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a b s t r a c t

A novel, probabilistic framework for the classification, investigation and labelling of data is

suggested as an online strategy for Structural Health Monitoring (SHM). A critical issue for

data-based SHM is a lack of descriptive labels (for measured data), which correspond to the

condition of the monitored system. For many applications, these labels are costly and/or

impractical to obtain, and as a result, conventional supervised learning is not feasible.

This fact forces a dependence on outlier analysis, or one-class classifiers, in practical appli-

cations, as a means of damage detection. The model suggested in this work, however,

allows for the definition of a multi-class classifier, to aid both damage detection and iden-

tification, while using a limited number of the most informative labelled data. The algo-

rithm is applied to three datasets in the online setting; the Z24 bridge data, a machining

(acoustic emission) dataset, and measurements from ground vibration aircraft tests. In

the experiments, active learning is shown to improve the online classification performance

for damage detection and classification.

� 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Structural health monitoring (SHM) systems look to provide a framework for the classification and localisation of damage,

following preliminary damage detection. As such, SHM frameworks require the categorisation of many data-groups, i.e.

classes, relating to different states of structural health, rather than simply classifying data as either normal or novel (outlier

analysis) [1,2]. For engineering datsets, particularly in SHM, a critical issue with the multi-class problem is a lack of compre-

hensive labelled data, which are required to learn in a (standard) supervised classification algorithm. Furthermore, in an

online setting for SHM, the measured data arrive as a stream, incrementally, throughout the lifetime of the monitored struc-

ture; as a result, a model should be capable of adapting and updating as new data become available.

Considering these issues, SHM systems should offer three characteristics. Firstly, the system should be adaptive, incorpo-

rating any new classes (novel data-groups) as they are discovered; these might relate to damage or various operational con-

ditions. Secondly, a system should be capable of running on-line; that is, the algorithm should be computationally efficient,

in order to update and adapt during operation. Finally, the model must be capable of accurate diagnostics (ideally probabilis-

tic, to include the uncertainty of predictions) while only requesting descriptive labels for the most informative measured

data; this is critical for engineering applications, as the investigation of any abnormal data is regularly impractical and
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expensive. This paper outlines an approach to address the investigation of engineering data streams following an active

learning, probabilistic framework for online SHM.

The layout of the paper is as follows. Section 2 provides an overview of partially-supervised learning, in the context of

SHM, including related work. Section 3 defines the probabilistic model, and a framework for guided sampling, which is used

to inform damage detection and multi-class classification. Section 4 describes how the model is incorporated into an online

SHM strategy. Section 5 demonstrates empirical improvements of active learning, through the application of the heuristic to

three datasets. Finally, Sections 6 and 7 suggest future work, and offer concluding remarks.

2. Partially-supervised learning for SHM

SHM involves monitoring an engineering structure or system using observation data, in order to make informed predic-

tions about the current operating, environmental or damage condition. More specifically, when following a data-driven

approach, pattern recognition and machine learning tools are applied to learn patterns in the data, in order to inform the

current condition of the system. As a result, the classification of measured data via a robust model, learnt using a limited

subset of training data, is a fundamental problem. Generally speaking, the i
th
measured data point, xi 2 X, can be categorised

according to a descriptive label, yi 2 Y , which corresponds to the ground truth of a classification problem. In the context of

SHM, the observations xi would represent features extracted from the raw measurements following signal processing, while

the descriptive labels, yi, are used to inform which groups of measured data relate to different conditions; for example: is the

system operating normally, under extreme temperatures, or, most critically, is the system damaged? The key stages within a

typical SHM strategy are shown in Fig. 1.

From a probabilistic classification perspective, it is assumed that the features are defined by a random vector in a D-

dimensional feature space, such that xi 2 X and X 2 R
D. Furthermore, for a discrete classification problem, the descriptive

labels are defined by a discrete random variable, such that yi 2 Y ¼ f1; . . . ;Kg. K is the number of classes which define the

operational and health conditions, and Y denotes the label space. Typically, two main frameworks are used to learn patterns

from data in the context of SHM [1]; these are unsupervised and supervised learning.

2.1. Traditional pattern recognition in SHM

Supervised pattern-recognition algorithms require fully-labelled training-data, Dl, such that [3],

Dl ¼ fðxi; yiÞjxi 2 X; yi 2 Ygni¼1 ð1Þ

for n collected data points. As the training-set, Dl, includes both measured data and descriptive labels, a supervised classifier

can learn a mapping between the feature space and the label space, f : X ! Y . The classifier, f, can then be used to predict the

label of future measurements, and thus, make diagnostic decisions in an SHM context. In contrast, unsupervised techniques

are applied when only the measured data are available to build a model. In this case, the training-set becomes [3],

Du ¼ f~xij~xi 2 Xg
m

i¼1 ð2Þ

~xi is used to denote the measured data that are unlabelled. A variety of data analysis and machine learning tools can be

applied to unlabelled datasets, Du. Some examples include: dimensionality reduction, novelty detection, outlier analysis

and clustering [4]. These techniques aim to find patterns within a dataset from the information contained within the mea-

sured observations alone. As a result, the learning process must be informed by a cost function that does not utilise any of the

information from the label space, Y, as this information is not available [3].

The unsupervised setting is relevant in an engineering context, as comprehensive labels to describe the measured data are

rarely available [1]. For example, in order to define a complete labelled SHM dataset, the system must be measured across all

operational and damaged conditions, while the structure is regularly inspected by an engineer to annotate the measured

data. Additionally, a dataset recorded from one structure is not necessarily relevant to another (nominally) identical system.

Therefore, traditional supervised learning of high-value systems (such as aerospace or civil structures) is clearly impractical/

infeasible. Currently, this fact forces a dependence on traditional unsupervised techniques in many practical applications;

specifically, novelty detection.

Fig. 1. Flow chart to illustrate SHM strategy definitions.
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2.2. Partially-supervised learning

An alternative approach, however, is to apply partially-supervised pattern recognition [3]; these algorithms make use of

both labelled data, Dl, and unlabelled data, Du, such that dataset used by the algorithm is,

D ¼ Dl [ Du ð3Þ

Consequently, partially-supervised techniques can make use of a limited subset of labelled data, when annotation by an

engineer proves to be impractical/expensive. Two of the main techniques within the partially-supervised learning family

are semi-supervised and active learning algorithms. Briefly, semi-supervised learning utilises both the labelled and unlabelled

data to inform the classification mapping, f : X # Y . In other words, a semi-supervised learner uses the available unlabelled

data Du, to further constrain a supervised classifier, learnt from the labelled data Dl, to improve the classification perfor-

mance. Unlabelled data can be incorporated in various ways. The most simple approach, self-labelling [5,6], trains a classifier

usingDl, and then predicts the labels for unlabelled instances ~xi. Finally, the classifier is retrained using the complete dataset,

D. In this case, some labels in D are the ground truth, from the supervised dataset, and others are assumed based on the label

predictions. This approach to semi-supervised learning has been shown to improve the predictive performance of damage

classification in [6]. The focus of this work, however, considers active learning variants of partially-supervised learning.

2.2.1. Active learning

Active learning is another form of partially-supervised learning [3]. As with semi-supervised techniques, active algo-

rithms will make use of both Dl and Du; however, an active learner will query/annotate unlabelled data in Du to automat-

ically extend the labelled dataset, Dl, in an intelligent and adaptive manner. The generalised (and simplified) active learning

framework is illustrated in Fig. 2.

Active algorithms can be applied offline to a large pool of collected data [7], or online, to drifting data streams (which

evolve through time) [8]. In the online setting, if an algorithm can adapt and update, while only requesting critical labels,

this is highly significant to data-based SHM. For example, if the measured data are recorded live from a wind-turbine

80 km off-shore, any novel data that might relate to damage would potentially need to be investigated manually. This

requires an engineer to travel to the wind-turbine by air or sea, and then inspect the structure to explain any inconsistencies

observed in the measured data. If a statistical model can be used to determine when only the most informative/critical obser-

vations need to be investigated, this can lead to significant reductions in maintenance costs.

2.3. Related work

In the context of data-based SHM, there has been a growing interest in partially-supervised methods [6,9,10], as an algo-

rithm that is semi-supervised and active can bring several advantages [6]. Active learning has been applied to SHM data in

previous work [6], using Dasgupta and Hsu’s tree-based, nonparametric algorithm [11]. This model also utilises automated

querying to build an informative training-set; however, in this application, a large pool of the measured data are (generally)

required a priori to build the tree structure, which is used to inform and direct guided sampling. As a result, while the algo-

rithm provides a significant improvement to the classification, the heuristic applied in [6] is less suitable for online SHM,

where the data arrives incrementally. In another paper [9], an online SHM strategy is built using an unsupervised clustering

algorithm, with the view to building a partially-supervised SHM strategy. The approach suggested in [9] differs from the

strategy suggested in this work, as the Dirichlet process is unsupervised; therefore, labelled data are not used at the algo-

rithm level. However, important concepts from the framework suggested in [9] can be combined with the tools suggested

in this work. Finally, the use of semi-supervised learning has been applied to civil infrastructure datasets in the context

of SHM [12]. Again, while this work is related (as it concerns partially-supervised learning), it focusses on semi-

supervised learning, rather than active methods. Specifically, the model suggested in this work defines a novel tool for

multi-class classification in the context of online SHM, such that the labelling of data (and thus the investigation of the sys-

tem) is limited and directed via a probabilistic active learning framework.

Fig. 2. The general active learning heuristic.
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3. A probabilistic model for guided sampling

A probabilistic approach is suggested as the foundation for an active framework with engineering data. This approach is

built around a supervised probabilistic mixture model, which is learnt from a small initial (random) sample of labelled mea-

sured data. As with existing models in the literature [4,13,14], the measured data, xi, are assumed to be sampled from a para-

metric mixture model; specifically, a mixture of K Gaussian distributions, such that each class, Y ¼ f1; . . . ;Kg, is generated by

a multi-variate Gaussian distribution,

pðxijyi ¼ kÞ ¼ N ðlk;RkÞ ð4Þ

A pair of parameters (mean, lk, and covariance, Rk) are used to define the distribution of xi for each class in Y. Therefore,

there are K parameter sets used to describe the mixture model over the feature space, fðl1;R1Þ; . . . ; ðlK ;RKÞg.

As discussed, the labels, yi, define the current operating or health condition. This model involves classifying data, there-

fore, the labels are discrete, and it is appropriate to assume they are categorically distributed [14],

pðyiÞ ¼ CatðkÞ ð5Þ

where k ¼ fk1; . . . ; kKg are the mixing proportions for each class k 2 Y , such that,

Pðyi ¼ kÞ ¼ kk;8k 2 Y ð6Þ

In words, this states that the probability of the label yi being equal to the value for class k is kk, where
P

k2Ykk ¼ 1. The param-

eters k complete the set of parameters used to describe the generative statistical model, pðyi; xiÞ,

H ¼ fðl1;R1; k1Þ; . . . ; ðlK ;RK ; kKÞg ð7Þ

3.1. A Bayesian approach

The most straight forward estimate of the model parameters, H, is the maximum likelihood estimate given the available

data Dl. In this case, H corresponds to the sample mean and covariance, and the sample mixing parameters. While a max-

imum likelihood approach is intuitive, it can be poorly representative of the underlying distribution of the data when the

sample size, n, is small [4]. For example, consider a class of data which relates to one of the permitted operating conditions

of a system; these data could represent the normal operation of a bridge during cold temperatures. Although an engineer

might expect this behavior to occur frequently during winter, it may have been observed infrequently in the current dataset

Dl. In this case, the maximum likelihood estimate would predict an unreasonably low probability (i.e. mixing proportion) for

that class, as the parameters have been defined such that only the available data is the most likely. In other words, the model

has overfit the training data, and this can lead to poor generalisation when predicting new data.

To prevent over-training and generalisation issues, various methods can be applied to regularise or validate a maximum

likelihood model [15]. Alternatively, a Bayesian approach can address the issue of overtraining; this can be interpreted as a

form of self-regularisation. In this case, the parameters of the model,H, are also considered to be random variables, and prior

knowledge is incorporated to provide a more robust estimate of the model. For further details behind the motivations of a

Bayesian approach, refer to [14,16].

Considering the distribution of the measured data over the feature space, X, a prior is placed over the mean and covari-

ance parameters of each class, lk;Rk. A natural choice of prior, which is conjugate to the Gaussian distribution (leading to

analytically tractable solutions) is the Normal-inverse-Wishart (NIW) distribution [4],

pðlk;RkÞ ¼ NIWðm0;j0; m0; S0Þ ð8Þ

The hyperparameters of the mixture model ðm0;j0; m0; S0Þ can be interpreted as follows:m0 is the prior mean for the location

of each class lk, and j0 determines the strength of the prior [4]; S0 is (proportional to) the prior mean of the covariance, Rk,

and m0 determines the strength of that prior [4]. These hyperparemeters are defined such that the prior belief states that each

class is represented by a zero-mean and unit-variance Gaussian distribution. (Specifically, pðlk;RkÞ ¼ NIWð0;1;D; IÞ, where I

is the identity matrix ½D� D�, and 0 is a D-dimensional vector of zeros.) In other words, the prior assumes that the input data

are normalised in the feature-space, and as such, the measured data are normalised within the online heuristic, to support

this belief.

Considering the distribution over the label space, Y, a Dirichlet prior is placed over the mixing proportions [14], k,

pðkÞ ¼ DirðaÞ /
YK
k¼1

k
ak�1

k ð9Þ

Again, this is a natural choice in prior, as the Dirichlet distribution is conjugate to the categorical distribution [14].

This introduces the hyperparameters, a ¼ fa1; . . . ;aKg, which can be used to incorporate any prior belief of the probability

(or weighting) of each class. In this application, each class is assumed to be equally weighted, such that ak ¼ n=K;8k. This
prior is used as it represents a general case; if (application specific) prior-knowledge of the class weights is available, it
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should be included. The generative statistical model, pðyi; xi;HÞ, has now been defined. The graphical model corresponding to

the problem (including dependences) is shown in Fig. 3, including any hyperparameters.

The set of labelled data, Dl, is used to establish the initial number of classes, K, and split the measured data into groups

according to their label. These data can then be used to calculate the Bayesian estimates of the model parameters. (Note, in

the context of SHM, the initial measured data are regularly assumed to represent a single class, i.e. K ¼ 1. These measure-

ments should, hopefully, relate to the normal-operating-condition only.) As conjugate prior distributions have been

assumed, the posterior distribution over the parameter estimates can be found analytically; these are calculated for each

class, k 2 Y . Firstly, the posterior distribution of ðlk;RkÞ is NIW, with updated parameters [4] (denoted by subscript n),

pðlk;Rkjyi ¼ k;DlÞ ¼ NIWðmn;jn; mn; SnÞ ð10Þ

such that [4],

jn ¼ j0 þ ny; ð11aÞ

mn ¼
j0

j0 þ nk

m0 þ
nk

j0 þ nk

�xk; ð11bÞ

mn ¼ m0 þ nk; ð11cÞ

Sn ¼ S0 þ S þ j0m0m
>
0 � jnmnm

>
n : ð11dÞ

nk is the count (number) of observations inDl with the label k, and �xk is the sample mean of the observations with the label k.

The uncentered sum-of-squares matrix for the observations in class k is S ¼
Pny

i¼1xix
>
i . This result has an intuitive interpre-

tation. The posterior mean mn is a convex combination of the prior mean, m0, and the maximum likelihood estimate (the

sample mean), with ‘strength’ j0 þ ny [4]. The posterior scatter matrix Sn is the prior scatter matrix S0, plus the empirical

scatter matrix, plus an extra term due to the uncertainty associated with the mean [4].

Similarly, the posterior for the parameters of the categorical distribution over Y is Dirichlet [14],

pðkjDlÞ /
YK
y¼1

knyþay�1
y : ð12Þ

In order to make class predictions for the unlabelled data, ~xi 2 Du, the posterior predictive distributions over the labels, Y, and

the observations, X, can be found analytically. This is done by marginalising out the parameters from the model [4,14]. For

unlabelled measurements, ~xi 2 X, the posterior predictive distribution is a Student-t distribution [4],

pð~xijyi ¼ k;DlÞ ¼

Z Z
pð~xijlk;RkÞpðlk;Rkjyi ¼ k;DlÞdlkdRk ð13Þ

Fig. 3. The probabilistic graphical model of the generative classifier. Shaded and white nodes are the observed and latent variables respectively; arrows

represent conditional dependencies; dots represent constants (hyperparameters).
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¼ T ðmn;
jn þ 1

jnðmn � Dþ 1Þ
Sn; mn � Dþ 1Þ: ð14Þ

The functional form of the Student-t can be found in [4]. The first two terms in Eq. (14) define the mean and scale parameters

respectively, and the third term m� Dþ 1ð Þ is the degrees of freedom. The Student-t distribution is suitable, as it has heavier

tails than the Gaussian distribution, to account for the fact that the parameters are estimated from a finite set. However, as

more data become available, and the degrees of freedom increase (nk ! 1, thus mn ! 1), the Student-t rapidly approaches

the Gaussian distribution.

Similarly, the posterior predictive distribution over the labels, Y, is,

pð~yijDlÞ ¼

Z
pð~yijkÞpðkjDlÞdk; ð15Þ

pð~yi ¼ kjDlÞ ¼
nk þ ak

nþ a0

; ð16Þ

where a0 ¼
PK

k¼1ak [4].

By utilising the posterior predictive distributions in Eqs. (14) and (16), a generative classifier can be defined using Bayes’

rule [4]. This is then used to predict the label distribution, pð~yij~xi;DlÞ, for the unlabelled data, ~xi 2 Du,

pð~yi ¼ kj~xi;DlÞ ¼
pð~xij~yi ¼ k;DlÞpð~yi ¼ kjDlÞ

pð~xijDlÞ
; ð17Þ

When predicting the label of future data, the maximum a posteriori estimate of the class labels is used. This is the value in Y

with the highest probability given the observation ~xi[4], denoted by ŷi,

ŷi ¼ argmax
k2Y

pð~yi ¼ kj~xi;DlÞ½ � ð18Þ

The marginal likelihood in Eq. (17), which normalises the predictive distribution over Y, is determined by the following inte-

gral, which is a discrete sum for a discrete random variable,

pð~xijDlÞ ¼

Z
pð~xij~yi ¼ k;DlÞpð~yi ¼ kjDlÞdyð19aÞ

�
XK
k¼1

pð~xij~yi ¼ k;DlÞpð~yi ¼ kjDlÞð19bÞ

In summary, a generative classifier has been defined via a supervised Gaussian mixture model, with Bayesian estimates of the

model parameters. As such, each class of data is represented by a Student-t distribution in the feature space, which tends to a

Gaussian distribution as more data (in that class) become available. The model is illustrated in the feature space in the next

section; additionally, code for the classifier is available on GitHub:https://github.com/labull/probabilistic_active_learning_

GMM.

3.1.1. A visual example: acoustic emission data

In order to visualise the mixture model beyond the graphical representation in Fig. 3, the model parameters are learnt for

an acoustic emission (AE) dataset in two-dimensions. As these AE data are only used to visualise the model and method, the

reader is referred to [17,18] for information regarding the experiment, data collection, signal processing and feature extrac-

tion. Briefly, these data represent a two-dimensional, 3-class classification problem, such that xi 2 R
2 and yi 2 Y ¼ f1;2;3g.

Each observation, xi, represents the first two principal components [1] of the features extracted from AE burst signals, col-

lected during experiments concerning the box girder of a bridge [18]. The signals are generated by various AE sources, specif-

ically [17]:

� class 1 – frictional processes other than crack related events (clamping in the experimental setup),

� class 2 – crack related events (crack extension and crack-face rubbing),

� class 3 – crack related events, at a distance from the sensor (i.e. AE burst signals with a relatively long rise-time).

A small subset of labelled data (i.e. Dl) is illustrated in Fig. 4a, along with a larger set of unlabelled data, Du. The mixture

model is then learnt using the labelled dataset and label predictions are made for the unlabelled data. The maximum a pos-

teriori (MAP) estimate of the parameters of the mixture model are shown in Fig. 4b.

Various probabilistic measures can now be used to estimate which of the measurements in Du are the most informative

when labelled. These observations can be queried, and the cause can be investigated by the engineer to provide descriptive

labels. Following the investigation and labelling of any queried data, Dl now includes the new observations. Therefore, the

model is retrained and then further data can be queried; this process iterates until a label budget is reached, or applied
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sequentially to streaming data (online). This sampling and training framework is typical of classifier-based active learning

[10,19,20]. Details of the application specific heuristic are provided in the following sections.

3.2. Data query measures — uncertainty sampling

In the active learning literature, there are numerous approaches to define which of the unlabelled data are the most infor-

mative [11,19–21]. Generally speaking, if labelled, these data provide the largest increase in the classification performance.

However, if queries are too focussed on a specific definition of ‘informative’, the training-set built by the algorithm can be

poorly representative of the underlying distribution of the data; this phenomenon is referred to as sampling bias[11]. To com-

bat sampling bias, the query framework should not focus too much on specific regions of the feature-space; this can be

achieved by combining several different definitions of ‘informative’ [20]. Usually, these measures correspond to representa-

tive or uncertain observations, according to the current estimate/model of the underlying data distribution [20,21]. In this

work, two probabilistic measures are utilised to direct queries; the typical data queried by these measures are illustrated

with the AE data in Fig. 5.

Firstly, the entropy of the (categorical) label distribution, pð~yi ¼ kj~xi;DlÞ, can be interpreted as a measure of uncertainty

[16]; specifically, the entropy of the outcome k 2 Y , is defined as the average Shannon information content [16],

Hð~yiÞ ¼ �
XK
k¼1

pð~yi ¼ kj~xi;DlÞ logpð~yi ¼ kj~xi;DlÞ: ð20Þ

As a result, selecting data from Du with a large entropy can be considered uncertainty sampling; that is, selecting data from

the unlabelled pool with the most ‘mixed’ or ‘conflicted’ label predictions. This criterion will almost always query observa-

tions at the boundaries between two or more classes; to demonstrate this, queries directed by a large entropy are illustrated

in Fig. 5a. Note, conversely, prioritising low entropy can select measurements near the centre of the data-groups associated

with each cluster, i.e. the representative examples.

Alternatively, observations in Du with the lowest likelihood given the current model estimate can be queried, pð~xijDlÞ. This

refers to the marginal likelihood (Eq. (19)) from the Bayes classifier, defined in Eq. (17), i.e.

Fig. 4. Multi-class classification of the AE data. (a) Observations in the feature space, X, illustrating the labelled set Dl (colour markers) and the unlabelled

data Du (black markers). (b) The generative mixture model pðxi; yi;HÞ; maximum a posteriori (MAP) estimate of the mean (+) and covariance (dotted lines

represent 2 and 3 sigma). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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pð~xijDlÞ ¼
XK
k¼1

pð~xj~yi ¼ k;DlÞpð~yi ¼ kjDlÞ ð21Þ

This can be interpreted as the likelihood of a new observation, having marginalised out the effects of the parameters, H, in

Eqs. (15) and (13), and the labels, yi, Eq. (19). Again, querying data with a low likelihood can be seen as uncertainty sampling;

however, in this case, the corresponding label distribution is not necessarily ‘mixed’. Therefore, the queried data can appear

in the cluster extremities that are not at the boundary between two or more classes. In other words, these outlying measure-

ments are not necessarily uncertain in terms of the labels. Considering these properties, low likelihood data become suitable

for querying drifting data streams, typical to online SHM, where the novel data are unlikely to appear between the bound-

aries of existing classes. Instead, new classes of data are likely to appear as extreme values under the current mixture model,

as illustrated in Fig. 5b.

3.2.1. The dangers of active learning

While active learning has been shown to bring significant empirical advantages to pattern recognition models in the lit-

erature [11,19–21], the authors wish to reiterate that there are times when selecting training data by a given measure

(uncertainty or otherwise) can be worse than random sampling. Specifically, the assumption of most classifiers, and data-

based models in general, is that the training data are representative of the underlying data distribution; this implies that

the samples are drawn i.i.d from the underlying probability density [19]. While the underlying dataset remains i.i.d in active

learning, the samples that define the training set are guided; therefore, the data used to learn the algorithm are inherently not

i.i.d. As a result, care must be taken to ensure that the model does not become misrepresentative. For this reason, it is critical

that any application of active learning to engineering data should consider the type (complexity) of data that is being anal-

ysed, the quantity of data that is available, and the query budget; as shown in the experiments, the benefits of active learning

can vary from dataset to dataset.

4. An online SHM framework

To apply active learning to streaming data for online SHM, a framework for querying data and retraining the model must

be formalised. There are various ways to approach this problem in the machine learning literature; for example, query by

Fig. 5. Queries over the mixture model for the AE data. The labelled set Dl is shown by the colour markers, and the unlabelled data, Du , are shown by black

markers. The queried data from Du are circled; in (a) these data have the largest entropy; in (b) the data have the lowest likelihood given the current model.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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committee methods [8,19] learn multiple classifiers which can be applied to drifting data streams. Disagreement amongst the

classifiers is used to direct queries to aid uncertainty sampling [8]. In this work, however, the heuristic is built around a sin-

gle model [11]. The suggested heuristic is online, despite completely retraining the model (brute-force updates) for each new

set of data. Specifically, brute-force learning is possible, as the model is quick to compute, since the parameters are defined

through conjugate updates. Furthermore, if desired, the algorithm can be modified to perform online updates of the param-

eters, mitigating the need to completely ‘retrain’ [22].

4.1. Guided sampling

In the experiments, the data arrive in batches of size B, and the learner is permitted a limited number of queries per batch,

qb. The number of queries per batch defines the overall sample budget; this can be predefined according to the application

and the costs associated with labelling. The initial distribution of data pðxi; yijDlÞ is learnt from the first batch, which is

assumed to be wholly labelled as class 1; that is, the normal operating condition. This assumption is reasonable in the con-

text of SHM, as the system should be operating correctly for a large portion of the initial measured data. As a result, this

model initialises as a one-class classifier [2]. If a new class of data is discovered following queries, the model updates accord-

ingly; as such, the number of classes K does not need to be defined a priori.

The suggested active learner assumes the most informative data are defined through uncertainty sampling, using entropy

(Eq. (20)) and marginal likelihood measures (Eq. (21)). Although this risks sampling bias, as only uncertain samples are tar-

geted, these measurements are assumed to provide the largest increase in classification performance for the experiments in

this work (as is common practice in the active learning literature [19]). To address sampling bias to some extent, high-

entropy and low-likelihood are both considered as measures of uncertainty. As discussed, this implies that queries occur

in the cluster extremities, as well as the boundaries between existing classes. Therefore, sampling a variety of uncertain data

in this way should provided an informative training-set, Dl, from the unlabelled streaming data, Du.

As each new batch of measured data arrives, the model makes a prediction for the unlabelled data Du, based on the

labelled data seen so far in Dl. Note, the dataset Du includes the new batch, as well as unlabelled data from previous batches.

The learner then queries qb measurements from Du, such that qb=2 records are queried according to high-entropy, and qb=2

are queried with the lowest likelihood. This effectively introduces two hyperparameters: one which determines how many

of the data will be labelled, and one which determines what fraction of high-entropy and low-likelihood data should be quer-

ied. In this work, an equal number of each measure is queried for simplicity. The sample budget, qb, is the independent vari-

able in the experiments; therefore, the proportion of each query measure is kept consistent. The investigation of various

sampling regimes is being considered for future work. The online heuristic is illustrated in Fig. 6.

Fig. 6. Flow chart to illustrate the online active learning process.
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In order to assess the diagnostic performance of the learner, the full dataset is split in half, using every other sample. This

provides a distinct ‘moving’ test set, fx�
i ; y

�
i g. The model can then be used to predict the labels for the test data, ŷi (Eq. (18)),

and these can be compared to the actual labels, y�i , to determine an online performance metric. The macrof 1-score is used,

which is a weighted balance of precision (P) and recall (R). Precision and recall can be defined in terms of true positives (TP),

false positives (FP) and false negatives (FN) for each class, k 2 Y [4],

Pk ¼
TPk

TPk þ FPk

ð22aÞ

Rk ¼
TPk

TPk þ FNk

ð22bÞ

The macro f 1-score is then defined by [4],

f 1;k ¼
2PkRk

Pk þ Rk

ð23aÞ

f 1macro ¼
1

K

X
k2Y

f 1;k ð23bÞ

The macro-averaged f 1 metric is used, as this weights the score for each class equally, irrespective of the proportion of the

data in each class. This is suitable in the context of online SHM, as newly-discovered groups of data are assumed to be

equally important to the classification, despite infrequent observations; i.e. the new data might relate to damage.

5. Experiments

The new heuristic is applied here to three datasets to demonstrate the advantages of active learning for online SHM. To

highlight the effects of active learning, the classifier trained using uncertainty sampling is compared to the same classifier

learnt using data sampled at random from each batch, i.e. standard passive learning. As such, for the passive learning bench-

mark, qb data are sampled randomly from Du for each batch, rather than selecting uncertain data with maximum entropy

and the lowest likelihood.

It is important to note — if the active learner queries any past data (this is particularly likely with entropy) this may have

limitations in practice, as labelling engineering data in hindsight may not be possible, particularly when manual inspection is

involved. Intuitively, the structure (or damage) will have changed since that data record. However, in the experiments here,

labelling past data is considered to be feasible, as labelling in hindsight can be possible using engineering judgement and

other sources of measured data. For example, consider that it is possible to assume that previous outlying data are the result

of cold temperature effects, following inspection of temperature plots (as is done with the Z24 data in the next section). The

practical limitation of labelling of past data is highlighted, however, as it is an important consideration when applying the

heuristic.

5.1. Z24 bridge data

The Z24 bridge was a concrete highway bridge in Switzerland, connecting Koppigen and Utzenstorf. In the late 1990s,

before its demolition, it was used for experimental SHM purposes under the SIMCES project [23]. Over a twelve-month time

period, a series of sensors were used to capture dynamic response measurements, in order to extract the first four natural

frequencies of the structure. Environmental measurements were also recorded, including air temperature, deck temperature,

humidity and wind speed [24]. This is a relatively large dataset, with 3932 observations in total. During the benchmark pro-

ject, different types of damage were artificially introduced towards the end of the monitoring year, starting from observation

3476 [25]. The natural frequencies, as well as deck temperature, are shown in Fig. 7. Fig. 7a illustrates visible fluctuations in

the natural frequencies between observations 1200 and 1500, while there is little variation following the introduction of

damage at observation 3476. The early fluctuations appear to relate to periods of very low temperature in the bridge deck,

which can be observed in the temperature plot, Fig. 7b. It is believed that the asphalt layer in the deck experienced very low

temperatures during this time, leading to increased structural stiffness [26].

To define a classification problem for the active learning experiments, the four natural frequencies are selected as the

observation data, such that xi 2 R
4. Firstly, the damage data are assumed to represent their own class, from observation

3476. Outlying observations within the remaining dataset were then determined using the robust Minimum Covariance

Determinant (MCD) algorithm [25,26]. These outlying data are illustrated in Fig. 7a; as discussed, they appear to relate to

cold temperatures effects (specifically, observations 1200 and 1500). A 3-class classification problem can now be defined,

such that yi 2 f1;2;3g:

� class 1: the normal data,

� class 2: outlying data due to environmental effects,

� class 3: damage.
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In this application, it is clearly undesirable for an engineer to investigate the structure following each data acquisition from

the bridge. Therefore, if active learning can provide an improved classification performance, compared to passive learning

(random sampling) with the same sample budget, this demonstrates the relevance of active methods.

5.1.1. Results

Plots are provided for an increasing label budget per batch of data. As discussed, the dataset is split in half, to define the

training set and test set; i.e. each subset contains 1966 observations for the Z24 data. Both sets increase at the same rate,

such that measured data arrive as if recorded from the system in operation. The f 1 score is assessed using the test set.

The queries per batch are kept constant with qb ¼ 2, while the batch size is increased, such that B 2 f8;16;24;48g. These

values correspond to query ratios of 1:4, 1:8, 1:12 and 1:24, for labelled to unlabelled data respectively. Active learning

(uncertainty sampling) and the passive learning benchmark (random sampling) are applied 50 times for each query-

budget ratio. The results are provided in Fig. 8, error bars illustrate the one-sigma (r) deviation.
Active learning for guided sampling successfully directs queries for an increased classification performance with these

data. For all query budgets, there is a clear increase in the f 1-score when uncertainty sampling is used to build the

training-set, Dl. At times, sampling bias appears to negatively effect the f 1-score metric; specifically, in the early stages of

monitoring, when 1:12 data are queried in Fig. 8c. In general, however, the increase in the classification performance appears

Fig. 7. Z24 bridge data: (a) time history of natural frequencies, (b) time history of average deck temperature.
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to outweigh the risk for this application. As expected, there are drops in the classification performance as new classes are

discovered by the learner; however, these are less exaggerated when an active framework is used. (The drops in performance

occur as the macro-averaged f 1 score weights each class equally.)

Fig. 8. Online classification performance (f 1-score) for the Z24 data, for query budgets (as ratios): (a) 1:4; (b) 1:8; (c) 1:12, (d) 1:24.
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Another advantage for active learning is consistent model predictions; this occurs because data selection follows a deter-

ministic process. In other words, the active learner will always select the same observations, if identical data are presented in

the same order. As a result, the f 1-scores are consistent, because the variability associated with the ‘informativeness’ of a

random sample is eliminated. For lower query budgets (Fig. 8c and d) while active learning increases the performance,

the classifier does not have enough information to build a reliable model of the data; thus the f 1 scores are particularly

low for both active and passive learning. To combat this issue, the query regime must be adapted (to catch the novel classes

sooner), or the model should be updated to deal with this lack of information; these ideas are discussed in the conclusions.

5.2. Machining data

The machining data are an acoustic emission dataset, collected byWickramarachchi et al., during experiments concerning

a turning operation, used to manufacture metallic components [27]. During normal operation, the cutting tool deteriorates,

leading to tool wear, see Fig. 9. Tool wear is undesirable, as it produces a poor surface finish for the machined component,

which can lead to the onset of crack propagation, reducing the time in service for the manufactured product [28]. Conse-

quently, it is critical to monitor wear of the tool; however, the current procedure requires the machining operation to be

stopped, to allow for manual inspection. As a result, these inspections are infeasible in practice, due to cost and time impli-

cations [27], thus, the high-value cutting tools may be discarded prematurely when used in industry. For the experimental

dataset used in this work, inspection of the tool is carried out using a 3D microscope, the resulting images are illustrated in

Fig. 9.

Significant cost savings can be achieved if a model is capable of tool wear predictions while using a minimal number of

tool inspections. In order to build a model to predict the current state of wear, acoustic emission (AE) measurements were

taken during a typical machining operation, until catastrophic failure of the tool — see Fig. 9b. Measurements were made by

placing an AE sensor on the machine turret; these data were recorded in the time domain, and then converted into the fre-

quency domain. Following various signal processing steps, the measured data have 129 dimensions, with 1729 observations.

For further details, see [27] — in this work, the measured data were collected using a similar experimental procedure, how-

ever, these tests concern the collection of data for a different machining operation. The data are then compressed through a

random projection; this method for dimension reduction is frequently used in the compressive sensing literature [29], and it

is applied to online SHM in [9]. Using this approach, a random matrix is generated and used to project the data on to 20

dimensions in an online manner, as each new batch of data arrives. 20 features were chosen as this produced a relatively

challenging feature space for the classification problem. Therefore, the measured data are defined such that xi 2 R
20. As

the annotation of these measurements is expensive, the tool was inspected at 10 regular intervals during the experiments.

This corresponds to 9 different classes (ranges) of tool wear, and one class after tool failure, such that yi 2 f1; . . . ;10g. Table 1

summarises the dataset as a classification problem.

By using AE measurements, such as the dataset presented in this work, it is desirable to accurately monitor tool wear

online, while keeping the number of tool investigations (to annotate the measured data) to a minimum. Considering this

aim, the active learner is applied to the machining data sequentially, as if it were online. As with all the experiments, the

Fig. 9. Tool wear following inspection: (a) minor tool wear, (b) catastrophic failure of the tool.
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class labels, yi, are hidden from the algorithm, and only measurements queried by the learner are provided with labels.

Therefore, this framework implies that the engineer only needs to investigate the system when the learner queries.

5.2.1. Results

In these tests, the batch size is increased such that B 2 f8;16;24g. This corresponds to query ratios of 1:4, 1:8, and 1:12,

for labelled to unlabelled data respectively. Again, the sample budget per batch is qb ¼ 2, and active/passive learning meth-

ods are applied 50 times. Plots are provided in Fig. 10. Active learning brings consistent improvements to the classification

performance with the machining data, although, these advantages are less significant — note the reduced axis range for the

f 1 score. It is believed this occurs because the data are relatively separable in the feature space, thus, the use of active learn-

ing is less effective. Intuitively, a multi-class classification problem that is less mixed in the feature space should benefit less

from active learning. Nevertheless, uncertainty sampling provides an increase in the classification performance at low query

budgets; particularly when 1 in 12 data are labelled, see Fig. 10c. Fig. 10a shows that active learning can still be utilised at

high query budgets for these data, as the variability of the prediction is reduced, such that the performance of active learner

is comparable to the upper bound (1r) of the expected performance for random sampling, see Fig. 10a and b. Furthermore,

for all query budgets, the active learner appears to be more resilient to significant drops in the classification performance,

particularly when new classes are introduced. This effect is most likely due to low-likelihood queries successfully targeting

data relating to new classes, thus identifying them (and incorporating them into the model) sooner than random sampling.

The variation in the classification performance across active learning is the result of the random projections, and not the

active learning heuristic, which still builds the training-set deterministically. Likewise, the variation in the passive learning

performance is also influenced by random projection, as well as random sampling.

5.3. Gnat aircraft data

The Gnat data are an experimental SHM dataset, recorded using a network of sensors placed on the wing of a Gnat air-

craft; schematics are provided in Fig. 11. During experiments, the wing was excited using an electrodynamic shaker under

white Gaussian excitation. Transmissibilities associated with nine selected inspection panels were used as the main mea-

surements, see [30–32] for justification. The transmissibility is a frequency domain observation, and in this case, it is equiv-

alent to the ratio of the Fourier transform of the response (transmitted) acceleration to that of the reference acceleration. The

sensor layout is shown in Fig. 11b. The panels are split into three groups (A, B and C); each group has one centrally placed

reference transducer and three response transducers; as such, the associated transmissibilities are also shown in Fig. 11b. In

all cases, 1024 spectral lines were recorded, between 1024 and 2048 Hz [33]. The logarithms of the transmissibility magni-

tudes are used as the input measurements.

During the experiments, artificial damage and maintenance procedures were simulated by sequentially removing and

replacing each of the nine inspections panels. It should be considered that the removal of each panel imitates a fairly large,

significant fault. Each panel is held in place with number of screws, ranging from 8 to 26. These were replaced using an elec-

tric screwdriver with controllable torque, in an attempt to keep constant boundary conditions [32]. As a result, these data

represent a 10-class problem; one class is associated with the normal condition (including repairs) and one class for each

state of damage (nine in total). There are 2500 observations in the dataset; 700 one-shot measurements for the normal con-

dition and 200 for each damage condition [33]. The data are ordered such that they represent the true sequence of exper-

iments [32]; therefore, each set of damaged tests is followed by a normal condition test. This is done to simulate an

online SHM environment, where damage is followed by ‘maintenance’ procedures (panel replacement), bringing the struc-

ture back to the normal operating condition. Table 2 summarises the ordered dataset.

The complete measured data have 9216 features in total (1024� 9). In the original papers [32,33], these data were com-

pressed to 9-dimensions using 9 Mahalanobis-squared-distance (MSD) novelty detectors [1], one learnt from each transmis-

sibility. In the proposed SHM framework [32], the discordancy outputs (from each novelty detector) were initially used for

damage detection; secondly, damage locationwas achieved using the discordancy measures as inputs to learn a classifier [32].

This strategy is successful, however, it considers the supervised problem, such that labelled data are used to inform feature

Table 1

Machining AE data classes.

Class label (yi) Observations (i) Description

1 1–173 wear 1

2 174–346 wear 2

3 347–519 wear 3

4 520–692 wear 4

5 693–865 wear 5

6 866–1038 wear 6

7 1039–1211 wear 7

8 1212–1383 wear 8

9 1384–1555 wear 9

10 1556–1729 tool failure
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selection and dimension reduction. (This is either done objectively [32], or using a genetic algorithm to compress the data

using a labelled training-set [33].) In the case of active learning, labelled data are (initially) unavailable; therefore, measure-

ments must be compressed in an unsupervised manner. To do this, a feature bagging method is used to build a novelty index

Fig. 10. Online classification performance (f 1-score) for the machining AE data, for query budgets (as ratios): (a) 1:4; (b) 1:8; (c) 1:12.
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for each tranmissibility. Details of how these features are defined in an unsupervised setting can be found in [34]. Briefly,

MSD outlier ensembles are defined using random subsets of features (bootstrap samples). The novelty indices from each

member in the ensemble are then combined through averaging to provide a single (robust) novelty index from high dimen-

sional data. In this way, an outlier ensemble is built for each transmissibilty, compressing the dataset to nine dimensions in

Fig. 11. Schematics of the Gnat aircraft wing: (a) panel locations, (b) sensor groups and transmissibilities. Image Credit: [32].

Table 2

Gnat data classes.

Class label (yi) Observations (i) Description

1 1–100 normal

2 101–200 damage 1 (panel 1)

3 201–300 damage 2 (panel 2)

4 301–400 damage 3 (panel 2)

1 401–500 normal

2 501–600 damage 1 (panel 1)

3 601–700 damage 2 (panel 2)

4 701–800 damage 3 (panel 2)

1 801–900 normal

5 901–1000 damage 4 (panel 4)

6 1001–1100 damage 5 (panel 5)

7 1101–1200 damage 6 (panel 6)

1 1201–1300 normal

5 1301–1400 damage 4 (panel 4)

6 1401–1500 damage 5 (panel 5)

7 1501–1600 damage 6 (panel 6)

1 1601–1700 normal

8 1701–1800 damage 7 (panel 7)

9 1801–1900 damage 8 (panel 8)

10 1901–2000 damage 9 (panel 9)

1 2001–2100 normal

8 2101–2200 damage 7 (panel 7)

9 2201–2300 damage 8 (panel 8)

10 2301–2400 damage 9 (panel 9)

1 2401–2500 normal
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an unsupervised manner (such that only the normal condition data are used). In summary, this is now a 10-class classifica-

tion problem in nine dimensions; one class defines the normal operating condition and 9 for the damaged states, where

yi 2 f1; . . . ;10g and xi 2 R
9.

Fig. 12. Online classification performance (f 1-score) for the Gnat data, for query budgets (as ratios): (a) 1:4; (b) 1:5; (c) 1:8, (d) 1:10.

L.A. Bull et al. /Mechanical Systems and Signal Processing 134 (2019) 106294 17



5.3.1. Results

For the Gnat data, the batch size is varied for B 2 f8;10;16;20;24g (while qb ¼ 2) to show a range of active learning

effects. This corresponds to query ratios of 1:4, 1:5, 1:8, 1:10 and 1:12, for labelled to unlabelled data. As before, the results

in Fig. 12 show improvements when uncertainty sampling is used; particularly for high query budgets, shown in Fig. 12a, b

and c. With the Gnat data, the improvements appear to become less significant as the query budget decreases. This implies

that active learning fails to provide significant improvements as the learner is allowed to query less. To investigate this fur-

ther, the hueristic is run for a 1:12 query budget; the results are shown in Fig. 13, and demonstrate a clear example of sam-

pling bias. In this case, the performance of active learning is worse than standard passive learning (random sampling); as

discussed, this phenomenon is well established as a critical issue when applying active learning [11,19,21].

It is hypothesised that the performance of active learning deteriorates at low query budgets because the Gnat data rep-

resent a particularly difficult classification problem, with 10 classes in a mixed feature space. While the complexity of the

classification means that active learning can bring significant advantages at high query budgets (Fig. 12a, b and c), once

the number of queries passes a critical point (�1:10), the data become misrepresentative of the underlying distribution;

in consequence, there is not enough information in the model to successfully direct queries in a way that benefits the clas-

sification. These results are important, as they imply that while active learning is useful for complex online classification, if

the sample budget is too low, it can have a detrimental effect on the performance. As a result, is it critical that a method is

defined to establish when (and how much) querying is required; this idea is being considered for future work.

6. Future work

While this model works well for these data, the fact that this is a parametric-statistical model should be considered; in

other words, assumptions are made about the distribution of the measured data. If the classes of data form disjoint (multi-

modal) clusters in the feature space, this active framework might still bring advantages compared to random sample training

for the same classifier; however, it is unlikely that the performance of either method would compare to that of nonparamet-

ric classifiers. (Nonparametric refers to the method used to describe the data distribution.) Some examples of such algo-

rithms include: Gaussian process classification, relevance vector machines, or support vector machines [4]. Importantly, it

is desirable to build an active learner around probabilistic measures in engineering (as in this work) as these models provide

uncertainties with the associated predictions; however, a more general framework might be achieved by using a nonpara-

metric approach, which does not make assumptions regarding the distribution of the data in X— such as the framework sug-

gested in [9].

Fig. 13. Online classification performance (f 1-score) for the Gnat data, for a query budget of 1:12. The results show significant sampling bias, which is

detrimental to the classification performance.
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Most critically, a method must be defined to determine when and how much data to query in the online setting for active

learning in SHM. In this work, a fixed number of measurements were queried with each batch of data; however, the algo-

rithm might perform better if data are sampled only when necessary. In this way, the algorithm could choose when and

which data to query, based on properties of the probabilistic model. Additionally, the automation of when to query should

protect against too few data being sampled, which has been shown to lead to sampling bias with the Gnat data. Finally, the

sampling regime could determine which type of data to query (i.e. high entropy, low likelihood, or another measure), pro-

viding further automation to the SHM strategy.

7. Conclusions

The comprehensive annotation of engineering datasets is costly/infeasible due to practical limitations; therefore, active

learning techniques are suggested, such that only the most informative observations are labelled. This paper defines a prob-

abilistic approach to guide data queries in a novel strategy for online structural health monitoring. The model is initialised as

a one-class classifier (novelty detection) and adapts online as new classes are discovered — becoming a probabilistic multi-

class classifier. In the experiments, the heuristic is applied to three datasets: the Z24 bridge data, a machining (acoustic emis-

sion) dataset, and a vibration-based dataset from a Gnat aircraft. The active learning algorithm is applied to the measure-

ments as if they were online, recorded live from the systems in operation. Generally, the results show a clear increase in

the online diagnostic performance of the probabilistic classifier, when active learning is used to build the training-set

through uncertainty sampling; this is compared to standard passive learning, where the same number of observations are

investigated at random. Furthermore, the variability of the classification performance is significantly reduced when active

learning is utilised. It is important to note that there are issues concerning sampling bias at low query budgets, particularly

for the Gnat data. However, the definition of a probabilistic method to determine when to query (i.e. the optimal query bud-

get) is currently being investigated for future work.
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