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Abstract: Recently, Bennett et al. (Eur. J. Phys. 37:014001, 2016) presented a physically-motivated
and explicitly gauge-independent scheme for the quantisation of the electromagnetic field in flat
Minkowski space. In this paper we generalise this field quantisation scheme to curved spacetimes.
Working within the standard assumptions of quantum field theory and only postulating the
physicality of the photon, we derive the Hamiltonian, Ĥ, and the electric and magnetic field
observables, Ê and B̂, respectively, without having to invoke a specific gauge. As an example,
we quantise the electromagnetic field in the spacetime of an accelerated Minkowski observer, Rindler
space, and demonstrate consistency with other field quantisation schemes by reproducing the
Unruh effect.

Keywords: quantum electrodynamics; relativistic quantum information

1. Introduction

For many theorists the question “what is a photon?” remains highly nontrivial [1]. It is in principle
possible to uniquely define single photons in free space [2]; however, the various roles that photons play
in light–matter interactions [3], the presence of boundary conditions in experimental scenarios [4,5]
and our ability to arbitrarily shape single photons [6] all lead to a multitude of possible additional
definitions. Yet this does not stop us from utilising single photons for tasks in quantum information
processing, especially for quantum cryptography, quantum computing, and quantum metrology [7].
In recent decades, it has become possible to produce single photons on demand [8], to transmit them
over 100 kilometres through Earth’s atmosphere [9] and to detect them with very high efficiencies [10].
Moreover, single photons have been an essential ingredient in experiments probing the foundations of
quantum physics, such as entanglement and locality [11,12].

Recently, relativistic quantum information has received a lot of attention in the literature.
Pioneering experiments verify the possibility of quantum communication channels between Earth’s
surface and space [13] and have transmitted photons between the Earth and low-orbit satellites [14],
while quantum information protocols are beginning to extend their scope towards the relativistic
arena [15–21]. The effects of gravity on satellite-based quantum communication schemes, entanglement
experiments and quantum teleportation have already been shown to produce potentially observable
effects [22–25]. Noninertial motion strongly affects quantum information protocols and quantum
optics set-ups [26–30], with the mere propagation and detection of photons in such frames being highly
nontrivial [31–34].

Motivated by these recent developments, this paper generalises a physically-motivated
quantisation scheme of the electromagnetic field in flat Minkowski space [35] to curved space
times. Our approach aims to obtain the basic tools for analysing and designing relativistic quantum
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information experiments in a more direct way than alternative derivations, and without having to
invoke a specific gauge. Working within the standard assumptions of quantum field theory and
only postulating the physicality of the photon, we derive the Hamiltonian, Ĥ, and the observables,
Ê and B̂, of the electromagnetic field. Retaining gauge-independence is important when modelling
the interaction of the electromagnetic field with another quantum system, like an atom. In this case,
different choices of gauge correspond to different subsystem decompositions, thereby affecting our
notion of what is ‘atom’ and what is ‘field’ [36,37]. Composite quantum systems can be decomposed
into subsystems in many different ways. Choosing an unphysical decomposition can result in the
prediction of spurious effects when analysing the dynamics of one subsystem while tracing out the
degrees of freedom of the other [38]. Hence it is important to first formulate quantum electrodynamics
in an entirely arbitrary gauge, as this allows us to subsequently fix the gauge when needed. This work
does not seek to quantise the gravitational field. Instead, we follow the standard approach of quantum
field theory in curved spacetime. This is a first approximation to understanding gravitational effects
on quantum fields [39,40], which neglects the back-reaction of those fields on the spacetime geometry,
treating the spacetime as a fixed background.

The direct canonical quantisation of the electromagnetic field in terms of the (real) gauge
independent electric and magnetic fields, E and B, is not possible, since these do not offer a complete
set of canonical variables [41–45]. As an alternative, Bennett et al. [35] suggested to use the physicality
of the photon as the starting point when quantising the electromagnetic field. Assuming that the
electromagnetic field is made up of photons and identifying their relevant degrees of freedom, like
frequencies and polarisations, results in a harmonic oscillator Hamiltonian Ĥ for the electromagnetic
field. Using this Hamiltonian and demanding consistency of the dynamics of expectation values with
classical electrodynamics, especially with Maxwell’s equations, is sufficient to then obtain expressions
for Ê and B̂ without having to invoke vector potentials and without having to choose a specific gauge.
Generalising the work by the authors of [35] from flat Minkowski space to curved space times, we
obtain field observables which could be used, for example, to model photonics experiments in curved
spacetimes in a similar fashion to how quantum optics typically models experiments in Minkowski
space [5,36,46].

Additional problems with our understanding of photons (indeed all particles) arise when we
consider quantum fields in gravitationally bound systems [7]. General relativity can be viewed as
describing gravitation as the consequence of interactions between matter and the curvature of a
Lorentzian (mixed signature) spacetime with metric gµν [47,48]. Locally, however, any spacetime
appears flat, by which we mean

gµν(p) ∼= ηµν ≡ diag(+1,−1,−1,−1) , (1)

the familiar special relativistic invariant line-element of Minkowski space. For the Earth’s surface,
where gravity is (nearly) uniform, this limit can be taken everywhere, and spacetime curvature can
be neglected. Spacetimes in relativity have no preferred coordinate frame, so physical laws must
satisfy the principle of covariance and be coordinate independent and invariant under coordinate
transformations [49]. Indeed, it has been demonstrated that, while the form of the Hamiltonian may
change under general coordinate transformations, physically measurable predictions do not [50].

Quantum field theory in curved spacetime is the standard approach used to study the behaviour
of quantum fields in this setting. As aforementioned, this is a first approximation to quantum gravity,
in which the gravitational field is treated classically and back-reactions on the spacetime geometry are
neglected [39,40]. Intuitively this is what is meant by a static spacetime, where the time derivative of
the metric is zero. This approximation holds on typical astrophysical length and energy scales and is
thus well-suited for dealing with most physical situations [51]. How to generalise field quantisation
to curved spaces is very well established, and the theory has produced several major discoveries,
like the prediction that the particle states seen by a given observer depend on the geometry of their
spacetime [52–54]. For example, the vacuum state of one observer does not necessarily coincide with
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the vacuum state of an observer in an alternative reference frame. This surprising result even arises in
flat Minkowski space, where the Fulling–Davies–Unruh effect predicts that an observer with constant
acceleration sees the Minkowski vacuum as a thermal state with temperature proportional to their
acceleration [55–59].

To make quantum field theory in curved spacetimes more accessible to quantum opticians, and to
obtain more insight into the aforementioned effects and their experimental ramifications, this paper
considers static, 4-dimensional Lorentzian spacetimes. Our starting point for the derivation of the field
observables Ĥ, Ê and B̂ is the assumption that the detectors belonging to a moving observer see photons.
These are the energy quanta of the electromagnetic field in curved space times. To demonstrate the
consistency of our approach with other field quantisation schemes, we consider the explicit case of an
accelerated Minkowski observer, who is said to reside in a Rindler spacetime [60–64], and reproduce
Unruh’s predictions [55–59].

This paper is divided into five sections. In Section 2, we provide a summary of the
gauge-independent quantisation scheme by Bennett et al. [35] which applies in the case of flat spacetime.
In Section 3, we discuss what modifications must be made to classical electrodynamics when moving
to the more general setting of a stationary curved spacetime. We then show that similar modifications
allow for the gauge-independent quantisation scheme of Section 2 to be applied in this more general
setting. In Section 4, we apply our results to the specific case of a uniformly accelerating reference
frame and have a closer look at the Unruh effect. Finally, we draw our conclusions in Section 5.
For simplicity, we work in natural units h̄ = c = 1 throughout.

2. Gauge-Independent Quantisation of the Electromagnetic Field

In this section, we review the gauge dependence inherent in the electromagnetic field and contrast
standard, more mathematically-motivated quantisation procedures with the gauge-independent
method of Bennett et al. [35].

2.1. Classical Electrodynamics

Under coordinate transformations, the electric and magnetic fields transform as the components
of an antisymmetric 2-form, the field strength tensor

Fµν =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 . (2)

The field strength is defined in terms of the 4-vector potential by

Fµν = ∂µ Aν − ∂ν Aµ . (3)

We can obtain the equations of motion by applying the Euler–Lagrange equations to the
Lagrangian density

L = −1
4

FµνFµν =
1
2

(
E2 − B2

)
, (4)

which gives the Maxwell equation
∂µFµν = 0 . (5)

The field strength tensor also satisfies the Bianchi identity,

∂[σFµν] ≡
1
3
(
∂σFµν + ∂µFνσ + ∂νFσµ

)
= 0 , (6)
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and together, Equations (5) and (6) can be used to obtain the standard Maxwell equations expressed in
terms of the magnetic and electric field strengths, E and B, respectively,

div (E) = 0 , curl (B) = Ė ,

div (B) = 0 , curl (E) = −Ḃ .
(7)

The solutions to these equations are transverse plane waves with orthogonal electric and magnetic
field components with two distinct, physical polarisations propagating through Minkowski space, M,
at a speed c = 1.

2.2. Gauge Dependence in Electromagnetic Field Quantisation

The most commonly used methods for quantising fields are the traditional canonical and modern
path-integral approaches. When applied to electromagnetism, these have to be modified due to the
gauge freedom of the theory. For example, in the canonical approach, standard commutation relations
cannot be satisfied. One can get around this by either breaking Lorentz invariance in intermediate
steps of calculations, or by considering excess degrees of freedom with negative norms that do not
contribute physically [37]. Standard path integral quantisation fails for electromagnetism because
the resultant propagator is divergent. The Fadeev–Popov procedure rectifies this by implementing a
gauge-fixing condition [65]. This method also gives additional terms from nonphysical contributions
in the form of Fadeev–Popov ghosts. Such terms can be ignored for free fields in Minkowski space as
they only appear in loop diagrams, but in curved spacetimes this is not the case [51]. While physical
quantities remain gauge-invariant under both approaches to quantisation, nondirectly observable
quantities can become gauge-dependent.

This can result in conceptual problems when modelling composite quantum systems, like the
ones that are of interest to those working in relativistic quantum information, quantum optics and
condensed matter. Suppose H denotes the total Hamiltonian of a composite quantum system. Then
one can show that any Hamiltonian H′ of the form

H′ = U† H U , (8)

where U denotes a unitary operator, has the same energy eigenvalues as H. Both Hamiltonians H and
H′ are unitarily equivalent and can be used interchangeably. However, the dynamics of subsystem
observables O can depend on the concrete choice of U, since O′ = U† O U and O are in general not the
same. For example, atom–field interactions depend on the gauge-dependent vector potential A for most
subsystem decompositions [36,37]. Hence it is important here to formulate quantum electrodynamics
in an entirely arbitrary gauge and to maintain ambiguity as long as possible, thereby retaining the
ability to later choose a gauge which does not result in the prediction of spurious effects [38].

2.3. Physically-Motivated Gauge-Independent Method

In contrast to this, the electromagnetic field quantisation scheme presented in the work by the
authors of [35] relies upon two primary experimentally derived assumptions. Firstly, the electric and
the magnetic field expectation values follow Maxwell’s equations, and, secondly, the field is composed
of photons of energy h̄ωk, or ωk in natural units. Whereas, in standard canonical quantisation, the
electromagnetic field’s photon construction is a derived result, for the method of [35] it is an initial
premise. This is physically acceptable, since photons are experimentally detectable entities [7,10].
The motivation for the scheme [35] comes from the observation that one observes discrete clicks when
measuring a very weak electromagnetic field. An experimental definition of photons is that these
are electromagnetic field excitations with the property that their integer numbers can be individually
detected, given a perfect detector [10].
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Hence the Fock space for this gauge-independent approach is spanned by states of the form

⊗
λ=1,2

∞⊗
k1=−∞

∞⊗
k2=−∞

∞⊗
k3=−∞

|nkλ〉 , (9)

where nkλ is the number of excitations of a mode with wave-vector k and physical, transverse
polarisation state λ. Since it is an experimental observation that photons of frequency ωk = |k| have
energy ωk in natural units, the Hamiltonian Ĥ for such a Fock space must satisfy

Ĥ |nkλ〉 = (ωk nkλ + H0) |nkλ〉 , (10)

where H0 is the vacuum or zero-point energy and nkλ is an integer [35]. An infinite set of evenly spaced
energy levels, as is present here, has been proven to be unique to the simple harmonic oscillator [66].
Hence this Hamiltonian must take the form [5]

Ĥ = ∑
λ=1,2

∫
d3k

(
ωk â†

kλ âkλ + H0

)
, (11)

where the âkλ, â†
kλ are a set of independent ladder operators for each (k, λ) mode, obeying the canonical

commutation relations

[âkλ, âk′λ′ ] = 0 , [â†
kλ, â†

k′λ′ ] = 0 , [âkλ, â†
k′λ′ ] = δλλ′δ

3(k− k′) . (12)

Since the classical energy density is quadratic in the electric and magnetic fields, while the above
Hamiltonian is quadratic in the ladder operators, the field operators must be linear superpositions
of creation and annihilation operators [35]. By further demanding that the fields’ expectation values
satisfy Maxwell’s equations, consistency with the Heisenberg equation of motion,

∂

∂t
Ô = −i[Ô, Ĥ] , (13)

allows the coefficients of these superpositions to be deduced, and the (Heisenberg) field operators can
be shown to be of the form [35]

Ê(x, t) = i ∑
λ=1,2

∫
d3k
√

ωk
16π3

[
ei(k·x−ωkt) âkλ + H.c.

]
êλ ,

B̂(x, t) = −i ∑
λ=1,2

∫
d3k
√

ωk
16π3

[
ei(k·x−ωkt) âkλ + H.c.

]
(k̂× êλ) , (14)

where êλ is a unit polarisation vector orthogonal to the direction of propagation, with ê1 · ê2 = ê1 · k =

ê2 · k = 0. This is also consistent with the Hamiltonian being a direct operator-valued promotion of its
classical form

Ĥ(t) =
1
2

∫
d3x

[
Ê2(x, t) + B̂2(x, t)

]
. (15)

Comparing Equations (11) and (15) allows us to determine the zero point energy H0 in Minkowski
space, which coincides with the energy expectation value of the vacuum state |0〉 of the electromagnetic
field. In quantum optics, Equations (11) and (14) often serve as the starting point for further
investigations [5,36,46].

Note that a quantisation scheme in a similar spirit to the work by the authors of [35] can be found
in the work by the authors of [67], which also uses the Maxwell and Heisenberg equations to directly
quantise the physical field operators. The attraction of such a scheme is in the lack of reliance on the
gauge-dependent electromagnetic potentials, instead directly quantising the gauge-invariant electric
and magnetic fields, the benefits of which for quantum optics were discussed in the preceding section.
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3. Gauge-Independent Quantisation of the Electromagnetic Field in Curved Spacetimes

Many aspects of the quantisation method of Bennett et al. [35] are explicitly noncovariant, and
hence unsuitable for general curved spacetimes. Here we lift the scheme onto static spacetimes,
maintaining the original global structure and approach.

3.1. Classical Electrodynamics in Curved Space

To begin, consider electromagnetism on stationary spacetimes in general relativity, which are
differentiable manifolds with a metric structure gµν. By stationary we mean ∂0gµν = 0. For any theory,
the standard approach is to follow the minimal-coupling procedure [48,51],

ηµν → gµν ,

∂µ → ∇µ ,∫
d4x →

∫
d4x

√
|g| ,

(16)

where g = det(gµν) and ∇µ is the covariant derivative associated with the metric (Levi-Civita)
connection. Since electric and magnetic fields can be expressed in a covariant form through the field
strength tensor, it is simple to generalise to curved space by just applying this procedure. Firstly, the
derivatives of the four-vector potential generalise to

∇ν Aµ = ∂ν Aµ − Γρ
µν Aρ ,

∇ν Aµ = ∂ν Aµ + Γµ
ρν Aρ ,

(17)

where Γµ
νρ are the standard symmetric Christoffel symbols. The field strength tensor and the

Bianchi identity remain unchanged by these derivatives, as their explicit antisymmetry cancels
all the Christoffel symbols. Thus Equations (3) and (6) still hold in curved spacetimes. The only
modification we need to make is to the (free-space) inhomogeneous Maxwell equation. Applying the
minimal-coupling procedure to Equation (5) gives

∇µFµν = 0 , (18)

which on stationary spacetimes can be written as [61]

∇µFµν =
1√
|g|

∂µ

(√
|g|Fµν

)
= 0 , (19)

as may be obtained from a Lagrangian density L = − 1
4

√
|g|FµνFµν. To obtain the modified Maxwell

equations for the electric and magnetic field strengths, one may now simply extract the relevant terms
from the covariant form given above, working in a particular coordinate system [60]. For the resulting
wave equations, as with any wave equation on a curved spacetime, obtaining a general solution is a
highly nontrivial task [49]. However, on simple spacetimes such as we will consider later, it is possible
to obtain analytic solutions.

3.2. Particles in Curved Spacetimes

To quantise the electromagnetic field in the manner of [35] our starting point must be to write
down an appropriate Fock space for experimentally observable photon states. On curved spacetimes
this is complicated by the lack of a consistent frame-independent basis for such a space. To see why,
consider that to introduce particle states in quantum field theory, we must first write the solutions to a
momentum–space wave equation as a superposition of orthonormal field modes, which are split into
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positive and negative frequency modes ( fi, f ∗i ). In order for us to do this, the spacetime must have a
timelike symmetry. Symmetries of spacetimes are generated by Killing vectors, V, which satisfy

∇µVν +∇νVµ = 0 . (20)

If Vµ is, in addition, timelike at asymptotic infinity then it defines a timelike Killing vector Kµ.
The presence of such a vector defines a stationary spacetime, in which there always exists a coordinate
frame such that ∂tgµν = 0, where x0 = t in this coordinate set is the Killing time. If, in addition, Kµ is
always orthogonal to a family of spacelike hypersurfaces then the spacetime is said to be static, and in
addition we have gti = 0. Conceptually, the spacetime background is fixed but fields can propagate
and interact. Particle states can only be canonically introduced with frequency splitting. Hence, to
define particles in a curved spacetime there must be a timelike Killing vector [53].

Canonical field quantisation morphs the field into an operator acting on a Fock space of particle
states, promoting the coefficients of the positive frequency modes to annihilation operators and those
of negative frequency modes to creation operators [33,40]. General field states are therefore critically
dependent on the frequency splitting of the modes, which itself depends on the background geometry
of the spacetime [52]. In general, we define positive and negative frequency modes fωk of frequency
ωk with respect to the timelike Killing vector Kµ, by using the definition

£K fωk =

{
−iωk fωk positive frequency
iωk fωk negative frequency

, (21)

where £K is the coordinate-invariant Lie derivative along Kµ, which, in this case, is given by Kµ∂µ.
However, a particle detector reacts to states of positive frequency with respect to its own proper time
τ, not the killing time [55]. For a timelike observer with worldline xµ on a (not necessarily stationary)
spacetime, the proper time is defined by the metric gµν infinitesimally as

dτ =
√

gµνdxµdxν . (22)

A given detector with proper time τ has positive frequency modes gωk satisfying

dxµ

dτ
∇µgωk = −iωkgωk , (23)

and they will, generally, only cover part of the spacetime. To consistently approach quantisation we
need these detector modes to relate to the set fωk defined with respect to the timelike Killing vector.
Fortunately, the set of modes fωk forms a natural basis for the detector’s Fock space if the proper time τ

is proportional to the Killing time t. This occurs if the future-directed timelike Killing vector is tangent
to the detector’s trajectory [48,55].

Even with a timelike Killing vector and its associated symmetry, solving a given wave equation
and hence obtaining mode solutions can still be highly nontrivial [49]. Considering a static spacetime
greatly simplifies this as the d’Alembertian operator, � = ∇µ∇µ, that appears in the general wave
equation can be separated into pure spatial and temporal derivatives, allowing us to easily write
separable mode solutions [48,52]

fωk(x) = e−iωktΣωk(x) . (24)

These modes are then positive frequency in the above sense, and conjugate modes f ∗ωk
are negative

frequency. The set ( fωk , f ∗ωk
) then forms a complete basis of solutions for the wave equation and

provides a suitable basis for particle detectors.
However, when two distinct inertial particle detectors follow different geodesic paths in the

spacetime, each will have its own unique proper time, determined by its motion and the local geometry.
But this proper time is what we have used in Equation (23) to define the basis modes associated with a
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given particle Fock space associated with a particle detector. Thus, the detectors will define the particle
states they observe in different manners, and will not agree on a natural set of basis modes [52,53,68].
This has no counterpart in inertial Minkowski space, where there is a global Poincaré symmetry, but
will be unavoidable in our scheme.

3.3. Covariant and Gauge-Independent Electromagnetic Field Quantisation Scheme

Accommodating for the above considerations allows the physically motivated scheme [35] to be
covariantly generalised to static curved spacetimes.

3.3.1. Hilbert Space

Since for static spacetimes there exists a global timelike Killing vector we can define positive and
negative frequency modes and thus introduce a well-defined particle Fock space. Again we assume
the existence of photons on the considered spacetime. As travelling waves on the spacetime, these
photons are again characterised by their physical, transverse polarisation λ and wave-vector k [69].
Taking these as labels for general states yields again the states in Equation (9) as the basis states of the
quantised field. Physical energy eigenstates have integer values of nkλ and are associated with energy
ωk. Thus the field Hamiltonian must again satisfy Equation (10), allowing it to be written in terms
of independent ladder operators [66]. In the following, we denote these by bkλ and assume that they
satisfy the equal time canonical commutation relations

[b̂kλ, b̂k′λ′ ] = 0 , [b̂†
kλ, b̂†

k′λ′ ] = 0 , [b̂kλ, b̂†
k′λ′ ] = δλλ′δ

3(k− k′) . (25)

Importantly, the bkλ generate a distinct Fock space from that of the ladder operators utilised in the
Minkowskian case.

3.3.2. Hamiltonian

To write down the full field or classical Hamiltonian requires some care, as a Hamiltonian is a
component of the energy–momentum tensor

Tµν = − 2√
|g|

δSmatter

δgµν , (26)

where Smatter is the action determining the matter content on the spacetime. As a component of a
tensor, the Hamiltonian itself is not invariant under general coordinate transformations. On stationary
spacetimes a conserved energy equal to the Hamiltonian can be introduced through the timelike
Killing current

Jµ = KνTµν , (27)

which satisfies the continuity equation ∇µ Jµ = 0. Stokes’s theorem can then be used to integrate over
a spacelike hypersurface Σ in three dimensions, giving

H =
∫

Σ
d3x

√
|γ|nµ Jµ , (28)

where γ = det(γij) with γij being the induced metric on Σ and nµ being the timelike unit normal
vector to Σ. On stationary spacetimes the result of this integral is the same for all hypersurfaces
Σ [48,70]. For the electromagnetic field, the variation in Equation (26) yields

Tµν = FµρFρ
ν +

1
4

gµνFρσFρσ , (29)

from which we can obtain a covariant form of the classical electromagnetic Hamiltonian.
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Note that, since in Equation (28) Σ is a spacelike hypersurface, nµ must be timelike. Thus, there
exists a frame in which nµ Jµ = n0 J0, and as this is a scalar this is valid in any frame. We also have that
Jµ = Tµ

0 , so we seek T0
0 . On a static spacetime T0

0 = g00T00, so

T0
0 =

1
2

(
E2 + B2

)
, (30)

where in the intermediate step we have used the Minkowski field strength tensor, as the quantities are
scalars. Hence we obtain the electromagnetic field Hamiltonian

H =
∫

Σ
d3x

1
2

(
E2 + B2

)√
|γ|n0K0 . (31)

This result is consistent with the literature [47], and reduces to the familiar expression in Equation (15)
in Minkowski space.

For the covariant analogue of the quantum field Hamiltonian, we note that the field Hamiltonian
used in the Minkowskian gauge-independent scheme, given in Equation (11), has a similar functional
form to the Hamiltonian for a quantised scalar field; they are identical up to labelling and
choice of integration measure. It has been established by Friis et al. [16] that the propagation
of transverse electromagnetic field modes can be well approximated by such an uncharged field,
and this technique has been used to determine the effects of spacetime curvature on satellite-based
quantum communications and to make metrology predictions [23,26]. In the following, we use this
approximation to justify the form of the electromagnetic field Hamiltonian from that of a real scalar
field with the equation of motion (�+ m2)φ = 0. The Hamiltonian density on a static manifold with
Killing time t is

H =

√
|g|
2

(
∂tφ∂tφ− ∂iφ∂iφ +

1
2

m2φ2 +
1
2

ξRφ

)
. (32)

The final term pertains to the coupling between the spacetime background and the field. Given we just
seek to study photons propagating on some curved background and are ignoring their back-reaction
on the geometry, we can choose ξ = 0. This is known as the minimal coupling approximation.

Since on static spacetimes the d’Alembertian permits separable solutions, we can write φ =

ψωk(x)e
±iEωk t [48,52]. Here ψωk , Eωk are the eigenstates of the Klein–Gordon operator (�+ m2). Upon

quantisation, the field operator for a real scalar field can now be written as a linear superposition of
these modes with ladder operators bωk , b†

ωk
defining the Fock space. However, we must also account

for the nonuniqueness of particle states in curved spacetimes. One set of Fock space operators is
often not able to cover an entire spacetime, so we will include a sum over distinct sets of operators,
b(i)ωk , b(i)†ωk . Following Fulling [52], we introduce a measure, µ(ωk), such that if the eigenstates form
a complete basis for the Hilbert space of states, allowing a general function to be written as F(x) =∫

dµ(ωk) ( f (ωk)ψωk(x)), the inner product on the Hilbert space becomes

〈F1, F2〉 =
∫

d3x
√
|g|gttF∗1 F2 =

∫
dµ(ωk) f ∗1 f2 . (33)

With this measure, the Hamiltonian field operator for a minimally-coupled scalar field on any static
spacetime can be written as [52]

Ĥ =
∫

dµ(ωk)∑
i

E(i)
ωk

[
b̂(i)†ωk b̂(i)ωk +

1
2

δ(0)
]

. (34)

Thus using the approximation of Friis et al. [16], we obtain the same functional form for the free
electromagnetic quantised Hamiltonian on any static spacetime. To incorporate the direction of
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propagation, we can instead label modes in the above expressions by their wave-vector satisfying
|k| = ωk. Then the integration measure µ(ωk) can be taken as dµ(ωk) = d3k. This applies since

F(x) =
∫

d3k ( f (k)ψk(x)) (35)

and the inner product of two such functions is

〈Fk, Fk′〉 =
∫

d3k
∫

d3k′
∫

d3x
√
|g|gtt f ∗k fk′ψ

∗
kψk′

=
∫

d3k
∫

d3k′ f ∗k fk′ 〈ψ∗k, ψk′〉

=
∫

d3k f ∗k fk . (36)

To obtain the third line we have used that ψk and ψk′ are eigenstates of a self-adjoint operator [52].
Physical photon modes will also be indexed by their transverse polarisation, so we also introduce an
additional mode label for the polarisation λ. Thus, in all, for a minimally-coupled electromagnetic
field on a static Lorentzian manifold the quantised field Hamiltonian for the Fock space defined in
Equation (9) can be taken as

Ĥ = ∑
λ=1,2

∫
d3k

(
∑

i
ω
(i)
k b̂(i)†kλ b̂(i)kλ + H0

)
. (37)

Other than the sum over distinct sectors, this result is no different from its Minkowskian counterpart;
this has only been possible with careful considerations of the static curved background.

3.3.3. Electromagnetic Field Observables

The classical Hamiltonian remains quadratic in the electric and magnetic fields, and the quantised
field Hamiltonian is still quadratic in the ladder operators. As is demonstrated above, this will
continue to be the case for any static spacetime, as it was in the Minkowskian case of Section 2.3.
In nonstatic spacetimes, the lack of a conserved local energy introduces ambiguity into our definition
of the Hamiltonian and the scheme may no longer apply. Since the Hamiltonian is quadratic in both
the field observables and the ladder operators, we can again make the ansatz that the electromagnetic
field operators are linear superpositions of creation and annihilation operators. Assuming that the
Hamiltonian and field operators retain the same relationships with one another as their classical
counterparts guarantees the validity of this linear superposition, since there must exist a linear
transformation between any two sets of variables if a quantity (the Hamiltonian) can be independently
written as a quadratic function of each set. Our linear superposition of creation and annihilation
operators takes as coefficients the negative and positive frequency modes respectively with respect to
the future-directed timelike killing vector Kµ. The only modification we propose is the addition of a
sum over spacetime sectors as introduced in the previous section. Including such flexibility will be
essential in Section 4 when we quantise the electromagnetic field in an accelerated frame.

Thus the ansatz for the field operators becomes

Ê = ∑
λ=1,2

∫
d3k

(
∑

i
p(i)kλ b̂(i)kλ + H.c.

)
êλ ,

B̂ = ∑
λ=1,2

∫
d3k

(
∑

i
q(i)kλ b̂(i)kλ + H.c.

)
(k̂× êλ) , (38)

where pkλ and qkλ are unknown positive frequency mode functions of all the spacetime coordinates,
and êλ is a unit polarisation vector orthogonal to the direction of the wave’s propagation at a point x
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in the spacetime. To determine the unknown mode functions, we demand that the expectation values
of the operators satisfy the form of Maxwell’s equations explicit in E and B that derives from

1√
|g|

∂µ

(√
|g|Fµν

)
= 0 and ∂[σFµν] = 0 . (39)

In general, this could be highly nontrivial and is indeed the greatest obstacle to a simple implementation
of the scheme. Solving wave equations on curved spacetimes is a difficult task [49], so we would
like to again follow the Minkowskian scheme and simplify the task by using a Heisenberg equation
of motion.

To get around the manifest noncovariance of Equation (13), we note that since Ĥ generates a
unitary group that implements time translation symmetry on the Fock space, the equation is a geometric
expression of the fact that time evolution of operators is generated by the system’s Hamiltonian [52].
Considering the effect of an infinitesimal Poincaré transformation on an observable, Ô thus gives

∂µÔ = −i[Ô, P̂µ] , (40)

from which Equation (13) can be obtained as the 0th component [39,71,72]. Generalising this expression
to curved spacetimes is then a simple matter of applying the minimal-coupling principle, giving

∇µÔ = −i[Ô, P̂µ] . (41)

However, it is common to only consider evolution due to the Hamiltonian, in which case the Heisenberg
equation is made covariant by using a proper time derivative to give [73–75]

dÔ
dτ

= −i[Ô, Ĥ] . (42)

Both approaches are used in the literature as covariant generalisations of the Heisenberg equation, yet
they do not immediately appear to give the same results. To connect the two, we multiply Equation (41)
by a tangent vector,

Uµ∇µÔ = −i
[
ÔUµ P̂µ −Uµ P̂µÔ

]
, (43)

where we have assumed that it commutes with all the operators. Along a curve xα the directional
derivative of any given tensor T is dT

dλ = dxα

dλ ∇αT = Uα∇αT , where λ is any affine parameter.
The case λ = τ promotes Uµ to the four velocity. For a particle on a stationary spacetime, in its rest
frame UµPµ = H, and as this is a scalar this holds in any frame. Thus one obtains Equation (42), which
is the proper time covariant Heisenberg equation of motion.

Our generalised quantisation scheme will apply this covariant Heisenberg equation to the
expectation value 〈Ô〉 of a general state in the photon Fock space |ψ〉,

∇0〈Ô〉 = −i〈[Ô, Ĥ]〉 . (44)

This gives the temporal evolution in the wave equations resulting from Equation (39), where Ĥ is
taken as the field Hamiltonian of Equation (37). If the form of Maxwell’s equations on the spacetime
can be obtained and solved for the expectation values of the field operators using this procedure, the
constant terms are determined by demanding that

Ĥ ≡ 1
2

∫
Σ

d3x
(

Ê2 + B̂2
)√

γn0K0 (45)

on the spacelike hypersurface Σ. As the integration over this hypersurface is independent of the choice
of surface and is constant, this holds for all time. In this manner, the unknown modes in Equation (38)
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can be determined and the electromagnetic field on a static, 4-dimensional Lorentzian manifold can
be quantised.

3.3.4. Summary of Scheme

Let us reflect on our construction. We have taken the Minkowskian gauge-independent
electromagnetic field quantisation scheme in Section 2.3 and lifted it onto a static Lorentzian manifold
with metric gµν. Assuming the existence of detectable photons, the presence of a global timelike Killing
vector allowed the definition of positive and negative frequency modes and thus the introduction of a
well-defined particle Fock space, with general photon states labelled by their physical polarisation
λ and wave-vector k. We introduced a ladder-operator structure for the Fock space, and using the
approximation of Friis et al. [16] argued that this Fock space is associated with the field Hamiltonian of
Equation (37) for minimal coupling to the background geometry.

The fact that both the field Hamiltonian Ĥ and the classical Hamiltonian H of Equation (31)
were quadratic in the ladder operators or field strengths respectively allowed the proposal of a linear
ansatz for the electric and magnetic field operators in terms of unknown wave modes. The scheme
is then restricted to the specific manifold in question by demanding that the expectation values of
these operators satisfy the modified Maxwell equations deriving from Equation (39), which introduces
an explicit metric dependence to the scheme. To facilitate solving the potentially nontrivial Maxwell
equations we use a form of the covariant Heisenberg equation, which we expect from work in
Minkowski space to then uniquely determine the functional form of the modes in the operator ansatz.
To determine all constants in these modes we demand that if we promote the classical Hamiltonian to
an operator, upon substitution of the field operators the field Hamiltonian is regained.

By building off an already explicitly gauge-independent scheme, our method has the advantage
of offering a gauge-independent and covariant route to the derivation of the Hamiltonian Ĥ and the
electric and magnetic field observables, Ê and B̂, respectively, on curved spacetimes. However, so
far the only justification we have that this field quantisation scheme will give a physical result is
based on its progenitor in Minkowski space. To test the consistency of our approach with other field
quantisation schemes, we now consider a specific non-Minkowskian spacetime as an example and
show that standard physical results are reproduced.

4. Electromagnetic Field Quantisation in an Accelerated Frame

In this section we apply the general formalism developed above to a specific example:
1-dimensional acceleration in Minkowski space. This situation is interesting as the noninertial nature of
this motion leads to observers having different notions of particle states, and is thus often considered
first in developments of quantum field theory in curved spacetime. It is also the situation most easily
accessible to experimental tests. We must note that Soldati and Specchia [34] have emphasised photon
propagation in accelerated frames remains conceptually nontrivial due to the separation of physical
and nonphysical polarisation modes arising from standard quantisation techniques. Here we avoid
these issues by only considering motion in the direction of acceleration (1D propagation) [33,34], and
also by avoiding the use of canonical quantisation and immediately considering the physical degrees
of freedom.

4.1. Rindler Space

An observer in Minkowski space M accelerating along a one-dimensional line with proper
acceleration α appears to an inertial observer to travel along a hyperbolic worldline

xµ =

(
1
α

sinh(ατ),
1
α

cosh(ατ), 0, 0
)

, xµxµ = − 1
α2 , (46)
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where τ is the accelerating observer’s proper time. As the proper acceleration α→ ∞, the hyperbolic
worldline of Equation (46) becomes asymptotic to the null lines of M, x = t for t > 0 and x = −t for
t < 0. The interior region in which the hyperbola resides is defined by |t| < x and is called the Right
Rindler wedge (RR); if |t| < −x we have the Left Rindler wedge (LR). The union of both wedges yields
the Rindler spaceR, which is a static globally hyperbolic spacetime [58].

More concretely, we can obtain Rindler space by the coordinate transformation

t = ±ρ sinh(αζ) , x = ±ρ cosh(αζ) , y = y , z = z , (47)

where we call the coordinates (ζ, ρ, y, z) polar Rindler coordinates, with positive signs labelling points
in RR and negative signs labelling those in LR [76]. In this coordinate system, the metric associated
with the frame of accelerating observer O′ is [34,56,62]

ds2 = α2ρ2dζ2 − dρ2 − dy2 − dz2 . (48)

The right Rindler wedge is covered by the set of all uniformly accelerated motions such that α−1 ∈ R+,
and the boundaries of Rindler space are Cauchy horizons for the motion of O′ [61,63].

Many studies of this spacetime choose to introduce conformal Rindler coordinates
(ξ, η, y, z) [58,76], defined by the coordinate transformation

t = ±a−1eaξ sinh(aη) , x = ±a−1eaξ cosh(aη) , y = y , z = z , (49)

where a ∈ R is a positive constant such that ae−aξ = α, so the proper time τ of O′ relates to η as
τ = eaξ η. The two coordinate systems forR hence relate as

ρ = a−1eaξ and αζ = aη . (50)

Lines of constant Rindler coordinates are shown in Figure 1. Rindler space can thus also be associated
with the metric line element

ds2 = e2aξ(dη2 − dξ2)− dy2 − dz2 . (51)

ξ

η

x

t

x
=

tx
= −

t
I

II

III

IV

Figure 1. Depiction of a 2-dimensional Minkowski space M. Regions I and III are the future and past
light cones of the observer O at the origin, while regions II and IV are the right Rindler wedge (RR)
and left Rindler wedge (LR) respectively. The worldline of a uniformly accelerated observer with
acceleration α is the displayed line of constant conformal Rindler coordinate ξ.
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These coordinates are useful because worldlines with ξ = 0 have constant acceleration a = α [58].
From the discussion of Killing vectors in Section 3.3, it is immediate that since the metric

components are independent of ζ or η in the respective coordinate systems, ∂η ≡ α
a ∂ζ is a Killing

field for R, and moreover the field is timelike. However in LR the field is orientated in the past
time direction, so the future-directed timelike killing vector in this wedge is ∂(−η) = −∂η ≡ − α

a ∂ζ .
To deal with this when considering wave propagation, one must introduce two disjoint sets of positive
frequency modes f (i)k , i = L, R. These satisfy

∂η f (R)
k = −iωk f (R)

k and − ∂η f (L)
k = −iωk f (L)

k , (52)

so each set is positive frequency with respect to its appropriate future-directed timelike Killing vector.
These sets and their conjugates form a complete basis for solutions of the wave equation onR [48,51].

As a region of Minkowski space Rindler space is a flat spacetime with no matter content [64].
Despite this, because of the spacetime’s noninertial nature covariant considerations must be applied
when working inR. For example the naïve divergence ∂µ Aµ 6= ∂µ Aµ as required by Lorentz invariance,
and we have non-zero Christoffel symbols

Γξ
ξξ = Γξ

ηη = Γη
ηξ = Γη

ξη = a . (53)

With the Christoffel symbols covariant derivatives ∇µ can be taken, and the timelike Killing vector
fields ∂η and ∂(−η) can be shown to formally satisfy Equation (20).

4.2. Electromagnetism in Rindler Space

To apply our covariant gauge-independent quantisation scheme to accelerating frames, we need
to consider classical electromagnetism in Rindler space. Our starting point, the field strength tensor,
takes the standard form

FRµν =


0 E1

R E2
R E3

R
−E1
R 0 −B3

R B2
R

−E2
R B3

R 0 −B1
R

−E3
R −B2

R B1
R 0

 . (54)

The explicit relations between the Rindler fields and those in Minkowski space are given in Appendix A.
These relations are taken to define the fields in the accelerated frame. For the Maxwell equation we
need the contravariant field strength tensor Fµν = gµσgνρFσρ. Because of the metric contractions this is
explicitly coordinate dependent. In conformal coordinates we have

Fµν
R =


0 −E1

Re−4aξ −E2
Re−2aξ −E3

Re−2aξ

E1
Re−4aξ 0 −B3

Re−2aξ B2
Re−2aξ

E2
Re−2aξ B3

Re−2aξ 0 −B1
R

E3
Re−2aξ −B2

Re−2aξ B1
R 0

 . (55)

The polar coordinate form of this equation can be found in Appendix A.
The Maxwell equations that incorporate the spacetime’s nontrivial geometry now follow from

Equation (39). In Rindler space and conformal coordinates, g = −e4aξ . Thus we obtain

e−2aξ ∂ξ E1
R − 2aE1

Re−2aξ + ∂yE2
R + ∂zE3

R = 0 ,

e−2aξ∂ηE1
R = ∂yB3

R − ∂zB2
R ,

∂ηE2
R = e2aξ ∂zB1

R − ∂ξ B3
R ,

∂ηE3
R = ∂ξ B2

R − e2aξ ∂yB1
R .

(56)
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The set of equations deriving from the Bianchi identity are exactly the same as in flat space; these are
listed in Appendix A, along with the full Maxwell equations in polar coordinates.

4.3. Field Quantisation in Rindler Space

Knowing how classical electric and magnetic amplitudes evolve in Rindler space, we are now
in a position to derive the Hamiltonian Ĥ and the electric and magnetic field observables, Ê and B̂,
respectively, of the quantised electromagnetic field in Rindler space R. For simplicity, we are only
interested in photons which propagate along one spatial dimension. Suppose they travel along the ξ

axis in conformal or along the ρ axis in polar coordinates, which from Equation (50) are proportional
and thus equivalent. Thus photon modes will have a wave-number k and a polarisation λ = 1, 2
as their labels. Working in only one dimension, we have avoided the necessity to introduce more
complicated polarisations [34].

Unfortunately, the general states in Equation (9) are complicated inR by the existence of different
future-directed timelike killing vectors in the two Rindler wedges, with ∂η in RR and −∂η in LR.
Hence there need to be two sets of positive frequency modes for solutions of the wave equation on the
spacetime. There will thus be two distinct Fock spaces representing the particle content in LR and RR.
A general particle number state for light propagating in one dimension inR will hence be

⊗
λ=1,2

∞⊗
k=−∞

∣∣∣nL
kλ, nR

kλ

〉
, (57)

with nL
kλ being the number of photons in LR and nR

kλ being the number of photons in RR. Thus the
physical energy eigenstates are in general degenerate and the Hamiltonian must satisfy

Ĥ
∣∣∣nL

kλ, nR
kλ

〉
=
[
ωk(nL

kλ + nR
kλ) + H0

] ∣∣∣nL
kλ, nR

kλ

〉
, (58)

with integer values for both nL
kλ and nR

kλ. This suggests that the field Hamiltonian Ĥ of Equation (37)
has to be expressed in terms of independent ladder operators for both wedges. Hence, it can be
written as

Ĥ = ∑
λ=1,2

∫ ∞

−∞
dk
[
ωk
(
b̂R†

kλ b̂R
kλ − b̂L†

kλ b̂L
kλ

)
+ H0

]
, (59)

where the Eωk factor of Equations (34) and (52) give the relative sign between the left and right sectors.
As we are considering photons propagating along ξ or ρ, and photons are electromagnetic waves, the
electric and magnetic fields must be in the transverse spatial dimensions y, z that are unaffected by
the acceleration and thus identical to their Minkowski counterparts. As described in Section 2.3, the
polarisation basis states correspond to choices of these fields. Here we choose

E, B =

{
(0, E, 0), (0, 0, B) λ = 1

(0, 0, E), (0,−B, 0) λ = 2 ,
(60)

where E and B are scalar functions of (ζ, ρ) or (η, ξ). With this choice of fields, the Rindler–Maxwell
equations of Equation (56) reduce to

∂ηE = −∂ξ B , ∂ξ E = −∂η B , (61)

for conformal Rindler coordinates, and from Equation (A7) to

1
ρ2α2 ∂ζ E = −

(
∂ρB +

1
ρ

B
)

, ∂ρE = −∂ζ B , (62)
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for polar coordinates. Both sets of equations hold in both LR and RR. The conformal expressions are
now identical to the 1D Minkowski propagation considered in [35]. It should be emphasised that the
apparent simplicity is a result of demanding 1-dimensional propagation along the accelerated spatial
axis and choosing convenient polarisations.

The noninertial nature of Rindler space still requires care; recall from Equation (31) that to
determine the classical electromagnetic Hamiltonian, we require a timelike Killing vector field. We must
also choose a spacelike hypersurface Σ with normal vector nµ and induced metric γij to integrate
over. In conformal Rindler coordinates, we know that the timelike Killing vector field is K = ∂η , so
Kµ = δ

µ
η . Choosing Σ as being the hypersurface defined by η = 0 allows us to continue using the

spatial coordinates xi = (ξ, y, z). Hence, the full conformal Rindler metric of Equation (51) implies
γ = det(γij) = e−2aξ . Finally, since Σ is spacelike, nµ is normalised to +1, so

1 = gµνnµnν = e2a¸
(

n0
)2

, (63)

giving n0 = e−aξ [48]. Hence the Hamiltonian in Rindler space is

H =
1
2

∫
dξ
(

E2 + B2
)

eaξ e−aξ δ
η
η

=
1
2

∫
dξ
(

E2 + B2
)

, (64)

so the initial apparent simplicity holds.
Following our general prescription, we again make the ansatz that the field operators are linear

superpositions of the relevant ladder operators. As we are considering 1-dimensional propagation
with the electric and magnetic field vectors E and B, respectively, as specified in Equation (60), we
need only apply the ansatz to the scalar components E and B for quantisation, giving

Ê = ∑
λ=1,2

∫ ∞

−∞
dk
(

pL
kλ b̂L

kλ + pR
kλ b̂R

kλ + H.c.
)

,

B̂ = ∑
λ=1,2

∫ ∞

−∞
dk
(

qL
kλ b̂L

kλ + qR
kλ b̂R

kλ + H.c.
)

,
(65)

where pi
kλ and qi

kλ are unknown functions of (η, ξ), and i = L, R for LR and RR respectively. Since the
left and the right wedges ofR are causally disjoint, we can demand that modes in different wedges
are orthogonal with respect to the inner product in Equation (36) [48]. Explicitly this yields

〈pL
kλ, pR

k′λ′〉 =
∫ ∞

−∞
dk p∗L

kλ pR
k′λ′ = 0 ,

〈p∗L
kλ , pR

k′λ′〉 =
∫ ∞

−∞
dk pL

kλ pR
k′λ′ = 0

(66)

with similar expressions for qi
kλ. To determine all the modes, we follow the recipe of Section 3.3 and

demand that the expectation values of these field operators satisfy Equations (61) and (62).
From now on we will work in the conformal Rindler coordinates (η, ξ) due to the wonderful

simplicity of their Maxwell equations. One could of course also use polar coordinates, and indeed
one can show that this yields the same results in this set for the case a = α. To determine temporal
evolution we use the Heisenberg equation, which, as the time coordinate is η in this system and our
observables Ô are scalars, is

∂ηÔ = −i[Ô, Ĥ]. (67)
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Following our prescription, we compare expectation values of the ladder operators for spatial
derivatives and time evolution from Heisenberg’s equation by using our form of Maxwell’s equations.
In this case, using Equations (61) this procedure gives the relations

∂ξ qi
kλ = iωk pi

kλ , (68)

∂ξ pi
kλ = iωkqi

kλ . (69)

Solving for pi
kλ we of course just obtain the wave equation,

(
∂2

ξ + k2
)

pi
kλ = 0, when we consider

free, on-shell photons with k2 = ω2
k. This equation admits separable solutions pi

kλ = χi
kλ(η)Pi

kλ(ξ),
so as there are no temporal derivatives we lose all temporal information. Writing the spatial solution
is trivial:

Pi
kλ = Ji

λeikξ + Ki
λe−ikξ , (70)

where Ji
λ, Ki

λ ∈ C. To determine the temporal dependence of χkλ(η) we use that positive frequency
Rindler modes must satisfy Equation (52). The two modes pL

kλ and pR
kλ must both be positive frequency

with respect to the future-direction of ∂η as they are coefficients of annihilation operators [40]. Thus
the difference between them will be in their time dependence. This gives that we must have

χL
kλ = eiωkη , χR

kλ = e−iωkη . (71)

This difference is a direct result of the two Rindler wedges having different future-directed timelike
Killing vectors. Thus, in all, we have

pR
kλ(η, ξ) = UR

λ ei(kξ−ωkη) + VR
λ e−i(kξ+ωkζ) ,

pL
kλ(η, ξ) = UL

λei(kξ+ωkη) + VL
λ e−i(kξ−ωkη) .

(72)

We can then easily obtain the qi
kλ solutions from Equation (68) as

qR
kλ(η, ξ) =

k
ωk

[
UR

λ ei(kξ−ωkη) −VR
λ e−i(kξ+ωkη)

]
,

qL
kλ(η, ξ) =

k
ωk

[
UL

λei(kξ+ωkη) −VL
λ e−i(kξ−ωkη)

]
.

(73)

We now seek to determine the unknown coefficients in these expressions. Similarly to Section 2.3, first
note that wave modes propagating in the positive ξ direction inR should be functions of (kξ −ωkη)

in RR where ∂η is the future-directed timelike Killing vector, and functions of (kξ + ωkη) in LR where
it is −∂η . Similarly, modes propagating in the negative ξ direction should be functions of (kξ + ωkη)

in RR and functions of (kξ −ωkη) in LR. These conditions imply VR = VL = 0.
We then determine the remaining constants by demanding that the classical and the quantised

field Hamiltonians are equivalent, as in Equation (45). Since Ĥ is quadratic in the electric and magnetic
field operators, we obtain cross terms between LR and RR modes during the calculation. Integrating
over such terms gives the inner products in Equation (66), but as modes in the different wedges are
orthogonal these terms are identically 0, so there are no physical cross terms. Then after some algebra
and relying on the integral definition of the delta function, we arrive at

Ĥ = 2π ∑
λ=1,2

∫ ∞

−∞
dk
[
|UR

λ |2
(

2b̂†R
kλ b̂R

kλ + δ(0)
)
+ |UL

λ |2
(

2b̂†L
kλ b̂L

kλ + δ(0)
) ]

, (74)
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where we have used the commutation relations in Equation (25). As in Section 2.3, to finally determine
the constant terms and zero-point energy we compare with Equation (59) which yields

|UR
λ |2 =

ωk
4π

, |UL
λ |2 =

ωk
4π

, H0 =
∫ ∞

−∞
dk ωk δ(0) . (75)

To obtain our final expressions for the electric and magnetic field operators we arbitrarily choose the
phases of both UR

λ and UL
λ to give consistency with standard Minkowskian results, and multiply the

electric field operator by polarisation unit vector êλ and the magnetic field operator by k̂× êλ. Thus,
in all, we obtain the final results

Ê = i ∑
λ=1,2

∫ ∞

−∞
dk
√

ωk
4π

[
ei(kξ−ωkη) b̂R

kλ + ei(kξ+ωkη) b̂L
kλ + H.c.

]
êλ ,

B̂ = −i ∑
λ=1,2

∫ ∞

−∞
dk
√

ωk
4π

[
ei(kξ−ωkη) b̂R

kλ + ei(kξ+ωkη) b̂L
kλ + H.c.

]
(k̂× êλ) ,

Ĥ = ∑
λ=1,2

∫ ∞

−∞
dk ωk

[
b̂†R

kλ b̂R
kλ + b̂†L

kλ b̂L
kλ + δ(0)

]
. (76)

These three operators are very similar to the electric and magnetic field operators Ê and B̂, respectively,
and Ĥ in Equations (11) and (14) in Minkowski space. When moving in only one dimension, the
orientation of the electric and magnetic field amplitudes is still pairwise orthogonal and orthogonal to
the direction of propagation. However, the electromagnetic field has become degenerate and additional
degrees of freedom which correspond to different Rindler wedges have to be taken into account in
addition to the wave numbers k and the polarisations λ of the photons. Finally, instead of depending
on kx, the electric and magnetic field observables now depend on kξ ±ωkη, i.e., they depend not only
on the position but also on the amount of time the observer has been accelerating in space and on
their acceleration. Most importantly, Equation (76) can now be used as the starting point for further
investigations into the quantum optics of an accelerating observer [5,36,46], and is expected to find
immediate applications in relativistic quantum information [13–21,69].

4.4. The Unruh Effect

As an example and to obtain a consistency check, we now verify that our results give the
well-established Unruh effect [55,56,58,59]. This effect predicts that an observer with uniform
acceleration α in Minkowski space measures the Minkowski vacuum as being a pure thermal state
with temperature

TUnruh =
α

2π
. (77)

Deriving this result relies on being able to switch between modes in Minkowski and modes in
Rindler space, which requires a Bogolubov transformation. This transformation allows us to switch
between the modes of different coordinate frames and generally transforms a vacuum state to a
thermal state [57,77]. For a field expansion in two complete sets of basis modes, φ = ∑i âi fi + â†

i f ∗i =

∑j b̂jgj + b̂†
j gj, this relates the modes as

gi = ∑
j

αij f j + βij f ∗j ,

fi = ∑
j

α∗jigj − β jig∗j ,
(78)
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where αij and βij are the Bogolubov coefficients [58]. Knowing these coefficients also allows the
associated particle Fock spaces to be related,

âi = ∑
j

αji b̂j + β∗ji b̂
†
j ,

b̂i = ∑
j

α∗ij âj − β∗ij â
†
j .

(79)

For transforming between the Rindler and Minkowski Fock spaces, the coefficients can be calculated
using coordinate relations in a method first introduced by Unruh [55].

Here our field modes are the expansions of the electric field operators in R and M with the
Minkowski results taking the same functional form. Following the standard approach [48,51], our
expressions for the field operators yield

αLL = αRR =
1

ωk

√
1

2 sinh(πωk
a )

e
πωk

2a

βLR = βRL =
1

ωk

√
1

2 sinh(πωk
a )

e−
πωk

2a .

(80)

These immediately give the following relationship between the ladder operators.

b̂R
kλ =

1
ωk

√
1

2 sinh(πωk
a )

(
e

πωk
2a ĉR

kλ + e−
πωk

2a ĉL†
−kλ

)
,

b̂L
kλ =

1
ωk

√
1

2 sinh(πωk
a )

(
e

πωk
2a ĉL

kλ + e−
πωk

2a ĉR†
−kλ

)
.

(81)

The ĉi
kλ operators are associated with modes that can be purely expressed in terms of positive frequency

Minkowski modes (from the form of the field operators in Cartesian coordinates). They must thus share
the Minkowski vacuum, so ĉR

k |0M〉 = ĉL
k |0M〉 = 0. Because we possess the Bogolubov transformation

between Minkowski and Rindler space, we can now evaluate particle states seen by an observer inR,
given by b̂i

k, in terms of a Minkowski Fock space given by ci
k. In particular, evaluating the RR number

operator on the Minkowski vacuum gives

〈0M|b̂R†
k b̂R

k |0M〉 =
1

ω2
k

δ(0)

exp( 2πωk
a )− 1

. (82)

This energy expectation value is the same as the energy expectation value of a thermal Planckian state
with temperature a

2π . For the case a = α this is the prediction that exactly constitutes the Unruh effect,
and thus verifies that the results of our quantisation scheme match known theoretical predictions.
Having a 6= α just corresponds to a redshift [48]. The external factor 1/ω2

k is different to that for a
standard scalar field; this is just a remnant of the different normalisation of our electric field operator
and does not affect the physical prediction, with such factors indeed sometimes appearing in the
literature [49].

5. Conclusions

This paper generalises the physically-motivated quantisation scheme of the electromagnetic
field in Minkowski space [35] to static spacetimes of otherwise arbitrary geometry. As shown in
Section 3, such a generalisation requires only minimal modification of the original quantisation
scheme in flat space. In order to assess the validity of the presented generalised approach, we apply
our findings in Section 4 to the well understood case of Rindler space: the relevant geometry for a
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uniformly accelerating observer. Since this reproduces the anticipated Unruh effect, it supports the
hypothesis that our approach is a consistent approach to the quantisation of the electromagnetic field
on curved spacetimes.

The main strength of our quantisation scheme is its gauge-independence, i.e., its nonreliance
on the gauge-dependent potentials of more traditional approaches. Instead it relies only on the
experimentally verified existence of electromagnetic field quanta. As such, our scheme provides a
more intuitive approach to field quantisation, while still relying on well established concepts and
constructions in quantum field theory in curved space. Given this and the applicability of our results
to accelerating frames in an otherwise flat spacetime, it seems likely that our approach can also be
used to model more complex, but experimentally accessible, situations with applications, for example,
in relativistic quantum information.

The specific case of Rindler space, as considered in this paper, led to equations with
straightforward analytic solutions. This will likely not be true in more general settings, where the
necessary wave equations will be nontrivial and will possibly require approximation or numerical
solution. This fact is partially mitigated by our use of the Heisenberg equation, thereby reducing
the necessary calculation to an ordinary differential equation and commutation relation, rather
than a partial differential equation. Furthermore, recall that the scheme laid out in this paper is
a generalisation of that in flat space to the case of static curved spacetimes. This simplified the
definition and construction of the quantisation scheme, due to our reliance on spacelike hypersurfaces.
When applied to the more general case of stationary spacetimes, the correct prescription of the scheme
becomes less clear and will require further theoretical development.
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Appendix A. Further Results of Electromagnetism in Rindler Space

To define the electric and magnetic fields in Rindler space we apply coordinate transformations to
the Minkowski field strength tensor,

FRµν =
∂xα

M
∂xµ
R

∂xβ
M

∂xν
R

Fαβ , (A1)

where xµ
R are the coordinates in Rindler space and xµ

M are the coordinates used by an intertial observer.
The Rindler electric and magnetic fields are defined as the elements of FRµν. In polar and conformal
coordinates this transformation is given by Equations (47) and (49), respectively, which readily give
the Jacobian of the transformation as

Jµ
α ≡ ∂xα

M
∂xµ
R

=


±αρ cosh(αζ) ± sinh(αζ) 0 0
±αρ sinh(αζ) ± cosh(αζ) 0 0

0 0 1 0
0 0 0 1

 (A2)
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in polar Rinder coordinates and

Jµ
α ≡ ∂xα

M
∂xµ
R

=


±eaξ cosh(aη) ±eaξ sinh(aη) 0 0
±eaξ sinh(aη) ±eaξ cosh(aη) 0 0

0 0 1 0
0 0 0 1

 (A3)

in conformal Rindler coordinates, where upper signs refer to RR and lower signs to LR. Transforming
the Minkowski field strength tensor in Equation (A1), we obtain FRµν in Equation (54), where the Rindler
space elements are defined in either wedge by the transformations

E1
R = E1

Mαρ ,

E2
R =

(
E2
Mαρ cosh(αζ)− B3

M sinh(αζ)
)

,

E3
R =

(
E3
Mαρ cosh(αζ) + B2

M sinh(αζ)
)

,

B1
R = B1

M ,

B2
R =

(
B2
M cosh(αζ) + E3

Mαρ sinh(αζ)
)

,

B3
R =

(
B3
M cosh(αζ)− E2

Mαρ sinh(αζ)
)

,

(A4)

in polar Rindler coordinates and

E1
R = E1

Me2aξ ,

E2
R =

(
E2
M cosh(aη)− B3

M sinh(aη)
)

eaξ ,

E3
R =

(
E3
M cosh(aη) + B2

M sinh(aη)
)

eaξ ,

B1
R = B1

M ,

B2
R =

(
B2
M cosh(aη) + E3

M sinh(aη)
)

eaξ ,

B3
R =

(
B3
M cosh(aη)− E2

M sinh(aη)
)

eaξ ,

(A5)

in conformal Rindler coordinates. While the conformal coordinate form of the field strength tensor is
listed in Equation (55), that for polar coordinates, which equals

Fµν
R =



0 −E1
R

ρ2α2
−E2
R

ρ2α2
−E3
R

ρ2α2

E1
R

ρ2α2 0 −B3
R B2

R
E1
R

ρ2α2 B3
R 0 −B1

R
E1
R

ρ2α2 −B2
R B1

R 0


, (A6)
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was omitted. Then, since in polar coordinates, g = −ρ2α2, Equation (5) gives that the modified
Maxwell equations in these coordinates are

∂ρE1
R −

1
ρ

E1
R + ∂yE2

R + ∂zE3
R = 0 ,

1
ρ2α2 ∂ζ E1

R = ∂yB3
R − ∂zB2

R ,

1
ρ2α2 ∂ζ E2

R = ∂zB1
R − ∂ρB3

R −
1
ρ

B3
R ,

1
ρ2α2 ∂ζ E3

R = ∂ρB2
R +

1
ρ

B2
R − ∂yB1

R ,

(A7)

while the Bianchi identity leads to
∂iBi
R = 0 ,

∂ζ B1
R = ∂zE2

R − ∂yE3
R ,

∂ζ B2
R = ∂ρE3

R − ∂zE1
R ,

∂ζ B3
R = ∂yE1

R − ∂ρE2
R ,

(A8)

as in flat space. These equations also hold for conformal coordinates; one just replaces ζ with η and ρ

with ξ.
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