
This is a repository copy of Velocity constrained trajectory generation for a collinear
Mecanum wheeled robot.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/150141/

Version: Accepted Version

Proceedings Paper:
Watson, M.T. orcid.org/0000-0001-8443-4372, Gladwin, D.T.
orcid.org/0000-0001-7195-5435, Prescott, T.J. et al. (1 more author) (2019) Velocity
constrained trajectory generation for a collinear Mecanum wheeled robot. In: Proceedings
- IEEE International Conference on Robotics and Automation (ICRA). ICRA 2019 - IEEE
International Conference on Robotics and Automation, 20-24 May 2019, Montreal, QC,
Canada. Institute of Electrical and Electronics Engineers (IEEE) , pp. 4444-4450. ISBN
9781538681763

https://doi.org/10.1109/ICRA.2019.8794019

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Velocity Constrained Trajectory Generation for a Collinear Mecanum

Wheeled Robot*

Matthew T. Watson1, Daniel T. Gladwin2, Tony J. Prescott3, and Sebastian O. Conran4

Abstract— While much research has been conducted into the
generation of smooth trajectories for underactuated unstable
aerial vehicles such as quadrotors, less attention has been paid
to the application of the same techniques to ground based
omnidirectional dynamically balancing robots. These systems
have more control authority over their linear accelerations
than aerial vehicles, meaning trajectory smoothness is less of a
critical design parameter. However, when operating in indoor
environments these systems must often adhere to relatively low
velocity constraints, resulting in very conservative trajectories
when enforced using existing trajectory optimisation methods.

This paper makes two contributions; this gap is bridged
by the extension of these existing methods to create a fast
velocity constrained trajectory planner, with trajectory timing
characteristics derived from the optimal minimum-time solution
of a simplified acceleration and velocity constrained model.
Next, a differentially flat model of an omnidirectional balancing
robot utilizing a collinear Mecanum drive is derived, which is
used to allow an experimental prototype of this configuration
to smoothly follow these velocity constrained trajectories.

I. INTRODUCTION

The ability for dynamically stable omnidirectional mo-

bile robots to plan dynamically feasible trajectories through

complex environments is a key precursor to their success-

ful development and commercialisation. This is a more

challenging task than the simple kinematic planning that

is commonly used to generate trajectories for statically-

stable holonomic wheeled vehicles, as the underactuation of

balancing robots means they cannot be commanded to follow

arbitrary trajectories through configuration space. The gen-

erated trajectory must therefore meet the desired navigation

goals and constraints, whilst also remaining strictly within

the set of dynamically feasible trajectories.

Optimal dynamically feasible constrained trajectories for

underactuated nonlinear systems can be found by optimis-

ing a set of discrete input changes over a finite horizon,

integrating an approximation of the nonlinear system dy-

namics to predict the system response to these inputs for

*This work was supported by Consequential Robotics Ltd (CqR) and
the Engineering and Physical Sciences Research Council [grant number
EP/M508135/1]

1Matthew T. Watson is a PhD candidate at the Department of Electrical
and Electronic Engineering, The University of Sheffield, Sheffield, UK
m.t.watson@sheffield.ac.uk

2Daniel T. Gladwin is a Senior Lecturer at the Department of Electrical
and Electronic Engineering, The University of Sheffield, Sheffield, UK
d.gladwin@sheffield.ac.uk

3Tony J. Prescott is Professor of Cognitive Robotics at the De-
partment of Computer Science, The University of Sheffield, Sheffield,
UK, and co-founder of Consequential Robotics Ltd., London, UK
t.j.prescott@sheffield.ac.uk

4Sebastian O. Conran is co-founder of Consequential Robotics Ltd.,
London, UK sconran@consequentialrobotics.com

the evaluation of a suitable objective function, solved as a

nonlinear program. These techniques have been applied to

complex dynamic systems such as that in this paper with

solution times in the region of hundreds of milliseconds

for simple trajectories, however, complexity and solve time

rapidly increases for lengthier trajectories [1], limiting the

suitability of these methods for real-time planning. This

problem can also be approached by extension of the existing

kinematic planners commonly used in ground vehicle tra-

jectory planning to include the system dynamics, referred to

as kinodynamic planning, with kinodynamic RRT* being a

popular choice [2] [3]. This method builds a random tree

of trajectories in the system’s configuration space, rooted at

the system’s initial state. By integrating the nonlinear system

dynamics between nodes all resulting trajectories through the

tree are guaranteed to be dynamically feasible. However, this

too is a computationally expensive method, taking seconds

to minutes to plan simple trajectories.

A less computationally demanding alternative applies the

concept of differential flatness to the planning problem, a

model reduction technique that allows for state trajectories

to be calculated algebraically from sufficiently continuously

differentiable geometric trajectories in some possibly ficti-

tious system outputs [4]. This allows the planning problem to

be addressed in a top down manner by optimising trajectories

in the system’s outputs rather than its inputs, yielding less

computationally demanding problem formulations. This re-

search has mainly focused on quadrotors, which are naturally

differentially flat [5] and therefore well suited to this type

of planning, though some research has been undertaken into

applying these techniques to dynamically stable omnidirec-

tional ground robots of the ball balancing variety [6], [7],

in which smooth trajectories between position waypoints are

generated for a single planar direction of a ballbot. Another

approach to trajectory generation for ball-balancing robots

optimises trajectories in the lean angle state using trajectories

comprised of piecewise summed parametrised hyperbolic

secant and cubic spline functions [8]. However, this choice of

basis function requires the solution of a complex constrained

nonlinear program, again at high computational cost.

In this article we extend existing differential flatness

based trajectory planning techniques to a vehicle utilizing

a Collinear Mecanum Drive (CMD), shown in Figure 1.

This wheel configuration operates in a similar manner to a

two wheeled inverted pendulum, but instead utilizes three

or more collinear Mecanum wheels to enable translation

parallel to the wheel axis whilst simultaneously balancing,

allowing for omnidirectional locomotion. By dynamically

Fig. 1. Collinear Mecanum drive prototype platform [9]. This utilizes
four torque controlled Mecanum wheels for locomotion, suspended in pairs
to maintain traction. Sensing is provided by wheel encoders and triaxial
gyroscopes and accelerometers.

balancing this drive mechanism can be used to create robots

with the same height and ground footprint as a human,

whilst possessing a minimum directly navigable gap that is

only limited by its wheel diameter. This makes this drive

mechanism an ideal candidate for robots that must physically

interact with a standing human, whilst possessing a discrete

ground footprint to maintain manoeuvrability and human-like

dimensions.

II. DIFFERENTIALLY FLAT MODEL DERIVATION

The dynamic model of a collinear Mecanum drive [9] can

be described in the inertial frame in the form

M(ζ)ζ̈ + C(ζ, ζ̇)ζ̇ +G(ζ) + F (ζ)ζ̇ = H(ζ)τ (1)

with ζ =
[

x y φ θp
]T

, where x, y are the Cartesian

positions of the platform base, φ is the rotation of the robot

about the vertical, and θp the lean angle. M(ζ) represents the

inertia matrix, C(ζ, ζ̇) the Coriolis and centripetal matrix,

G(ζ) the gravity matrix, F (ζ) the viscous friction matrix,

H(ζ) the input matrix, and τ a vector of four wheel torque

inputs.

Velocities in the body attached frame can be defined by a

rotation of
[

ẋ ẏ
]T

by φ, giving the mapping

v =









vx
vy
φ̇

θ̇p









=

[

Rφ 0
0 I2×2

]









ẋ
ẏ

φ̇

θ̇p









= RB(ζ)ζ̇ (2)

This can be substituted into (1) to give

M(ζ)
(

ṘT
B(ζ)v +RT

B(ζ)v̇
)

+N(ζ, v) = H(ζ)τ (3)

where N(ζ, v) = C
(

ζ,RT
B(ζ)v

)

RT
B(ζ)v +G(ζ) + F (ζ)ζ̇.

The dependency of H(ζ) on ζ can be removed by multi-

plication of the dynamics by RB(ζ)
T . Treating (3) as a set

of four simultaneous equations, expression 2 of (3) can be

multiplied through by rw and summed with expression 4 to

isolate the system’s internal dynamics by elimination of τ ,

yielding an expression of the form f
(

θp, θ̇p, θ̈p, vx, v̇y, φ̇
)

=

exey

ez

E

w1,z

l3
l4

l2

l1

B

bx

by

bz

px

py

pz

P

W3

φ

θ1

τ1

θp
hp

rw

Fig. 2. Collinear Mecanum Drive coordinates and parameters

0. This is, however, still a differential equation that must be

integrated with specified initial conditions to determine θp,

and is therefore not differentially flat.

Shomin et al. [7] showed that a single planar axis of a

ballbot can be differentially flattened by a combination of

model simplification and a flat output of the form S(t) =
x(t) + λθp(t). This can be extended to the full 3D model

and to include yaw rotation by defining the system’s flat

outputs as:

S1(t) = x(t)− sin(S3(t))λθp(t) (4)

S2(t) = y(t) + cos(S3(t))λθp(t) (5)

S3(t) = φ(t) (6)

The system states x, y, vx, vy , and all derivatives of φ can

be trivially derived by differentiation and rotation of the

flat outputs. Substituting these definitions into the internal

dynamics and performing a small angles approximation of

sin(θp) and cos(θp) about θp = 0 yields the expression

0 = θ̈p(t) (b+ cλ) + θp(t)
(

d+ eṠ3(t)
2 + cλṠ3(t)

2
)

+

aθp(t)θ̇p(t)
2 + c sin(S3(t))S̈1(t) + c cos(S3(t))S̈2(t) (7)

where a, b, c, d, and e are known constants. θ̈p can be

eliminated from this expression by selection of λ = −b/c,
and it is a safe assumption that the centripetal force acting

on θp due to θ̇p will always be small relative to other forces,

so the term aθpθ̇
2
p can be omitted. This allows for solution

of θp(t) as

θp(t) =
−c
(

sin(S3(t))S̈1(t) + cos(S3(t))S̈2(t)
)

d+ eṠ3(t)2 − bṠ3(t)2
(8)

θ̇p and θ̈p can then be determined by differentiation of θp,

thus algebraically defining all system states in terms of the

flat outputs S. Finally, the input τ can be derived by inversion

of the system dynamics in (3) by multiplication with H(ζ)+

and substitution with system states in terms of S. This

method of differential flattening introduces a singularity at

d + eṠ3(t)
2 − bṠ3(t)

2 = 0, which for the prototype in this

article occurs at φ̇ = ±8.78 rad s−1, meaning an angular

velocity constraint must be observed on φ̇.

III. TRAJECTORY OPTIMISATION

With a differentially flat model, it is now possible to derive

corresponding state and input trajectories for any continuous

trajectory in the flat output that has a bounded 4th derivative,

the snap of the output. Work applying differentially flat

trajectory generation to quadrotors [5], [10] has shown that

desirable smooth trajectories can be generated by minimising

the nth derivative of a system of order n − 1, so here the

5th derivative, or crackle, is to be minimised.

As in these prior works, S is defined by three univariate

polynomials. In order to have a bounded fourth derivative a

5th degree polynomial is required. Additionally, to perform

meaningful translations between positions it must be possible

to constrain the start and end of the polynomial, requiring a

further 4 degrees of freedom, so nonic polynomials are used.

Each polynomial can only define a smooth path from one

position waypoint to another, so ns polynomial segments of

durations ∆t ∈ R
ns

>0 are chained together to define complex

trajectories through ns + 1 waypoints. This gives the cost

function for a single flat output defined by a piecewise

continuous chain of polynomials p(t) as

J =

ns
∑

i=1

∫ ∆ti

0

(

d5pi(t)

dpi(t)5

)2

dt (9)

This can be arranged in the quadratic form J = pTH(∆t)p,

where p is a vector containing the concatenated coefficients

of ns chained polynomials of durations ∆t.
Linear equality constraints are used to ensure continuity

of the zeroth to fifth derivatives at the boundary between

polynomials, as well as to enforce position constraints at

waypoints wi ∈ R, i = [0 .. ns]. The first to fifth

derivatives are also constrained at the start and end of the

entire trajectory, allowing a new trajectory to be generated

that smoothly evolves from the system’s current state, and

ensuring the system can be made to come to rest at the end

of the trajectory.

p(n)

i (∆ti) = p(n)

i+1(0), i = [1 .. ns − 1], n = [0 .. 5] (10)

pi(0) = wi−1 i = [2 .. ns] (11)

p(n)

1 (0) = w(n)

0 , p(n)

ns
(∆tns

) = w(n)

ns
, n = [0 .. 5] (12)

This defines the required polynomial optimisation with

a quadratic cost and linear equality constraints, allowing

the problem to be formulated as a quadratic program (QP).

As only equality constraints are present this can be solved

very efficiently using QR decomposition methods with sub-

millisecond execution.

Figure 3 shows the optimised polynomial trajectory for a

translation of S2 = [0, 1] over 1.5 s, along with the y and

0 0.5 1 1.5

0

0.5

1

t (s)

S
2
,
y
(m

)

0

1

2

Ṡ
2
,
ẏ
(m

s−
1
)

Fig. 3. Zeroth (blue) and first derivatives (red) of the flat output S2 and Ṡ2

(solid) and corresponding state trajectories y and ẏ (dashed) for a trajectory
of 1.5 s duration with φ = 0 between waypoints at S2 = [0, 1].

ẏ state trajectories derived from the differentially flattened

model. This shows how the differentially flattened model

successfully captures the need for the robot to first move

away from the objective in order to lean the pendulum

towards it, despite the flat output being monotonic. Systems

that move in this manner are referred to as shape accelerated

systems.

In order to optimally select ∆t a convex minimisation can

be performed on the sum of the costs of the three flat outputs

with coefficients optimised for a given ∆t and a weighted

sum of the total trajectory duration, using equality constraints

to maintain coherence of position waypoints between flat

outputs

min
∆t







ns
∑

i=1

3
∑

j=1

∫ ∆ti

0

(

d5pij(t)

dpij(t)5

)2

dt+Kt∆ti







(13)

The scaling factor Kt can be viewed as an analogue for

the ’aggressiveness’ of a trajectory, producing similarly ag-

gressive trajectories for a given Kt regardless of waypoint

number or position.

IV. CONSTRAINING SEGMENT VELOCITY

In optimising a simple rest-to-rest trajectory for minimum

crackle, the resulting velocity trajectory forms a bell-shaped

profile, in which the average velocity is much smaller than

the peak, as visible in Figure 3. In real-world scenarios a plat-

form of this type will have to adhere to velocity constraints

for safety, meaning the peak of this bell curve must lie

within constraint bounds. Using the above method, Kt must

be decreased to lengthen the duration of the trajectory until

all peak velocities lie within constraint bounds, potentially

decreasing the peak velocity of some segments much below

the constraint in order to ensure constraint satisfaction of

the segment with greatest peak velocity. Alternatively, these

velocity constraints can be represented by smooth barrier

penalty functions, allowing the optimal selection of segment

durations so that all segments that were constraint violating

have their peak velocity reduced to equal the constraint, at a

cost of greatly increased solution difficulty. However, both of

these methods yield far from time-optimal trajectories, as the

resulting velocity profiles between waypoints will only equal

0 1 2 3 4

−1

0

1

t (s)

S
(m

)

−1

0

1

2

Ṡ
(m

s−
1
)

Fig. 4. Flat output zeroth (blue) and first derivatives (red) for position
waypoints S2 = [0,−1, 1], with each segment split into three at its
center, with middle segment durations of zero and velocity constraints of
v = 1ms−1 at segment boundaries. Dashed lines represent the standard
QP solution, solid lines the SOS constrained solution, dotted lines segment
boundaries, and blue circles position waypoints.

the constraint at at most a single point, with the majority of

the trajectory being much slower than the constraints allow.

An ideal crackle-to-time optimal velocity constrained

point to point trajectory would reach v as quickly as the

crackle-to-time cost ratio allows, maintain v for an appropri-

ate amount of time, and decelerate as quickly as the crackle-

to-time cost ratio allows. This shape of trajectory can be

incorporated by splitting all point-to-point polynomials into

three separate polynomial segments, with no intermediary

absolute position constraints. The first and last segments in

each set of three are kept the same degree as the original

polynomial, but by defining the middle segment using a cubic

polynomial velocity constraint satisfaction of this segment

can be trivially ensured for all t using just two inequalities at

the segment start and end. The same continuity of derivatives

between segments is enforced as in section III.

Figure 4 shows the QP solution to a trajectory through

position waypoints at S2 = [0,−1, 1], in which each position

to position segment has been split into three, with velocity

inequalities constraints of |v| ≤ 1 enforced at all segment

boundaries. The duration of the middle segment of each split

polynomial is left at zero for demonstration; a systematic

method of selecting this new variable is introduced later.

Despite the QP solution satisfying constraints at segment

boundaries, large violations occur in the middle of two of

the segments, making the standard QP approach insufficient

to guarantee velocity constraint satisfaction across the whole

trajectory.

V. ENFORCING VELOCITY CONSTRAINTS ON ENTIRE

TRAJECTORIES

Enforcing velocity constraints over the whole trajectory

using the original QP problem formulation requires a discrete

set of points along the segment to be chosen at which the

constraint is enforced using linear inequalities. This offers

no guarantee of constraint satisfaction for the continuous

trajectory, as with insufficient sample points the constraint

may still be violated between constraints. This can be tackled

by increasing the density of sampling, but with an associated

increase in problem complexity and therefore solve time.

This can alternatively be performed in a recursive manner

[11], using root finding to insert constraints at the peak

violations of the previous QP solution, at a risk of a large

increase in solve time if a large number of iterations are

required to fully constrain a segment.

An alternative presented here utilizes sum-of-squares

(SOS) programming to enforce constraints directly on the

continuous time polynomials themselves, rather than at dis-

crete sampled points. A polynomial p(t) of degree 2d that

is a sum-of-squares polynomial can be written in the Gram

matrix form z(t)THz(t), where z(t) is a column vector

containing the monomials of p(t) up to degree d, and H
is positive semidefinite. If a univariate polynomial p(t) can

be represented in this form, then p(t) ≥ 0 ∀ t ∈ R [12].

Furthermore, the constraint p(t) ≥ 0 can be enforced on

just the interval t = [a, b] if p(t) can be written in the form

p(t) =

{

s(t) + (t− a)(b− t)q(t), if deg (p) is even

(t− a)s(t) + (b− t)q(t), if deg (p) is odd
(14)

where s(t) and q(t) are SOS. For even deg (p), deg (p) =
2d, deg (s) ≤ 2d, and deg (q) ≤ 2d − 2. For odd deg (p),
deg (p) = 2d+ 1, deg (s) ≤ 2d, deg (q) ≤ 2d [13].

These constraints cannot be used to directly enforce −v ≤
v(t) ≤ v, as doing so would require both v + s(t) and

v − s(t) to be SOS, an infeasible problem. This cannot

be circumvented by using only an appropriately signed

one-sided inequality, as complex trajectories can result in

violations of both v(t) ≤ v and −v ≤ v(t) within the same

segment.

We therefore opt to instead enforce velocity monotonicity

of each segment, forcing the velocity extrema to occur at the

segment boundaries, where they can be constrained by fixed

linear inequalities. This is achieved by forcing the second

derivative of the flat output in each nonic segment to be of

constant sign for the duration of the segment, by defining

the second derivatives of all nonic segments in the form

ts(t) + (∆ti − t)q(t), with the first and zeroth derivatives

obtained by integration and introduction of initial velocity

and position coefficients. The original QP is then reformu-

lated as a semidefinite program (SDP), allowing positive

semidefinite constraints H � 0 and therefore p̈(t) ≥ 0 or

−p̈(t) ≥ 0 to be explicitly included as constraints for all

nonic polynomials, thus enforcing the monotonicity of ṗ(t).
The desired sign for the SOS constraint must be determined

a priori. This reformulated problem can then be efficiently

solved by existing SDP solvers. This allows the constraining

of the velocity of the entire trajectory for all t using four SOS

constraints and one linear inequality per nonic segment, and

one linear inequality per cubic segment.

Figure 4 shows a comparison between the original con-

strained QP and new SDP solutions. In contrast to the QP so-

lution, the new trajectory now demonstrates exact constraint

satisfaction. This problem formulation also generates a more

desirable trajectory profile, exhibiting a more direct path

with zero overshoot. Solving the SDP for this example using

MOSEK V8.1 [14] with preprocessing by YALMIP [15]

takes 60ms using an Intel i7-4720HQ processor, sufficiently

fast for use in online real-time planning.

VI. OPTIMISATION OF VELOCITY CONSTRAINED

SEGMENT DURATIONS

Any method of including velocity constraints prevents

a fast analytical solution using QR decomposition as is

performed with standard QP approaches. This in turn pre-

vents the usual selection of optimal segment durations by

gradient descent as in (13), as the number of function

evaluations and therefore QP solutions required to compute

numerical gradients for three flat outputs at each iteration

- whilst also maintaining time coherence between position

waypoints - quickly makes this problem intractable in real-

time. Also, with the addition of these velocity constraints the

optimisation is now only feasible for a reduced set of seg-

ment durations, resulting in loss of convexity. An alternative

method of selecting segment durations is therefore required.

Shomin [7] uses a fast heuristic method to specify point-

to-point polynomial segment durations based on a velocity

constrained trapezoidal profile with fixed known start and

end velocities, but doesn’t provide a systematic method for

choosing these velocities. This prevents the use of a similar

heuristic in this application, unless the robot is expected to

come to rest at every waypoint. We build on this concept, in-

stead opting to select segment durations by optimising three

acceleration and velocity constrained trapezoidal profiles for

minimum time, from which the optimal durations can be

used to define the full dynamically feasible SOS constrained

optimisation. This also provides a convenient method for

defining the sign of the SOS constraints, determined by

examining the sign of the resulting optimal acceleration.

This new problem is formulated by simplifying all nonic

polynomial segments to second order polynomials and all

cubic segments to linear polynomials, optimising the convex

nonlinear objective function

min
∆t

3
∑

i=1

ns
∑

j=1

(

∆ti,j +Ka

∫ ∆ti,j

0

p̈2i,jdt

)

s.t. |p̈i,j | ≤ a, |ṗi,j(0)| ≤ v, 0 ≤ ∆ti,j

(15)

where Ka is a sufficiently small constant such that acceler-

ation is minimised without any meaningful increase in the

optimal total duration in order to ensure a unique solution.

Equality constraints are enforced between flat outputs for

all position waypoints in order to maintain spatial coherence

between trajectories, along with the same equalities as in (10)

to (12). Solution of this NLP is performed using MATLAB’s

fmincon function, though superior solvers exist that would

be expected to deliver reduced solution time. Figure 5 shows

the optimal trapezoidal profile generated for a trajectory

through 11 random waypoints in S2, along with the resulting

SOS constrained fully dynamically feasible trajectory. Often

a number of segments will be optimised to zero duration,

allowing them to be removed to simplify the SDP. Figure

6 shows solver cold-start execution time for both the trape-

zoidal and SDP optimisations with increasing numbers of

0 10 20 30
−4

−2

0

2

4

t (s)

S
(m

)

−1

0

1

Ṡ
(m

s−
1
)

Fig. 5. The optimised minimum-time trapezoidal profile (dashed) through
11 random position waypoints (blue markers), with the corresponding fully
dynamically feasible SDP optimised velocity constrained trajectory (solid).

2 4 6 8 10
0

0.1

0.2

0.3

t t
ra

p
(s
)

2 4 6 8 10
0

0.2

0.4

0.6

n

t S
D

P
(s
)

Fig. 6. Trapezoidal and SDP optimisation solver cold-start execution time
for 100 random trajectories of increasing position waypoint number n, with
mean execution time in red.

position waypoints, demonstrating suitability of this method

for online replanning. Also, in a replanning scenario there

is likely to be minimal difference between consecutive it-

erations of the planner, meaning each optimisation can be

initialised with the solution to the previous, further reducing

solve time.

VII. EXPERIMENTAL TRAJECTORY TRACKING

Asymptotic trajectory tracking is achieved in the pres-

ence of disturbance, unmodelled dynamics, and parameter

uncertainty using a full state feedback time varying LQR.

This is derived from a linearisation of the model dynamics

about the stationary upright position and time varying φ,

with Q = diag
([

3 3 1 1 0.1 0.1 0.01 0
])

and

R = 0.5I4×4. Localisation in the inertial frame is achieved

by dead reckoning, using an extended Kalman filter to fuse

odometry and inertial data. This provides suitable accuracy

and negligible drift for the experiments demonstrated here,

but would require an absolute position reference for longer

distance navigation tasks. Three example trajectories are

demonstrated. Figure 7 shows the robot performing a 2m
translation from a starting pose of φ = 0 to a terminal pose

of φ = π, with a 0.4m section placed in the middle of the

path in which a yaw angle of φ = π/2 is enforced on entry

and exit in order for the robot to navigate a gap that is too

narrow to be navigated without rotating. Velocity constraints

of v = 1ms−1 and φ̇ = 6 rad s−1 are enforced, yielding an

Fig. 7. A 2m trajectory through a narrow gap in 2.9 s with v = 1ms−1, demonstrating the real-world manoeuvrability of this drive configuration.

Fig. 8. A 2m translation with two full rotations in 3.2 s, demonstrating the smoothness of transition between shape accelerated and lateral motion.

0 0.5 1

0

0.5

1

x (m)

y
(m

)

Fig. 9. A Cartesian state trajectory (blue) planned to pass through the
four points of a unit square twice, whilst also completing four full rotations
about the yaw axis in 10 s, along with the experimental tracked trajectory
(red).

optimal trajectory of 2.9 s duration in a combined solve time

of 190ms. This demonstrates how this approach to trajectory

planning and tracking yields smooth transitions between the

robot’s two modes of locomotion, allowing it to exploit its

narrow width to improve environment accessibility. Figure

8 aims to further demonstrate the smoothness of transition

between shape-accelerated and lateral movement. To do so a

trajectory is again planned for a translation of 2m, however

now a full two revolutions are simultaneously performed, for

a terminal pose of φ = 4π. For the same constraints as above

this yields a trajectory of 3.2 s duration. Two LED markers

are attached to each end of the robot, and a long exposure

shot is used to capture the motion of the robot through

time. This demonstrates the smoothness of the generated

trajectories, and the accuracy of tracking that results from

directly deriving dynamically feasible trajectories.

Finally, Figure 9 shows a Cartesian state trajectory (blue)

of 10 s duration passing through the four points of a unit

square twice, along with the actual tracked trajectory (red).

The optimised trajectory follows an intuitive path, with

each intermediary waypoint passed at the maximal allowed

velocity, and with smooth changes in direction between

waypoints. The trajectory is tracked well, with RMS errors

of 0.010m and 0.031m, sampled at 100Hz.

VIII. CONCLUSION

This paper has made two distinct contributions. First, it

is shown that fully omnidirectional motion of a Collinear

Mecanum Drive can be be described by three differentially

flat outputs with bounded fourth derivatives, allowing the

generation of smooth dynamically feasible trajectories be-

tween arbitrary sets of waypoints. Second, a novel approach

to the generation of velocity constrained polynomial tra-

jectories has been demonstrated, using sum-of-squares pro-

gramming to guarantee constraint satisfaction for the entire

continuous time trajectory. The combination of these two

contributions allows for omnidirectional balancing robots

to generate and follow trajectories through an arbitrary set

of waypoints with velocity constraints in much closer to

minimum time than existing polynomial trajectory generation

methods, making this method well suited to the planning of

fast but safe indoor trajectories.

Future work will aim to incorporate full localisation into

the platform to allow for the navigation of a complex

map by autonomous selection of suitable waypoints. Recent

advances in SOS programming will also be explored for

use in this planning problem, notably sparse SOS [16] and

diagonal/scaled-diagonal SOS programming [17]. These are

SOS representations that allow the simplification of the SDP

into a SOCP or QP, greatly reducing problem complexity.

REFERENCES

[1] D. Pardo, L. Moller, M. Neunert, A. W. Winkler, and J. Buchli,
“Evaluating Direct Transcription and Nonlinear Optimization Methods
for Robot Motion Planning,” IEEE Robotics and Automation Letters,
vol. 1, no. 2, pp. 946–953, jul 2016.

[2] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in Proceedings of the

IEEE Conference on Decision and Control. IEEE, dec 2010, pp.
7681–7687.

[3] D. J. Webb and J. Van Den Berg, “Kinodynamic RRT*:
Asymptotically optimal motion planning for robots with linear
dynamics,” in Proceedings - IEEE International Conference on

Robotics and Automation. IEEE, may 2013, pp. 5054–5061.
[4] M. Fliess, J. Levine, P. Martin, and P. Rouchon, “Flatness and

defect of non-linear systems: Introductory theory and examples,”
International Journal of Control, vol. 61, no. 6, pp. 1327–1361, jun
1995.

[5] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Proceedings - IEEE International

Conference on Robotics and Automation. IEEE, may 2011, pp.
2520–2525.

[6] M. Shomin and R. Hollis, “Differentially flat trajectory generation
for a dynamically stable mobile robot,” in Proceedings - IEEE

International Conference on Robotics and Automation. IEEE, may
2013, pp. 4467–4472.

[7] M. Shomin and R. Hollis, “Fast, dynamic trajectory planning for a
dynamically stable mobile robot,” in IEEE International Conference

on Intelligent Robots and Systems, 2014, pp. 3636–3641.
[8] U. Nagarajan, G. Kantor, and R. L. Hollis, “Trajectory planning

and control of an underactuated dynamically stable single spherical
wheeled mobile robot,” in Proceedings - IEEE International

Conference on Robotics and Automation, 2009, pp. 3743–3748.

[9] M. T. Watson, D. T. Gladwin, T. J. Prescott, and S. O. Conran,
“Design and control of a novel omnidirectional dynamically
balancing platform for remote inspection of confined and cluttered
environments,” in 2018 IEEE International Conference on Industrial

Electronics for Sustainable Energy Systems (IESES). IEEE, jan
2018, pp. 473–478.

[10] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning
for aggressive quadrotor flight in dense indoor environments,” in
Springer Tracts in Advanced Robotics, vol. 114, 2016, pp. 649–666.

[11] J. Chen, T. Liu, and S. Shen, “Online generation of collision-free
trajectories for quadrotor flight in unknown cluttered environments,”
in Proceedings - IEEE International Conference on Robotics and

Automation, vol. 2016-June. IEEE, may 2016, pp. 1476–1483.
[12] S. Prajna, A. Papachristodoulou, P. Seiler, and P. Parrilo, “New

developments in sum of squares optimization and SOSTOOLS,” in
Proceedings of the 2004 American Control Conference. IEEE, 2004,
pp. 5606–5611 vol.6.

[13] G. Polya and G. Szego, Problems and theorems in analysis. Springer,
1998.

[14] M. ApS, The MOSEK optimization toolbox for MATLAB manual.

Version 8.1., 2017.
[15] J. Lofberg, “YALMIP : a toolbox for modeling and optimization in

MATLAB,” in 2004 IEEE International Conference on Robotics and

Automation (IEEE Cat. No.04CH37508). IEEE, 2004, pp. 284–289.
[16] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou, “Sparse sum-of-

squares (SOS) optimization: A bridge between DSOS/SDSOS and
SOS optimization for sparse polynomials,” ArXiv e-prints, Jul. 2018.

[17] A. A. Ahmadi and A. Majumdar, “DSOS and SDSOS optimization:
LP and SOCP-based alternatives to sum of squares optimization,” in
2014 48th Annual Conference on Information Sciences and Systems,

CISS 2014. IEEE, mar 2014, pp. 1–5.

