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Abstract Bio-signal based assessment for upper-limb 
functions is an attractive technology for rehabilitation. In 
this work, an upper-limb function evaluator is developed 
based on biological signals, which could be used for 
selecting different robotic training protocols. Interaction 
force (IF) and participation level (PL, processed surface 
electromyography (sEMG) signals) are used as the key 
bio-signal inputs for the evaluator. Accordingly, a 
robot-based standardized performance testing (SPT) is 
developed to measure these key bio-signal data. Moreover, 
fuzzy logic is used to regulate biological signals, and a 
rules-based selector is then developed to select different 
training protocols. To the authors’ knowledge, studies 
focused on biological signal-based evaluator for selecting 
robotic training protocols, especially for robot-based 
bilateral rehabilitation, has not yet been reported in 
literature. The implementation of SPT and fuzzy logic to 
measure and process key bio-signal data with a 
rehabilitation robot system is the first of its kind. Five 
healthy participants were then recruited to test the 
performance of the SPT, fuzzy logic and evaluator in three 
different conditions (tasks). The results show: 1) the 
developed SPT has an ability to measure precise 
bio-signal data from participants; 2) the utilized fuzzy 
logic has an ability to process the measured data with the 
accuracy of 86.7% and 100% for the IF and PL 
respectively; and 3) the proposed evaluator has an ability 
to distinguish the intensity of biological signals and thus to 
select different robotic training protocols. The results from 
the proposed evaluator, and biological signals measured 
from healthy people could also be used to standardize the 
criteria to assess the results of stroke patients later. 
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1 Introduction 

Over the past decade, robots have been developed or 
revised for rehabilitation exercise, which can provide safe 
and effective labor-intensive physical training for stroke 
patients as compared to traditional manual therapy [1,2]. 
Up to now, widely accepted assessment tools for selecting 
suitable robotic training protocols are 
human-administered clinical scales, such as Fugl-Meyer 
Assessment (FMA) [3] and Modified Ashworth Scale 
(MAS) [4]. However, these assessment tools are 
subjective and time-consuming [5,6]. Meanwhile, due to a 
large number of patients and expensive medical costs, 
therapists can only offer a limited amount of time to 
quantify the severity of patients [7]. Therefore, automatic 
assessment tools with have been developed to eliminate 
these shortcomings [8,9]. These tools can provide fast and 
objective assessment outcomes which can be used for 
selecting suitable robotic training protocols [5,10]. 

To date, several robotic or robot-based assessment tools 
have been reported in the literature. Krebs et al [11] 
presented a MIT-MANUS robot-assisted assessment 
approach by using kinematic data. Based on this idea, 
Bosecker et al [5] proposed linear regression models to 
estimate clinical scores by using 20 kinematic and kinetic 
metrics from movement data recorded with the InMotion2 
robot (the commercial version of MIT-MANUS). Total 
111 chronic stroke patients were recruited in his 
experiment. The results showed that the models were 
accurate for Motor Status Score and FMA, which could be 
used for fast outcome evaluation. Furthermore, Park et al 
[12] reported a haptic elbow spasticity simulator by using 
quantitative data (position, velocity and torque) for 
improving the accuracy and reliability of clinical 
assessment of spasticity. The experimental results showed 
that the assessment results of 4 patients were 100% the 
same as MAS scores through 3 clinicians performed both 
in-person and haptic assessments. The commonly used 
metrics in the above mentioned assessment tools come 
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from kinematic and kinetic data such as position, velocity 
and torque, which, however, cannot reflect muscle 
condition (e.g. muscle strength, muscle activity) or 
intentions of patients with neurological disorders [13]. In 
recent years, sEMG (surface electromyography) has been 
developed to detect the electric potential generated by 
muscle cells and thus to evaluate any medical 
abnormalities and the activation level of muscles [14-16]. 
By comparison, sEMG signals have two main advantages: 
1) the low electromechanical delay (30-100ms), meaning 
the intentions of users can be shown in real time [17], and 
2) for stroke survivors, sEMG signals can still be 
measured if their muscles can be stimulated by the 
activated motor units, no matter whether they can move 
their arms or not [18,19]. However, sEMG signal based 
(or included) assessment tools for selecting robotic 
training protocols, especially for robot-based bilateral 
rehabilitation, have rarely been reported. 

Therefore, the main purpose of this work is to develop 
an upper-limb function evaluator based on biological 
signals of different participants, which is used for 
selecting robotic training protocols, especially for 
robot-based bilateral rehabilitation. IF (interaction force) 
and sEMG signals are used as the key bio-signal data, 
which can reflect patients’ intentions and muscle 
conditions. Meanwhile, a robot-based SPT (standardized 
performance testing) is developed for measuring the 
required bio-signal data. Fuzzy logic is then used to 
regulate the measured data, which has been widely used 
for processing biological signals [20,21]. Compared to 
traditional data-driving based classification algorithms 
such as support vector machine (SVM), fuzzy logic would 
not be affected seriously by the small number of 
participants, and it have been proved to be useful to solve 
such problems [22,23]. The novelty of this work can be 
then concluded as three points: 1) to propose a biological 
signal-based evaluator, which is supposed to select robotic 
training protocols according to different conditions of 
participants with high accuracy; 2) to develop a 
robot-based SPT for measuring required biological signals, 
which is supposed to collect accurate bio-signal data; and 
3) to use fuzzy logic to process the measured data, which 
is supposed to provide classification results with high 
accuracy. The rest of the paper is organized as follows: 
Section 2 details the methods of the evaluator; Section 3 
describes an experimental validation; Section 4 presents 
the discussion on the experimental results, followed by the 
conclusive remarks in Section 5. 

2 Methods 

2.1 Bilateral Rehabilitation System 

A bilateral upper-limb rehabilitation system developed 
in our previous work [24] will be used as the testbed for 

the biological signal-based evaluator. The bilateral 
rehabilitation system mainly contains two Universal 
Robot (UR) robots (master and slave sides) and two 6-axis 
load cells. A series of novel and interesting training 
protocols are designed based on the “Patient-cooperative” 
concept, muscle strength grading [25] and the suggestion 
of a physical therapist. Accordingly, an admittance 
controller is developed to control the proposed 
rehabilitation system and realize the proposed training 
protocols. The main training purpose of the proposed 
training protocols is to improve muscle activities of 
participants’ affected arms, and further enhance the ability 
of muscle control and motor control. Therefore, two 
biological signals: IF (interaction force) and PL 
(participation level, processed sEMG signals) are then 
determined as the key bio-signal inputs for the evaluator. 
Note that the mentioned training protocols in this work are 
robot-based and designed for upper-limb bilateral 
rehabilitation. 

2.2 System Overview 

The overview of the proposed biological signal-based 
evaluator (BSE) is shown in Fig. 1. The inputs of the BSE 
are IF and PL, and the output of the BSE is a 
recommended training protocol. The BSE contains two 
fuzzy logic algorithms, two magnitude definers and one 
rules-based selector. Fuzzy logic is used to manage 
biological signals. Some numerical sets can be defined to 
classify the intensity of biological signals, which has been 
proved to be useful in biomedical signal processing 
[22,26]. Meanwhile, magnitude definer is developed to 
process the crisp output of fuzzy logic to obtain raw 
degrees (Big, Medium or Small). Then, the percentages of 
these raw degrees would be calculated to get the final 
status of biological signals. Furthermore, a rules-based 
selector is developed to select training protocols based on 
the final status of biological signals coming from the 
magnitude definer, which would be sent to the robot to 
perform. Take IF in Fig. 1 for example, the crisp inputs of 
fuzzy logic 1 are IF and the change of IF, and the crisp 
outputs (±10) of fuzzy logic 1 would be sent to magnitude 
definer 1 to calculate the raw degrees of IF (Big, Medium 
and Small). After obtaining all raw degrees of IF, the 
magnitude definer 1 will calculate the percentages of these 
raw degrees. If Big gets the largest percentage, the final 
status of IF is defined as Big and so on. Finally, the final 
status of IF would be sent to the rules-based selector, 
which is used as key information to select an appropriate 
training protocol. 
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Fig. 1 The block diagram of the BSE 

2.2.1 Fuzzy Logic 

Fuzzy logic is used to regulate biological signals before 
being fed into the proposed magnitude definer. Meanwhile, 
different membership functions (MFs) are utilized 
according to the reference [27] and authors’ experience. 
Due to the simplicity and sensitivity [28,29], triangular 
MFs are chosen in this work rather than Gaussian MFs. It 
should be noted that all sets of two fuzzy logic algorithms 
can be revised according to participants, therapists, 
training stages or other experimental objectives at all 
times. 

Fuzzy logic 1 

Fuzzy logic 1 is utilized to manage IF for magnitude 
definer 1, and IF and change of IF are the crisp inputs. As 
discussed above, a series of training protocols have been 
proposed, which include bilateral-passive training (BPT), 
bilateral-cooperative training (BCT), bilateral-cooperative 
Plus trainings (BCPT) and bilateral active trainings (BAT). 
Thus, based on the muscle strength grading [25] (Table 1) 
and the suggestion of a physical therapist, grades 0 to 3 of 
muscle strength are regarded as Small, which should be 
suitable for BPT. Grade 4 of muscle strength is regarded as 
Medium, which should be qualified for BCT. Grade 5 of 
muscle strength is regarded as Big, which should be 
eligible for both BCPT and BAT. Therefore, the subsets of 
MFs (Fig. 2) are named as Positive Large (PL), Positive 
Medium (PM), Positive Small (PS), Zero (Z), Negative 
Small (NS), Negative Medium (NM) and Negative Large 
(NL), respectively. 

 

(a) (b)

(c) (d)

Fig. 2 The membership functions of IF: a IF; b change of 
IF; c output; d the output surface of fuzzy rules 

 

Table 1 Muscle strength grading [25] 
Grade Ability to move 

5 
The muscle can move the joint it crosses through a full range 
of motion, against gravity, and against full resistance applied 
by the examiner. 

4 
The muscle can move the joint it crosses through a full range 
of motion against moderate resistance. 

3 
The muscle can move the joint it crosses through a full range 
of motion against gravity but without any resistance. 

2 
The muscle can move the joint it crosses through a full range 
of motion only if the part is properly positioned so that the 
force of gravity is eliminated. 

1 
Muscle contraction is seen or identified with palpation, but it 
is insufficient to produce joint motion even with elimination 
of gravity. 

0 
No muscle contraction is seen or identified with palpation; 
paralysis. 

 
Table 2 The fuzzy rules for the interaction force 
EC 

E 
NL NM NS Z PS PM PL 

NL NL NL NL NL NM NS Z 
NM NL NM NM NM NS Z Z 
NS NM NS NS NS Z Z PS 
Z NM NS Z Z Z PS PM 

PS NS Z Z PS PS PS PM 
PM Z Z PS PM PM PM PL 
PL Z PS PM PL PL PL PL 
 

Table 2 contains 49 (7*7) different fuzzy rules to turn 
different IF. These rules are employed by the 
Mamdani-type inference method, which is based on the 
if -then-else structure [30]. Meanwhile, the centre of area 
method is utilized to defuzzify the fuzzy output U. In this 
work, the universal set of IF is [-50N, +50N], the universal 
set of change of IF is [-40N/S, +40N/S], and the universal 
set of crisp output is [-10, +10]. In addition, all raw forces 
would be normalized by the universal set of IF to eliminate 
the individual difference by the following equation: 

max/min

a max/min

*u
n r

F
F F

F




  (1) 

where Fn means the normalized force, Fr means the raw 
force, Fu-max/min means the max/min of universal set of IF 
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(in this work, the universal set of IF is ±50N), and Fa-max/min 
means the max/min of actual set of raw force. 

Fuzzy logic 2 

Fuzzy logic 2 is used to manage PL for magnitude 
definer 2, and PL and change of PL are the crisp inputs. 
Meanwhile, different MFs and fuzzy rules are used to 
process PL. For the MFs, the subsets of E (fuzzy input) 
and U (fuzzy output) are named as Large (L), Small (S) 
and Zero (Z), and the subsets of EC (fuzzy input) are 
named as Positive Large (PL), Positive Small (PS), Zero 
(Z), Negative Small (NS) and Negative Large (NL). In this 
work, the universal set of PL is [0, +1], the universal set of 
change of PL is [-1, +1], and the universal set of crisp 
output is [0, +10]. It can be seen from Fig. 3(a) that the 
fuzzy set of Big in E is (1, 6] which is decided based on the 
finding of sEMG activation patterns in our previous work 
[24] ([0, 1] for Small). That is for anterior deltoids muscle, 
the average PL is round 0.2 to 0.4 during a robotic bilateral 
training with active force, and is round 0.1 to 0.2 during a 
robotic bilateral training with passive force. Accordingly, 
the fuzzy set of Positive Large in EC is [1, 6] (Fig. 3(b)). 
The fuzzy rules (Table 3) are also adjusted based on the 
same finding. That is the fuzzy output is Large if E or EC 
is Large. It should be noted that the PL used here is the 
processed sEMG signals which is normalized by dividing 
peaks with a maximum voluntary contraction (MVC) and 
thus the universal set of PL is [0, +1] with the unit 
of %MVC. 

 
(a) (b)

(c) (d)

Fig. 3 The membership functions of PL: a PL; b change of 
PL; c output; d the output surface of fuzzy rules 

 
Table 3 The fuzzy rules for the participation level 

EC 
E NL NS Z PS PL 

L L L L L L 
S L S S S L 
Z L Z Z Z L 

2.2.2 Magnitude Definer 

The magnitude definer is developed to process the crisp 
outputs (±10) of fuzzy logic before being fed into the 
rules-based selector. To be specific, the absolute values of 
crisp outputs would be calculated first and then the 
absolute values (0 to 10) would be classified by the 
magnitude definer to get raw degrees (Big, Medium and 
Small). For the IF (fuzzy logic 1), the set of [0, 10] would 
be evenly divided into three groups as Big, Medium and 
Small. Similarly, for the PL (fuzzy logic 2), the set of [0, 
10] would be evenly divided into two groups as Big and 
Small. Once all raw degrees of biological signals (IF and 
PL) are obtained, the magnitude definer will calculate the 
percentages of these raw degrees. If Big gets the largest 
percentage, the final status is defined as Big and so on. 
Then the final status of biological signals (IF and PL) 
would be sent to the rules-based selector to select an 
appropriate training protocol. 

2.2.3 Rules-based Selector 

The goal of the rules-based selector is to select different 
training protocols for participants according to their IF and 
PL. Based on the muscle strength grading [25] and the 
training purpose of each recovery stage of Brunnstrom 
approach [31], the proposed training protocols can be 
allocated as follows: BPT and BCT can be used for stage 4 
of Brunnstrom approach since weak muscle strength and 
low muscle activity (muscle control) occurred in these two 
trainings; BCPT can be suitable for stage 5 of Brunnstrom 
approach due to the requirement of medium muscle 
strength and good muscle activity (muscle control) for 
participating in BCPT; and BAT can be eligible for stage 6 
of Brunnstrom approach due to the necessity of good 
muscle strength and muscle activity (muscle control) for 
taking part in BAT. The details of Brunnstrom approach 
can be found in Table 4. General rules for selecting 
training protocols are summarized as follows (Table 5): 

 
Table 4 The Brunnstrom stages of stroke recovery [31,32] 
Stage Characteristics 

4 
ЬSome movement combinations outside the path of basic 

limb synergy patterns are mastered.  
ЬSpasticity begins to decline. 

5 
ЬMore difficult combinations are mastered. 
ЬSpasticity continues to decline. 

6 

ЬIndividual joint movement becomes possible. 
ЬCoordination approaches normalcy. 
ЬSpasticity disappears: individual is more capable of full 

movement patterns. 

7 ЬNormal motor functions are restored. 
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Table 5 The rules for selector 
PL 

IF 
Small Big 

Small BPT BCT 
Medium BCT BCPT 

Big BCPT BAT 
BPT=Bilateral-Passive Training, BCT=Bilateral-Cooperative Training, 
BCPT=Bilateral-Cooperative Plus Training, BAT=Bilateral Active 
Training 
 

1) If IF is Small and PL is Small, participants would be 
asked to try SPT again to collect ‘updated’ biological 
signals since there could be two situations. The first 
situation is that the muscles of participants are weak. 
Biological signals indicate that participants have a 
limited ability to move normally, which should be 
classified as stage 4 of Brunnstrom approach. The 
purpose of this stage is to improve muscle strength and 
muscle activity (muscle control). Therefore, BPT is 
selected, in which the affected arms of participants 
would be moved carefully by the slave robot, and 
therapists can adjust the trajectory through the master 
robot according to the actual performance of 
participants in real-time. The second situation is that 
participants do not try their best during SPT, and thus 
negative results are measured. Note that if participants 
receive this selection 3 times, BPT would be chosen 
for safety purpose. 

2) If  IF is Small and PL is Big, BCT would be chosen. 
Biological signals show that participants’ muscles are 
anomalous and they might have muscle rigidity, 
spasms or other diseases due to the abnormal high PL 
in comparison with the small IF. Meanwhile, due to the 
small IF, participants should still be classified as stage 
4 of Brunnstrom approach. Therefore, for safety 
purpose, BCT is recommended, in which the affected 
arms of participants would still be moved by the salve 
robot carefully, and therapists can adjust the trajectory 
through the master robot as well. At the same time, due 
to the adaptive admittance controller, the trajectory of 
the slave robot can be adjusted by the force caused by 
the anomalous muscles of participants and thus the 
affected arms can be protected from injury [33]. 

3) If IF is Medium and PL is Small, BCT would be chosen. 
Biological signals indicate that the muscles of 
participants have recovered to grade 4 in terms of 
muscle strength (Table 1). However, muscle activity is 
still weak due to the low PL, and thus a bad motor 
control is caused [34-36]. This means that the 
movement of the affected arm might still be out of sync 
with muscle synergies, and participants should still be 
classified as stage 4 of Brunnstrom approach. 
Therefore, BCT is selected, in which participants can 
follow or adjust the trajectory of slave robot through 
their own efforts. 

4) If IF is Medium and PL is Big, BCPT would be chosen. 

Biological signals indicate that the muscle strength of 
participants has recovered to grade 4, and muscle 
activity has been improved a lot. So participants can be 
considered as stage 5 of Brunnstrom approach, in 
which voluntary movements are purposeful and goal 
oriented. Therefore, BCPT is recommended, in which 
participants need to apply more efforts to adjust the 
trajectory of the slave robot, and improve the muscle 
strength, muscle activity and motor control 
continually. 

5) If IF is Big and PL is Small, BCPT would be chosen. 
Biological signals indicate that the muscle strength of 
participants has recovered to grade 5, however, muscle 
activity (muscle control) is still weak. So participants 
would be regarded as stage 5 of Brunnstrom approach, 
in which the status of the muscle activity (muscle 
control) would still be focused on. Therefore, BCPT is 
recommended with the same reason of the fourth 
situation. 

6) If IF is Big and PL is Big, BAT would be chosen. 
Biological signals indicate that the muscle strength of 
participants has recovered to grade 5 and muscle 
activity is almost fully restored, thus having a good 
motor control. This means that participants could be 
classified as stage 6 of Brunnstrom approach, and 
more challenging movements should be performed. 
Therefore, BAT is recommended, in which the 
trajectory is totally created by participants. According 
to [37,38], active training is more effective on motor 
functional improvement than passive training, and 
muscle strength and motor control can benefit more 
from active training before the full recovery. 

 

It should be noted that this work focuses on the recovery 
stages of later sub-acute phase (5 weeks to 6 months) and 
chronic phase (≥ 6 months) after stroke onset [39], in 
which spasticity is decreased a lot [31], and muscle 
strength, muscle activity and motor control can be 
improved significantly through continuous passive or 
active training [25,37,40]. 

3 Results 

In order to test the proposed BSE, five healthy 
participants were recruited to perform SPT in three 
different conditions (tasks). The IF and raw sEMG signals 
were measured during the experiment at all times. 

3.1 Participants 

Five healthy male participants, between 27 and 29 years 
old, with no known nervous system diseases or upper-limb 
disorders, participated in this work. Demographic 
information of these participants is listed in Table 6. All 
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experimental procedures were approved by the University 
of Auckland Human Participants Ethics Committee 
(reference 015256). Furthermore, all participants received 
a participant consent form and a participant information 
sheet, and verbal information about the robot and the 
EMG device. The emergency button of the robot would be 
kept close to researchers and participants all the time for 
safety purpose. 

 
Table 6 The demographics of participants 

Participants Gender Age Height (cm) Weight (kg) 

1 Male 28 187 81 
2 Male 29 172 60 
3 Male 27 180 85 
4 Male 29 175 70 
5 Male 28 171 72 

Mean  28.2 177 73.6 
Standard Deviation  0.75 5.90 8.78 

3.2 Testing Protocol 

SPT was completed through the revised bilateral 
rehabilitation system (half) which contained one UR robot 
(UR10, Universal Robots A/S, Denmark), one 6-axis load 
cell (SRI M3713C, Sunrise Instruments LLC, China) and 
one customized handle (Fig. 4(b)). Before testing, 
disposable Ag-AgCI electrodes (3M Red Dot, 3M Health 
Care, Germany) were placed in pairs over skin with an 
inter-electrode spacing of 0.02m [41]. Prior to sEMG 
electrode placement, each participant’s skin was shaved of 
any hair if necessary, and vigorously cleansed with 
alcohol wipes until erythema was attained. sEMG 
electrodes were then placed along the main direction of the 
muscle fibre based on suggestions by SENIAM (the 
European project on sEMG) [41]. According to the 
previous experimental results, the right anterior deltoid 
(RAD) muscle was selected as it is one primary 
contributor for shoulder movements. After fully 
instrumented, each participant was asked to do a MVC. 
Subsequently, they were invited to sit on an adjustable 
chair and grab onto the handle attached to the robot to do 
SPT (Fig. 4(b)). 

The movement in SPT was designed based on the 
muscle strength testing [42] of anterior deltoid muscle. 
That is the robot will move the right arms of participants 
passively along a predefined trajectory: shoulder flexion 
with the range of [-60o, 0o] at the speed of 10o/s (Fig. 4(a), 
0o means horizontal position) [43]. Furthermore, three 
different tasks were performed based on SPT with 
randomized orders: RPT, RNAT and RMAT. ‘RPT’ 
referred to a robot-based passive task, ‘RNAT’ referred to 
a robot-based normal active task, and ‘RMAT’ referred to 
a robot-based max active task. The difference between 
these three tasks was that there was no force applied by the 
participants in RPT, but normal force and max force 
would be performed to impede the movements of the robot 

in RNAT and RMAT respectively. The participants were 
asked to perform 3 rounds for each task, so a total training 
time was around 15 minutes including one acclimation 
stage, three different tasks, six short breaks (one-minute 
break after each round) and two long breaks (two-minute 
break after each task). Note that breaks were used to avoid 
muscle fatigue, and participants were only be asked to 
apply force during the movement from 0o to -60o rather 
than the movement from -60o to 0o. A flow chart by using 
the BSE is shown in Fig. 5, which is used as a guideline for 
experiment. In addition, in a normal SPT, only RMAT 
with 3 rounds is needed. 

(a) (b)

Fig. 4 Testing protocol and experiment setup: a shoulder 
flexion exercise; b a healthy participant during SPT 

 

Initialization

Process through the
 fuzzy logic algorithm

Process through the 
magnitude definer

Both results 
belong to ‘small’?

Process through the 
rules-based selector

Therapist accepts 
the selected training?

End

Yes
No

YesNo

Run the SPT

 
Fig. 5 The flow chart of experiment with the BSE 
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3.3 Data Preprocessing and Evaluation Criteria 

In SPT, IF was recorded by a 6-axis load cell at 600 Hz. 

A notch filter at 50 Hz was used to eliminate the electrical 
network noise, this filter is internal hardware filter in the 
Interface Box (M8128, Sunrise Instruments LLC, China). 
The force data was then filtered by a fourth-order low-pass 
Butterworth filter with a cutoff frequency at 10 Hz. The 
raw sEMG signals were collected with a g.USBamp at 
1200 Hz (24 Bit biosignal amplification unit, g.tec 
Medical Engineering GmbH, Austria). A notch filter at 
50 Hz was used to eliminate the electrical network noise. 

Meanwhile, a bandpass filter from 5 Hz to 500 Hz was 
applied to remove the artefacts and the DC offset. Both 
filters are internal hardware filters in the g.USBamp 
device. Subsequently, the linear envelope of sEMG 
signals was obtained by: 1) a second-order high-pass 
Butterworth filter with a cutoff frequency at 20 Hz; 2) a 
full-wave rectification; 3) a fourth-order low-pass 
Butterworth filter with a cutoff frequency at 4 Hz; and 4) 
normalized by dividing peaks with MVC [41,44]. 
Furthermore, in order to calculate the ensemble-averaged 
IF and PL waveforms, the processed IF and sEMG linear 
envelopes were divided by each round and then averaged. 

Two aspects were evaluated in this work: 1) the 
performance of the proposed BSE, and 2) the performance 
of fuzzy logic. Specifically, the ensemble-averaged IF and 
PL waveforms of five participants in different tasks (Fig. 6) 
were used as the inputs. Meanwhile, the mean values of IF 
and PL (Table 7) were used to evaluate the performance of 
fuzzy logic. In addition, the performance of the BSE was 
also evaluated by comparing with the existing works. 

3.4 Experimental Results 

For the performance of the proposed BSE, the results 
are presented in Table 8, and the analytical results of the 
BSE are shown in Table 9. In general, there are two 
messages can be derived from the results. First, the BSE 
has the ability to distinguish the intensity of IF and PL of 
each participant and thus to select different training 
protocols. It can be seen from Table 8 that the BSE can 
select different training protocols through IF and PL, and 
in-depth information can be explored through the 
analytical results of the BSE (Table 9): BPT is selected for 
tasks in which participants do not apply force (RPT); BCT 
is recommended for tasks in which participants apply 
medium force (RNAT); and BAT is chosen for tasks in 
which participants apply max force (RMAT). Second, the 
BSE can provide more detailed information about 
recovery stages through the percentages of IF and PL even 
though a same training protocol is recommended for 
different participants. To be specific, in RNAT, 
participants are only asked to perform medium force, 

which means that the actual IF and the related analytical 
results can be different due to individual difference. 
Accordingly, as shown in Table 9, the Medium percentage 
of each participant in RNAT are different, and participant 
3 even got a certain percentage of Big for the IF. Therefore, 
it is acceptable that the related PL of participant 3 is 
treated as Big due to the percentages of Big and Small are 
65.213% and 34.787% respectively. The same situation is 
found in RMAT, in which the IF of participants 1 and 5 is 
treated as Medium even though they tried best. The 
evidence can be found in Table 9, in which the percentages 
of Big of participants 1 and 5 for the PL are 86.071% and 
99.883%, respectively. 

The performance of fuzzy logic can also be observed 
from the results, which can provide objective outcomes. 
To be specific, in Table 8, for RMAT, the BCPT is 
recommended to participants 1 and 5 rather than the BAT 
recommended by the mean values. Accordingly, it can be 
seen from Fig. 6, participants 1 and 5 apply big force first 
which, however, cannot be maintained. Therefore, the 
negative change of IF occurs even though the force is still 
belonged to the set of Big and the big mean value. 
However, the negative change of IF means that the force is 
reduced and the participant cannot keep a stable force for a 
while, so it might be something wrong with his muscle 
strength or muscle control, and the IF is not belonged to 
the set of Big. Thus, it is acceptable that the percentages of 
Big and Medium are 15.385% and 69.231% for the IF of 
participants 1 and 5 (Table 9), respectively. More 
experimental results have been attached as the Online 
Resource 1, in which more interesting outcomes are 
observed. 

In addition, the performance of the proposed BSE was 
compared with the existing works in terms of 
classification accuracy. It can be seen from Table 10, 
hidden markov model used by Chan et al [45] receives the 
highest accuracy of 94.6%, followed by the heuristic fuzzy 
logic used by Ajiboye et al [46] with the accuracy of 94%. 
The proposed BSE receives the accuracy of 86.7% which 
is an acceptable result. It should be noted that the accuracy 
of the BSE was based on the results of mean values. It can 
be seem from Table 8, only two different results are found 
between the BSE and mean values (P1 and P5 in RMAT), 
thus getting the result of 86.7% (13/15). 
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Fig. 6 The averaged interaction forces and related 
averaged participation levels of right anterior deltoids 
muscles of five participants (P1 to P5) during different 
tasks 
 
Table 7 The mean interaction forces and participating 
levels of five participants in different tasks 
Tasks Participant No. Mean If (N)a Mean PL (%MVC) 

RPT 

P1 6.204 0.031 
P2 2.909 0.009 
P3 9.209 0.011 
P4 3.666 0.004 
P5 10.851 0.005 

RNAT 

P1 23.726 0.162 
P2 19.203 0.152 
P3 32.457 0.203 
P4 21.239 0.120 
P5 21.594 0.133 

RMAT 

P1 37.530 0.264 
P2 41.522 0.299 
P3 44.667 0.393 
P4 44.093 0.254 
P5 33.486 0.308 

aAbsolute value of interaction force 
 

Table 8 The results of the BSE and the mean values of five 
participants in different tasks 

T No 
The BSE The Mean Values 

ST IF PL ST IF PL 

R
P
T 

P1 BPT Small Small BPT Small Small 
P2 BPT Small Small BPT Small Small 
P3 BPT Small Small BPT Small Small 
P4 BPT Small Small BPT Small Small 
P5 BPT Small Small BPT Small Small 

R
N
A
T 

P1 BCT Medium Small BCT Medium Small 
P2 BCT Medium Small BCT Medium Small 
P3 BCPT Medium Big BCPT Medium Big 
P4 BCT Medium Small BCT Medium Small 
P5 BCT Medium Small BCT Medium Small 

R
M
A
T 

P1 BCPT Medium Big BAT Big Big 
P2 BAT Big Big BAT Big Big 
P3 BAT Big Big BAT Big Big 
P4 BAT Big Big BAT Big Big 
P5 BCPT Medium Big BAT Big Big 

T=Task, ST=Selected Training, IF=Interaction Force, PL=Participation 
Level, BPT=Bilateral-Passive Training, BCT=Bilateral-Cooperative 
Training, BCPT=Bilateral-Cooperative Plus Training, BAT=Bilateral 
Active Training 

 
Table 9 The analytical results of the BSE of five 
participants in different tasks 

T No 
Interaction Force Participation level 

Big% Medium % Small% Big% Small% 

R
P
T 

P1 0 0 100 13.776 86.224 
P2 0 0 100 0 100 
P3 0 0 100 0.014 99.986 
P4 0 0 100 0 100 
P5 0 0 100 0 100 

R
N
A
T 

P1 0 84.615 15.385 36.009 63.991 
P2 0 76.923 23.077 34.245 65.755 
P3 38.462 46.154 15.385 65.213 34.787 
P4 0 84.615 15.385 12.512 87.488 
P5 0 69.231 30.769 20.803 79.197 

R
M
A
T 

P1 15.385 69.231 15.385 86.071 13.929 
P2 61.538 23.077 15.385 91.432 8.568 
P3 69.231 30.769 0 99.847 0.153 
P4 53.846 38.462 7.692 88.016 11.984 
P5 15.385 69.231 15.385 99.833 0.167 

 
Table 10 Comparison of accuracy between existing works 
and current work for processing biological signals 

Work Algorithm Accuracy 
Current work Fuzzy logic 86.7% 
Ajiboye et al [46] Heuristic fuzzy logic 94.0% 
James et al [20] Fuzzy logic + Artificial neural network 82.0% 
Si et al [21] Fuzzy logic + Neural network 91.0% 
Huang et al [47] Back-propagation neural network 85.0% 
Subasi et al [48] Wavelet neural network 90.7% 
Bu et al [49] LLGMN a 85.1% 
Sabeti et al [50] Linear discriminant analysis 84.6% 
Yom-Tov et al [51] SVM 87.0% 
Wei et al [52] SVM 93.0% 
Chan et al [45] Hidden Markov model 94.6% 

aLLGMN: log-linearized Gaussian mixture network 

 
4 Discussion 

Up to now, the development of robot-based assessment 
tools is still stagnant for several reasons. First, robot-based 
assessment tools are difficult to evaluate in traditional 
ways due to their specificity [53], that is, many 
robot-based assessment tools are especially designed for 
specific systems or robots rather than universal devices. 
Second, also due to their specificity, the performance of 
existing robot-based assessment tools cannot be well 
confirmed and thus cannot be widely accepted and utilized 
in comparison with traditional clinical scales such as FMA 
and MAS [5,6]. However, as discussed in the introduction 
section, robot-based measures are objective and repeatable, 
and they can reduce assessment time drastically [5]. 
Therefore, it is still attractive to explore this new 
technology which might be a useful assistive tool for 
therapists, and can provide valuable information during 
stroke rehabilitation. 

Based on the eagerness of this new technology and the 
purpose to establish a baseline to assess the results 
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performed by stroke patients later, an upper-limb function 
evaluator is designed for selecting robotic training 
protocols according to different biological signals of 
participants. In order to test the proposed evaluator, five 
healthy male participants were recruited to perform the 
customized SPT with three different tasks. The 
experimental results (Tables 7 to 9) show that the 
developed SPT has the ability to measure accurate 
bio-signal data. Meanwhile, fuzzy logic has the ability to 
process complex biological signals and provide objective 
results. Thus, the proposed BSE has the ability to 
distinguish the intensity of IF and PL, and to select 
training protocols accordingly. On the other hand, the 
performance of the BSE has been compared with the 
exiting works in terms of classification accuracy. It can be 
seen from Table 10, the proposed BSE shows a promising 
result with the accuracy of 86.7%. In fact, the performance 
of the BSE is related to the performance of fuzzy logic. In 
this work, the utilized fuzzy logic can provide the 
accuracy of 86.7% (13/15) and 100% (15/15) for the IF 
and PL respectively (Table 8). The classification accuracy 
of the PL is better than most existing works. However, the 
classification accuracy of the IF is low, which reduces the 
performance of the BSE. The possible reason for the low 
classification accuracy of the IF could be its small dataset 
caused by the low sampling rate of the load cell (600 Hz 
compared with 1200 Hz of sEMG signals), and a small 
number of participants. Although a comparison between 
the existing works and current work was made (Table 10), 
it should be noted that there is a lack of research 
comparing the performance of different 
algorithms/models based on the same dataset. Therefore, 
the performance differences between these 
algorithms/models are still largely unknown and future 
work is expected toward this end. 

Furthermore, based on the percentages of biological 
signals, the BSE has the ability to distinguish IF and PL 
more precisely, that is, IF and PL can be evaluated more 
visualized and objective, thus improving the accuracy of 
recommendation. Take participant 3 in RNAT for example, 
it can be seen from Table 8, the PL of participant 3 in 
RNAT is classified as Big. Accordingly, the analytical 
results of the BSE in Table 9 show that the PL percentage 
of Big for participant 3 in RNAT is 65.213%. Meanwhile, 
it can be found that the percentages of the related IF are 
38.462% and 46.154% for Big and Medium, respectively. 
In RNAT, the other participants get zero percentage of Big 
even though they have the same result as participant 3 in 
terms of IF. This means that the BSE can detect recovery 
stage more objective and thus to select practical training 
protocols. 

The performance of fuzzy logic has been evaluated by 
comparing with the mean values. It can be concluded from 
the results (Tables 8 and 9), fuzzy logic can process 

complex biological signals and provide objective 
outcomes by comparing with the mean values of the IF 
and PL. The detailed example has been shown in the result 
section. Meanwhile, as discussed above, the utilized fuzzy 
logic can provide the acceptable accuracy of 86.7% and 
100% for the IF and PL respectively. These results cause 
the proposed evaluator to be a promising tool for selecting 
training protocols, especially for robot-based bilateral 
rehabilitation. 

However, this work has some limitations. Firstly, only 
healthy participants were recruited, which can test the 
reliability rather than the validity of the BSE. Secondly, 
only one muscle was used to measure the sEMG signals. 
There is no doubt that the accuracy of the BSE could be 
improved with additional biological signals such as other 
muscles, velocity and angle information of each joint. 
Thirdly, the proposed BSE might be only suitable for the 
rehabilitation system and training protocols proposed in 
our previous work. 

Future work would be done in three aspects according 
to the experimental results and the limitations. Firstly, 
more muscles would be considered in the BSE, and the 
weight of each muscle would be obtained and optimized 
by the genetic algorithm, thus improving the accuracy of 
the BSE [54]. Secondly, stroke patients would be recruited 
through the collaboration with other medical groups and 
hospitals, and the muscle tone would be considered to 
reflect their degrees of spasticity. The results of the BSE 
can be then compared with those obtained from traditional 
clinical scales to further assess the BSE. Thirdly, some 
modules and selection rules would be adjusted for 
popularizing the proposed BSE for universal 
robot-involved rehabilitation systems. 

5 Conclusion 

In this work, a biological signal-based evaluator is 
developed for selecting robotic training protocols for 
upper-limb bilateral rehabilitation. The evaluator contains 
two fuzzy logic algorithms, two magnitude definers and 
one rules-based selector, and the IF and the PL are used as 
inputs. The experimental results show that the proposed 
SPT can measure accurate bio-signal data, fuzzy logic can 
then process the measured data and provide object results. 
Meanwhile, the proposed BSE has the ability to 
distinguish the intensity of inputs, and select robotic 
training protocols objectively. Furthermore, due to the 
percentages of “Big, Medium and Small”, the information 
of muscles (strength and control) can be presented and 
thus the recovery stages of participants can be better 
understood. Last but not least, the experimental results of 
the BSE and the biological signals measured from 5 
healthy participants can be used as a baseline to assess the 
results of stroke patients through the same BSE and testing 
protocols. 
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