3. Non-linear operator induced by an RBSDE. £T-Snell characterization

We introduce the non-linear operator Ref/ (associated with a given non-linear driver
f) and provide some useful properties.

Definition 9.1 (Non-linear operator Ref/). Let f be a Lipschitz driver. For a process
(&) € 82, we denote by Reff[€] the first component of the solution to the Reflected BSDE
with (lower) barrier & and with Lipschitz driver f.

The operator Ref/[] is well-defined due to Theorem 4.1. Moreover, Ref/[] is valued
in §27use where S2m4s¢ 1= {¢ € S : ¢pisrus.c.} (cf. Remark 2.3). In the following
proposition we give some properties of the operator Ref/. Note that equalities (resp.
inequalities) between processes are to be understood in the "up to indistinguishability"-
sense. We recall the notion of a strong £/-supermartingale.
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Definition 9.2. Let ¢ be a process in S?. Let f be a Lipschitz driver. The process ¢ is
said to be a strong & -supermartingale (resp. a strong Sf—martmgale) L if 551((157) < ¢q

a.s. (resp. 5;7(41)7) = ¢y a.5.) ono <7, forall o,7 € Tor.

Using the above comparison theorem and the £f-Mertens decomposition for strong
(r.us.c.) £f-supermartingales in the case of a general filtration (cf. Theorem 7.1), we show
that the operator Ref/ satisfies the following properties.

Proposition 9.1 (Properties of the operator Ref’). Let f be a Lipschitz driver sat-
isfying Assumption 5.1. The operator Reff : 8% — §27s¢ defined in Definition 9.1, has
the following properties:

(i) The operator Ref! is nondecreasing, that is, for £,&' € S? such that € < &' we have
Ref/[€] < Ref[¢)].

(ii) If € € S% is a (r.u.s.c.) strong E-supermartingale, then Ref’[¢] = €.

(iii) For each & € S?, Reff[€] is a strong Ef -supermartingale and satisfies Reff[¢] > €.

Proof.  The assertion (i) follows from our comparison theorem for reflected BSDEs with
irregular obstacles (Theorem 9.1). Let us prove (ii). Let £ be a (r.u.s.c.) strong &£7-
supermartingale in S2. By definition of Ref/, we have to show that £ is the solution of the
reflected BSDE associated with driver f and obstacle £&. By the £f-Mertens decomposition
for strong (r.u.s.c.) £/-supermartingales in the case of a general filtration (Theorem 7.1),
together with Lemma 2.1, there exists (Z, k, h, A, C) € IH? x IH2 x M?*¥ x §? x §? such that

*dgt = f(t, ét, Zt, k?t)dt - thWt - / kt(e)N(dt, de) - dht + dAt + dCt,, 0 S t S T,
E

where A is predictable right-continuous nondecreasing with Ag = 0, and C is adapted
right-continuous nondecreasing and purely discontinuous, with Co— = 0. Moreover, the
Skorokhod conditions are here trivially satisfied. Hence, ¢ = Ref/[€], which is the desired
conclusion. It remains to show (iii). By definition, the process Reff[¢] is equal to Y,
where (Y, Z,k,h, A,C) is the solution our reflected BSDE. Hence, Ref/[¢] = Y admits
the decomposition (7.1), which, by Theorem 7.1, implies that Ref/[¢] = Y is a strong
£7-supermartingale. Moreover, by definition, Reff[¢] = Y is greater than or equal to €. O

With the help of the above proposition, we show that the process Ref/[¢] is character-
ized in terms of the smallest strong £7-supermartingale greater than or equal to &.

Theorem 9.2 (The operator Ref/ and the £/- Snell envelope operator). Let & €
S? and let f be a Lipschitz driver satisfying Assumption 5.1. The first component Y =
Refl[€] of the solution to the RBSDE with parameters (€, f) coincides with the £7-Snell
envelope of &, that is, the smallest strong £/-supermartingale greater than or equal to £.
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Proof. By Proposition 9.1 (iii), the process Y = Ref/[¢] is a strong £/-supermartingale
satisfying ¥ > €. It remains to show the minimality property. Let Y’ be a strong &£7-
supermartingale such that Y/ > ¢. We have Reff[Y'] > Ref/[¢], due to the nondecreas-
ingness of the operator Ref/ (cf. Proposition 9.1 (i)) On the other hand, Reff[Y'] = Y’
(cf. Proposition 9.1 (ii)) and Reff[¢] =Y. Hence, Y’ > Y, which completes the proof. O

In the case of a right-continuous left-limited obstacle & the above characterization has
been established in [37]; it has been generalized to the case of a right-upper-semicontinuous
obstacle in [19, Prop. 4.4]. Let us note however that the arguments of the proofs given in
[37] and in [19] cannot be adapted to our general framework.

10. Infinitesimal characterization of the value process in terms of an RBSDE

The following theorem is a direct consequence of the Theorems 9.2 and 8.2. It gives
"an infinitesimal characterization" of the value process (V;).c(o,7) of the non-linear problem
(5.1) in the completely irregular case.

Theorem 10.1 (Characterization in terms of an RBSDE). Let (§)c(o,r) be a pro-
cess in S? and let f be a Lipschitz driver satisfying Assumption 5.1. The value process
(Vi)ieo,r) aggregating the family V- = (V(S), S € Tor) defined by (5.1) coincides (up to
indistinguishability) with the first component (Yy)ejo,m of the solution of our RBSDE with
driver f and obstacle . In other words, we have, for all S € To T,

Ys = Vg =ess sup EgT(fT) a.s. (10.1)
T€Ts, T ’

Remark 10.1. Let us summarize our two-part approach to the non-linear optimal stopping
problem (5.1) in the case where & is completely irregular: First, we have applied a direct
approach to the problem (5.1), which consists in showing that the value family (V(5))seTs »
can be aggregated by an optional process (Vi)ico,r) and, then, in characterizing (V) as the
E7-Snell envelope of the (completely irreqular) pay-off process (£;). On the other hand, we
have applied an RBSDE-approach which consists in establishing some results on RBSDEs
with completely irreqular obstacles (in particular, existence, uniqueness, and a comparison
result) and some useful propertics of the operator Ref?, ' and then in using these properties
to show that the unique solution (Y;) of the RBSDE is equal to the E7-Snell envelope of the
completely irreqular obstacle. We have then deduced from those two parts (the direct part and
the RBSDE-part) that (Yy) and (Vi) coincide, which gives an infinitesimal characterization
for the value process (V4).

10We emphasize that the proof of these properties (cf. Proposition 9.1) relies heavily on the £f-Mertens
decomposition for strong £f-supermartingales (cf. Theorem 7.1), which is obtained as a direct consequence
of the preliminary result (Theorem 6.1) established in the r.u.s.c. case.
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Finally, let us put together some of the results for the non-linear optimal stopping
problem (5.1):
i) e For any reward process ¢ € S?, we have the infinitesimal characterization
Vi =Y, = Ref][¢], for all ¢, a.s. (Theorem 10.1).
e Also, (Vi)icjo,r) is the E7-Snell envelope of the pay-off process ¢ (Theorem 8.2).
ii) If, moreover, ¢ is right-u.s.c., then, for any S € T 7, for any € > 0, there exists an Le-
optimal stopping time for the problem at time S. (Theorem 6.1).
iii) If, moreover, £ is also left-u.s.c. along stopping times, then, for any S € 7o, there
exists an optimal stopping time for the problem at time S (Theorem 6.2).

11. Applications of Theorem 10.1

11.1. Application to American options with a completely irreqular payoff

In the following example, we set E := R, v(de) := Ad1(de), where X is a positive
constant, and where ¢; denotes the Dirac measure at 1. The process N; := N([0,¢] x {1})
is then a Poisson process with parameter ), and we have N; := N([0,t] x {1}) = N; — At.

We assume that the filtration is the natural filtration associated with W and N.

We consider a financial market which consists of one risk-free asset, whose price process
SY satisfies dSY = S97ydt, and two risky assets with price processes S!, S? satisfying:

dS} = Sl [uidt + o dWy + BLAN;);  dSE = S [pidt + ofdW, + BEANY).

We suppose that the processes o', 02, B, 5%, r,ut, u? are predictable and bounded, with
Bi > —1fori=1,2. Let yy := (u!, u?)" and let ¥y := (oy, Bt) be the 2 x 2-matrix with first
column oy := (o}, 02)" and second column B; := (3}, 3?)’. We suppose that ¥; is invertible
and that the coefficients of ¥;! are bounded.

We consider an agent who can invest his/her initial wealth = € R in the three assets.

For i = 1,2, we denote by ! the amount invested in the i risky asset. A process
© = (o', ©?) belonging to H? x H2 will be called a portfolio strategy.

The value of the associated portfolio (or wealth) at time ¢ is denoted by X% (or simply
by X;). In the case of a perfect market, we have dX; = (r: Xy + ¢} (e —1¢1))dt + oo dWy +
(p;ﬂtht, where 1 = (1,1)’. More generally, we will suppose that there may be some
imperfections in the market, taken into account via the nonlinearity of the dynamics of the
wealth and encoded in a Lipschitz driver f satisfying Assumption 5.1 (cf. e.g. Remark
6.1 in |20] in our market model, [16] and [9] in other frameworks). More precisely, we
suppose that the wealth process X7 (also X;) satisfies the forward differential equation:
—dXy = f(t, Xy, o o1, got’ﬁt)dt—got’atth—apt’ﬁtd](ft, with Xg = z, or, equivalently, setting
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Zy = SOt,Ut and k; = 90t,5t7
—dX; = f(t, Xy, Zy, ky)dt — ZydWy — kydNy; Xo = . (11.1)

Note that (Z;, kt) = ¢/, which is equivalent to ¢ = (Zy, k) Zt_l.
This model includes the case of a perfect market, for which f is a linear driver given by
f(tv Y, z, k) ="y — (Zv k) Efl(ﬂt - rt]-)'

Remark 11.1. Note that the wealth process X®% is an Ef-martingale, since X™% is the
solution of the BSDE with driver f, terminal time T and terminal condition X737

Let us consider an American option associated with terminal time T and payoff given
by a process (&) € S2. For each initial wealth x, we denote by A(z) the set of all portfolio
strategies ¢ € H2 x H2 such that X;"¥ > &, for all t € [0,7T] a.s. The superhedging price of
the American option at time 0 is defined by

uo = inf{z € R, Jp € A(x)}. (11.2)

Using the infinitesimal characterization of the value function (5.1) (cf. Theorem 10.1), we
derive the following characterizations of the superhedging price ug, as well as the existence
of a superhedging strategy.

Proposition 11.1. Let (&) be an optional process such that Elesssup, et . [&£[?] < oc.
(i) The superhedging price ug of the American option with payoff (&) is equal to the value
function V(0) of our optimal stopping problem (1.1) at time 0, that is

ug = sup 5({7(57). (11.3)
TE%,T
(ii) ug = Yo, where (Y, Z, k,h, A, C) is the solution of the RBSDE (2.3) (with h =0).
(iii) The portfolio strategy , defined by p¢' = (Zy, ki) B, is a superhedging strategy, that
is, belongs to A(ug).

Remark 11.2. This result generalizes Theorem 3.4 in [10] which concerns the case when
the payoff process € 1s right-continuous. Note also that, even in the case of a linear market,
our result for a completely irregular pay-off is new. Some additional comments relative to
this result are given in the Appendiz (cf. Remark 12.2).

Proof.  The proof relies on Theorem 10.1 and similar arguments to those used in the proof
of Theorem 3.4 in [10] in the case with RCLL payoff.

We first show that ug > sup.er; . 5({7(57). Let x € R be such that there exists ¢ €
A(z). We show that z > Yp. Since ¢ € A(z), we have, for each 7 € Tor, X777 > & as.
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From this and Remark 11.1, we get = = E&T(Xff"p) > E({T(fT). Hence, x > sup,¢7, . 8({7(57)
By definition of ug (cf. (11.2)), we get the desired inequality, that is, uo > sup,¢7; .. 5({T(§T).

Since by Theorem 10.1, Yo = sup,c7; ,. 5({7(57), we thus have ug > Y. In order to prove
the three first assertions of the above theorem, it is thus sufficient to show that ¢ € A(Yp),
which, by definition of ug, implies that Yy > wug (and hence, since ug > Yj, the equality
Yy = ug). Now, by (11.1), the value XY0:? of the portfolio associated with initial wealth
Yy and strategy @ satisfies: dX 0% = —f(t, X ? Z; k;)dt + dM;, with X)°? = Yy, where
M; = fot ZdWy + fot ksdNg. Moreover, since Y is the solution of the reflected BSDE (2.3)
(with h = 0), we have dY; = — f(t, Yz, Z¢, ki )dt+dMy—d A —dCy—. Applying the comparison
result for forward differential equations, we derive that X Y02 >y Since Y. > &, we thus
get XY09 > ¢ It follows that ¢ € A(Yp), which ends the proof. O

Example 11.1. (some examples of American options with completely irreqular pay-off)
We consider a pay-off process (&) of the form & := h(S}), fort € [0,T], where h : R — R is
a (possibly irregular) Borel function such that the process (h(S;)) is optional and (h(S})) €
S2. In general, the pay-off (&) is a completely irregular process. By the first two statements
of Proposition 11.1, the superhedging price of the American option is equal to the value
function of the optimal stopping problem (11.3), and is also characterized as the solution of
the reflected BSDE (2.3) with obstacle & = h(S}).

If h is an uppersemicontinuous function on R, then the process (h(S})) is optional, since
an w.s.c. function can be written as the limit of a (non increasing) sequence of continuous
functions. Moreover, the process (h(S})) is right-u.s.c. and also left-u.s.c. along stopping
times. The right-uppersemicontinuity of (&) follows from the fact that the process S' is
right-continuous; the left-uppersemicontinuity along stopping times of (&) follows from the
fact that S* jumps only at totally inaccessible stopping times. In virtue of Proposition 11.1,
last statement, there exists in this case an optimal exercise time for the American option
with payoff & = h(S}). A particular ezample is given by the American digital call option
(with strike K > 0), where h(x) 1= 1k 1o0)(z). The function h is u.s.c. on R. The
corresponding payoff process & = 15}21{ 15 thus r.u.s.c and left-u.s.c. along stopping times
wn this case, which implies the existence of an optimal exercise time.

In the case of the American digital put option (with strike K > 0), the corresponding
payoff & = 11 g 18 not r.u.s.c. We note that the pay-off of the American digital call and
put options is in general neither left-limited nor right-limited.

11.2. An application to RBSDFEs

The characterization (Theorem 10.1) is also useful in the theory of RBSDEs in itself: it
allows us to obtain a priori estimates with universal constants for RBSDEs with completely
irregular obstacles.
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Proposition 11.2 (A priori estimates with universal constants). Let & and &' be two
processes in S2. Let f and f' be two Lipschilz drivers satisfying Assumption 5.1 with com-
mon Lipschitz constant K > 0. Let (Y, Z, k) (resp. (Y',Z', k")) be the three first components
of the solution of the reflected BSDE associated with driver [ (resp. f') and obstacle & (resp.
&) LetY =Y =Y E:=¢ ¢ and §fs := f'(s, Y], Z/ kL) — f(s, Y], ZL KL).

R R ’ T8 R

Let n, 3> 0 with 8> 2K +3/n and n < 1/K?. For each S € Tor, we have

T
Y < P79 Eless sup 572|]:5] + nE[/ P55 f)%ds| Fs]  aus. (11.4)
reTsr s

Proof.  The proof is divided into two steps.

Step 1: For each 7 € Tor, let (X7, «7,17) (vesp. (X7, 7 7,1'7)) be the solution of the
BSDE associated with driver f (resp. f’), terminal time 7 and terminal condition &, (resp.
). Set X' := X" — X'7. By an estimate on BSDEs (cf. Proposition A.4 in [36]), we have

/

T
(X5)? < 2T B[ | Fol +77E[/ PEI(f = ) (s, X, m ] 1))Pds | Fs] - as.
S

s 18

from which we derive

T
(X5)% < T Eless sup 572].7:5] + nE[/ P9 (F)2ds| Fs]  as., (11.5)
TETs,T S

where f, 1= supy . x| f(5,9,2,k) — f'(s, ¥, 2,k)|. Now, by Theorem 10.1, we have

Vs = esssup ey, X§ and Y = esssup crg XgJ. We thus get [Ys| < ess SUP-e75 1 Xl
By (11.5), we derive the inequality (11.4) with 0 fs replaced by f..

Step 2: Note that (Y/, Z’, k") is the solution the RBSDE associated with obstacle ¢ and
driver f(t,y,z,k) + 0 f;. By applying the result of Step 1 to the driver f(¢,y,z, k) and the
driver f(t,y,2,k) + ¢ f; (instead of f’), we get the desired result. O

Remark 11.3. We note that a similar result holds for a doubly reflected BSDE (cf. Propo-
sition 6.6 in [8] in the case of RCLL barriers, and Corollary 5.2 in [20] in the case of
completely irreqular barriers).

12. Appendix

Let M, M’ € M?. Recall that MM’ — [M, M’] is a martingale, and that (M, M’) is
defined as the compensator of the integrable finite variation process [M, M']. Using these
properties we derive the following equivalent statements (cf., e.g.,[35] IV.3 for details):
(M, M"); =0,0<t<Tas. < [M,M]. is a martingale & MM’ is a martingale. !

"1n this case, using he terminology of [35] IV.3, M and M’ are said to be strongly orthogonal.
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For the convenience of the reader, we state the following equivalences, which, to our
knowledge, are not explicitly specified in the literature.

Lemma 12.1. For each h € M2, the following properties are equivalent:

(i) For all predictable process | € HZ, we have (h, [ 1s( V (d8d€)>t =0,te€l0,7T] as.
(ii) For all predictable process | € IH?2, we have ( h o fE N(dsde) )p2 = 0.

(iii) ML (Ah.|P) = 0, where ME(.|P) is the condmonal empectatwn given P =P ® &
under the Doleans’ measure Mﬁ associated to probability P and random measure N .2

Proof. Let us show that () & (ii) By deﬁnition of the scalar product (-,-) 2, we have

(h, fy [gls(e)N(dsde) ) p2 = h fo S5 1s( dsde)> |. Hence, (i) = (ii). Let us show
that (i) = ( ). If for all l € H (h fo N(dsde) )] = 0, then, for each bounded
predictable process ¢ € IH?, we have

/ / / N(dsde)) / / ol (€) N (dsde) 1] = 0.

since, for each M € M? ¢ - (h, M) = (h,.M) (using the notation of [7] or [25]). B
[7] (Chap 6 II Th 64 pl41), this implies that the integrable-variation predictable process
(h, [, 1s(e)N(dsde)). is equal to 0, which gives that (ii) = (i). Hence (i) & (ii)
It remains to show that (ii) < (iii). Note first that (h, [y [5ls(e)N(dsde)) e =
([h, [y [5ls(e)N(dsde)|r) = E(f[O’T]XEAh ls(e)N(dsde)) = ME(Ah.1). Property (11)
can thus be written as ME (Ah.1.) = 0 for all I. € IH2, which means that ML (Ah.|P) = 0.
Hence, (ii) < (iii). O

Proof of Lemma 3.7: Let 8 > 0 and € > 0 be such that 5 > 5. We note that Yy =
&r—&p = 0; moreover, we have —dY; = f( )dt+dAt+dCt,—thWt fE k:t (dt, de)—dht.
Thus we see that Y is an optional strong semimartingale in the vocabulary of [18] with
decomposmon Y =Yy + M + A+ B, where M, := fo ZdWs + fo J5 ks(e)N(ds, de)+hy,
= — fo s)ds — Ay and By := —Cy_. We set

M, ;:2/ P, ZdW, + 2 / _ks(e)N(ds de)+2/ e’ Y, _dh,. (12.1)
(0,4] Ot] (0,¢]

Applying Gal’chouk-Lenglart’s formula (more precisely Corollary A.2 in [19]) to e** Y2, and

Note also that, if M, M’ € M?, using the terminology of [35] IV.3, the martingales M and M’ are said
to be weakly orthogonal if (M, M') 2 = 0, that is E[MrMy] = 0.
2For the definitions of M} and M4 (.|P) see, e.g., chapter ITL.1 (3.10) and (3.25) in [25].
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using that Y7 = 0, and the property (h¢, W) = 0, we get, almost surely, for all ¢ € [0, T,

eﬁtfff—k/ P ngs—i—/ % d(h¢), = — BePs(Yy) ds+2/ P Y, f(s)ds
(¢,T] (t,T] (¢,T] (¢,T]
12 / OV, A, — (Vr— B1) — Y (AT 42 / PV, — Y & (Vay — V)2,
(t.7] t<s<T [t.T) t<s<T
(12.2)

By the same arguments as in [19] (cf. the proof of Lemma 3.2 in [19] for details), since
8> 5%, we obtain the following estimate for the sum of the first and the second term on the
r.h.s. of equality (12.2): — f(t,T] Bels(Yy)2ds + 2 f(t,T] P Y, f(s)ds < €2 f(t,T] s f2(s)ds

We also have that f[t,T) PV, dCy < 0 and f(tﬂ e?5Y,_dA, < 0. We give the detailed
arguments for the second inequality (the arguments for the first are similar). We have
f(t’T} P Y, dA, = f(t’T] ePsY, dAL — f(tT Py, dA2. For the first term, we write f(t’T}
MY dAL = [, P (VL = Y2 )AL = [iy P (VL = E)dAL + [, 1y 7 (€, — V)AL
The second summand is nonpositive as Y2 > &, (which is due to Y2 > &, for all s).
The first summand is equal to 0 due to the Skorokhod condition for A!. Hence, f(t’T}
eP5Y,_dA! < 0. By similar arguments, we see that — f(t 1 e?*Y,_dA% < 0. Hence, f(t,T}

BsY,_dA, < 0. The above observations, together with equation (12.2), yield that

ALY+ / P Z2ds —I—/ e d(h), < 52/ e f2(s)ds — (Mp — M) — Z eP3(AY)?,
(¢ (T (t,T] t<s<T

(12.3)

from which we derive estimates for HZH%, I3 35, ||ﬁ||% 2> and then an estimate for |H}~/H|Z

Estimate for HZH%, HIEHZB and HﬁH%Mz Note first that we have:

S b [ IRl 3 AT == 3 (A

t<s<T t<s<T t<s<T

/ /k2 N(ds,de) =2 > e AAAhy =2 Y e ky(ps)Ahs,
tT]

t<s<T t<s<T

where, we have used the fact that the processes A. and N(-,de) "do not have jumps in
common", since A (resp. N(-,de)) jumps only at predictable (resp. totally inaccessible)
stopping times. By adding the term f(th] B || ks||2ds + D tcs<T eP5(Ahg)? on both sides
of inequality (12.3), by using the above computation and the well-known equality [h]; =

33



(ﬁc)t + Z(Afz)g, we get
eﬂtf/tM/ e5823d3+/ o5 || |2 ds+/ o5 ], < ¢ / o5 F2(s)ds — (M — M)
(t,T] t (t,T]

(1)
—2 > e’ AAAR, —2/ // 55 ks(e)N (ds, de) s,

t<s<T
(12.4)
with M! = M; + f(t 1] efs fE N(ds,de) (where M is given by (12.1)).
By classical arguments, Wthh use Burkholder—Davis—Gundy inequalities, we can show that
the local martingale M’ is a martingale. Moreover, since h e M?L by Remark 2.1, we
derive that the expectation of the last term of the above inequality (12.4) is equal to
0. Furthermore, since his a martingale, for each predictable stopping time 7, we have
E[Ah,/F,;_] = 0 (cf., e.g., Chapter I, Lemma (1.21) in [25]). Moreover, since A is pre-
dictable, AA, is F,_-measurable (cf., e.g., Chap I (1.40)-(1.42) in [25]), which implies that
E[AA; A, [Fr_] = AA;E[Ah, ) F;_] = 0. We thus get B[> g ,cp e’ AA;ALy] =
By applying (12.4) with ¢ = 0, and by taking expectations on both sides of the resulting
inequality, we obtain Y3+ | Z3 + [FI25 + [ v < <2173 We deduce that | Z]3 <
€2Hf\|%, Hk”?,ﬂ < €2Hf|]?3 and HhH%’/\/l2 < EQHfH%, which are the desired estimates (3.6).

Estimate for H|Y|”?3 From inequality (12.3) we derive that, for all 7 € Ty 7, a.s.,
PTY? < g2 f(T,T} ePs f2(s)ds — (My — M), where M is given by (12.1).

Using first Chasles’ relation for stochastic integrals, then taking the essential supremum
over T € Tor and the expectation on both sides of the above inequality, we obtain

Elesssupe’™ V2] < 52HfH5 + 2F[ess sup| P Y, Z,dW,|| + 2Eesssup| [ € Y,_dhy]]

T€To, T T€To,T T€T0, T 0
+ 2E[esssup ]/ / Y,_k(e)N(ds,de)]].
T€To, T 0,7]

(12.5)
Let us consider the third term of the r.h.s. of the inequality (12.5). By Burkholder-Davis-
Gundy inequalities, we have Elesssup,cr , |f0 e?*Y,_dh|] < cE| fT 205 Y2 d[h)s)1/?].
This inequality and the trivial inequality ab < 5 la? 4+ 1b2 lead to

T
2Blesssup| [ e Yy dhy|) < B[(S esssup e’ ¥2)1/2(3¢? / e d[h]5)'/?) < 4||Y|||B+4c2||h||ﬁw-
T7€To, T 0 T€To,T 0

By using similar arguments, we get 2E[ess sup,e7 . [y € Y, ZdW,] < %]\\?\\]2—1—402\\2\\%,
and a similar estimate for the last term in (12.5). By (12.5), we thus have i|||1~/|||; <
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(| FI3+4A (1 213+ 1 k12 g+ 1171 u2)- Using the estimates for | 23, ||&
(3.6)), we thus get HD}H\Z < 4e(1+ 1202)HfH%, which is the desired result. O

2,5 and [R]2, o (et

Remark 12.1. We note that this proof shows that the estimates (3.6) and (3.7) also hold
i the simpler case of a non reflected BSDE. From this result, together with Lemma 2.1,
and using the same arguments as in the proof of Theorem 4.1, we easily derive the existence
and the uniqueness of the solution of the non reflected BSDE with general filtration from
Definition 2.2. Similarly, we can show the comparison result for non reflected BSDFEs with
general filtration under the Assumption 5.1.

Lemma 12.2. Let f be a Lipschitz driver satisfying Assumption 5.1. Let A be a nonde-
creasing right-continuous predictable process in S* with Ag = 0 and let C' be a nondecreasing
right-continuous adapted purely discontinuous process in S% with Cy_ = 0.

Let (Y, Z, k,h) € 8% x H? x H2 x M>* satisfy

—dY;g = f(t, }ft, Zt, kt)dt + dAt + dCt_ - thWt — / kt(e)N(dt, de) — dht, 0 <t< T.
E
Then the process (Y;) is a strong Ef -supermartingale.

The proof is omitted since it relies on the same arguments as those used in the proof of
the same result shown in [19] in the particular case when the filtration is associated with
W and N (cf. Proposition A.5 in [19]), as well as on some specific arguments, due to the
general filtration, which are similar to those used in the proof of the previous lemma.

Remark 12.2. (the non-linear case in the literature) Recall that the first studies on the
pricing of Americans options in the non-linear case have been done in [15] in the case when
f is convex, and in [16] in the case when f non-linear non-convezr (both in the case of a
continuous payoff). In these paper, the authors define the initial price vo of the American
option with payoff (&) by vo := SUP;e7; 1 5({T(§T), and show that it is equal to the solution
at time O of the associated non-linear reflected BSDE by using the RBSDE approach. This
result has been extended in [37] to the case of an RCLL payoff. More recently, in [10], the
authors have shown that the seller’s superhedging price ug of the American option is equal
to vo(= SUP7 7 1 5({7(57)) in the case of an RCLL payoff.
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