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ARTICLE

Rapid accelerations of Antarctic Peninsula outlet
glaciers driven by surface melt
Peter A. Tuckett1, Jeremy C. Ely 1*, Andrew J. Sole 1, Stephen J. Livingstone 1, Benjamin J. Davison2,

J. Melchior van Wessem3 & Joshua Howard1

Atmospheric warming is increasing surface melting across the Antarctic Peninsula, with

unknown impacts upon glacier dynamics at the ice-bed interface. Using high-resolution

satellite-derived ice velocity data, optical satellite imagery and regional climate modelling, we

show that drainage of surface meltwater to the bed of outlet glaciers on the Antarctic

Peninsula occurs and triggers rapid ice flow accelerations (up to 100% greater than the

annual mean). This provides a mechanism for this sector of the Antarctic Ice Sheet to

respond rapidly to atmospheric warming. We infer that delivery of water to the bed tran-

siently increases basal water pressure, enhancing basal motion, but efficient evacuation

subsequently reduces water pressure causing ice deceleration. Currently, melt events are

sporadic, so efficient subglacial drainage cannot be maintained, resulting in multiple short-

lived (<6 day) ice flow perturbations. Future increases in meltwater could induce a shift to a

glacier dynamic regime characterised by seasonal-scale hydrologically-driven ice flow

variations.
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T
he melting of snow and ice creates networks of meltwater
streams and ponds on glacier and ice-sheet surfaces1–3.
Surface meltwater is known to influence the dynamics of

many glaciers4–7 and portions of the Greenland Ice Sheet8,9. At
these locations, drainage of surface water to the ice-bed interface
impacts basal water pressure, leading to variations in ice motion
on sub-daily to decadal timescales1,4,7–13. This mechanism cou-
ples ice flow to atmospheric processes over a range of timescales
down to the sub-diurnal level, making affected ice masses respond
rapidly to changes in atmospheric circulation patterns induced by
climate change9.

Surface meltwater has recently been reported to be widespread
across the Antarctic Ice Sheet3. Antarctic-wide melting is pro-
jected to double by 2050, with the greatest increases in meltwater
production expected across the Antarctic Peninsula, where
atmospheric warming is already increasing surface melting14,15.
Surface meltwater had catastrophic consequences for some ice
shelves, where meltwater expedites ice-shelf disintegration by
hydraulically driven fracture16. However, whether surface melt-
water impacts the behaviour of grounded ice in Antarctica,
implying a rapid and direct coupling of ice dynamics with
atmospheric conditions, is currently unknown17.

In this paper, we use high-resolution satellite-derived ice
velocity data, optical satellite imagery and regional climate
modelling to study five Antarctic Peninsula outlet glaciers and
ascertain whether surface meltwater drains to the bed of these
glaciers, influencing dynamics at the ice-bed interface. The data
reveal that multiple short-lived (<6 day) rapid and large accel-
erations (in some cases 100% greater than mean annual ice
velocity) termed speed-up events occur. That the relative mag-
nitude of speed-up events increases away from the marine mar-
gin, and that tidal fluctuations, iceberg calving events and sea-ice
break-up are asynchronous with speed-ups, leads us to rule-out
marine processes as a cause. Instead, the spatial pattern of speed-
ups, their concurrence with periods of modelled surface melting,
and observations of potential routes for surface meltwater to
reach the bed from optical satellite imagery are consistent with a
surface meltwater trigger. For the first time, we show that surface
meltwater affects the dynamics of grounded ice in Antarctica,
proving a mechanism by which atmospheric and ice-dynamic
processes are coupled over short-timescales.

Results
Ice velocity. We used feature tracking of Sentinel-1 radar imagery
to generate velocity maps at 6-day intervals for five marine-
terminating outlet glaciers on the Antarctic Peninsula (Fig. 1),
during the period October 2016 to April 2018 (Methods). Four of
the glaciers, Drygalski, Hektoria, Jorum and Crane, are on the
eastern side of the Antarctic Peninsula, while Cayley Glacier is on
the west side (Fig. 1). For each glacier, velocity was analysed
across a series of 1 km square regions of interest (ROIs),
extending inland from the glacier’s grounding-line. Glacier-
averaged ROI velocities reveal three types of velocity fluctuation.
First, large-scale seasonal variations, which decrease in magnitude
away from the ocean. Second, background velocity fluctuations of
≈50 m a−1 magnitude. Finally, short-lived rapid accelerations in
ice velocity to values >20% greater than the annual mean
(Fig. 2a). The latter of these we refer to here as speed-up events
and are the focus of this paper. Despite being separated by over
100 km, all five glaciers experienced near-synchronous speed-up
events in March 2017, November 2017 and March 2018 (Fig. 2a);
for example, velocities averaged across all ROIs on Drygalski
Glacier (Fig. 1c) increased by 300m a−1 (≈23% greater than the
annual mean) in November 2017 (Fig. 2a). Larger accelerations
were recorded in individual ROIs (Supplementary Figs. 1–4), with

a 400 m a−1 (100% greater than the annual mean) speed-up
occurring 9 km from the grounding line of Hektoria Glacier
during the November 2017 event (Supplementary Fig. 4c). These
data indicate that speed-up events were short-lived, typically
lasting for 6 days or less. Most of the speed-up events were fol-
lowed immediately by a slow-down before velocities return to
below pre-event values. No significant slow-down events were
detected in the absence of a speed-up. Slow-down and speed-up
events were similar in duration (≤6 days), but the velocity change
associated with the slow-downs was typically smaller (Fig. 2a, c;
Supplementary Figs. 1–4). Such speed-up events have not pre-
viously been reported from Antarctica.

Marine processes. Two sets of processes could be the cause of
speed-up events, either marine processes and/or surface melt-
water drainage to the base of the glacier. Marine processes, such
as tidal fluctuations18, seasonal sea-ice break-up19 or iceberg
calving events20, can all lead to changes in ice buttressing forces.
If these processes were the trigger for the observed speed-up
events (Fig. 2), we would expect an increase in the relative
magnitude of speed-up events closer to the glacier terminus and
changes in marine conditions to coincide with speed-up events.
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At each glacier, many speed-up events became larger compared to
the annual mean velocity within ROIs further from the marine
margin (Figs. 2c and 3; Supplementary Figs. 1–4). The increase in
relative magnitude upglacier was particularly apparent for the
November 2017 event (Fig. 3). This is opposite of what would be
expected if marine processes were the cause of speed-up events.
Analysis of the periodicity of the velocity variations indicates that
low magnitude tidal (14-day) and seasonal variations were
apparent close to the grounding-line but that they diminished in
magnitude inland (Fig. 4). These periodic influences on ice
motion contrast with the irregular occurrence of relatively larger
glacier speed-up events, which occur beyond the region where a
tidal influence on ice motion is apparent (Fig. 4). To further
investigate the influence of marine processes on ice velocity, we
used satellite imagery to record the calving front position and sea
ice/shelf conditions of the studied glaciers (Methods). For all five
glaciers, frontal position was remarkably stable during the study
period, typically varying by <200 m (Supplementary Figs. 5, 6).
The clearest temporal patterns during this time period were the
minor advances of Crane and Hektoria glaciers, but no clear
pattern between the timing of speed-up events and front position
change occurred (Supplementary Figs. 5 and 6). At the southern-
most three glaciers (Crane, Jorum and Hektoria), sea ice was
present in front of the glaciers for the entirety of the study period,
with the sea ice edge in this region remaining over 50 km from
the glacier fronts (Supplementary Fig. 7). Given the increase in
the relative magnitude of speed-up events away from the marine
margin and the lack of synchrony between speed-up events and
ice shelf, sea ice or tidal processes, we find it unlikely that any of
the investigated marine processes caused the observed velocity
fluctuations.

Regional climate modelling. To investigate whether there was a
temporal correspondence between surface meltwater generation
and the observed speed-up events, we compared our velocity data
to surface melt rates from a regional climate model21. The
modelled melt season lasted from October to April, and a small
Föhn wind-induced melt event was modelled in July 2017, during
the austral winter. Multiple large (>3 mm w.e. day−1) but short-
lived (<1 week) spikes in melt are modelled, separated by periods
of little-to-no melting. The large spikes in melt are coincident
with austral summer Föhn events. There is a striking qualitative
correspondence between periods of modelled surface melting and
speed-up events (Fig. 2), with speed-up events generally occurring
during large modelled melt events (e.g., March 2017), or during a
less intense melt event preceded by a period of limited or no melt
(e.g., November 2017; March 2018). The lowest melt rates were
modelled for the western Antarctic Peninsula, where melting is
supressed due to high snowfall rates21. Despite this, Cayley Gla-
cier still exhibits several speed-up events coincident with the
spikes in modelled surface melting (Supplementary Fig. 3). Speed-
up events also occurred during periods when water was visible in
satellite imagery of the ice surface (Fig. 2c). The correspondence
between large and/or initial melt events and glacier speed-up is
consistent with theoretical predictions22 and observations1,9 of ice
flow variations induced by surface melt drainage to the bed on the
Greenland Ice Sheet and Arctic Glaciers6,23. Subglacial hydraulic
efficiency adapts to accommodate meltwater inputs at timescales
longer than the melt events22. This means that during periods of
rapidly varying meltwater flux, such as large or initial melt events,
more water is delivered to the ice-bed interface than can be
evacuated by the subglacial system. This leads to a spike in basal
water pressure, and an increase in basal sliding, which we suggest
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causes the observed speed-up events. We also observe that pro-
longed periods of high volume, but low variability melt did not
elicit a large or extended velocity response (Supplementary Figs
1–4). During these periods, the subglacial system is likely to have
had time to adapt to steady surface meltwater inputs.

Optical satellite imagery. To help determine whether surface
melt reaches the bed of the studied glaciers, we examined the
optical satellite image record (Methods). Surface melt features
were observed upglacier of the grounding line of each glacier,
including small lakes fed by streams and water-filled crevasses
(Fig. 5; Supplementary Figs. 8–12). Although lake refreezing was
observed to occur in some localities indicating long-term surface
storage of water (Fig. 5f), we also recorded multiple occasions
where lakes disappeared between satellite images, which we
interpret as drainage events. While there is a chance that the lakes
could have drained over the ice surface, or into local firn layers,
they possessed no apparent outlet stream, coincident waxing and
waning of nearby lakes was not observed, and the lake beds

following drainage were heavily crevassed (Fig. 5b, c; Supple-
mentary Figs. 5g, 10c, 11e). In these instances, we suggest that
lakes drained into the ice, potentially reaching the bed. Abrupt
stream terminations (which may either indicate moulins or points
where water drains into firn) and meltwater-filled crevasses are
additional potential routes for surface meltwater to access the bed.
The pressure exerted by water within crevasses can cause
hydrofracture24, which creates surface-to-bed hydraulic
connections.

Discussion
Given the spatial pattern of speed-up events, their temporal
coincidence with modelled melt, lack of coincident variations in
glacier frontal position, and observations of surface meltwater
drainage, we infer that the observed speed-up events were caused
by surface meltwater drainage to the base of the glaciers. The lack
of a detectable lag (based on the 6-day temporal resolution of our
velocity data) between spikes in snowmelt and speed-up events
suggests that the surface is well-connected to the bed, with
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meltwater drainage and the resulting dynamic response occurring
within 6 days. We suggest that once at the ice base, this water
causes a rapid acceleration of ice by promoting enhanced basal
sliding through a spike in basal water pressure4,9,22. Efficient
evacuation of both surface-derived meltwater and water stored at
the ice base would then lead to a subsequent reduction in water
pressure and ice motion1,13,22. This mechanism is known to occur
in alpine glaciers5, some polythermal glaciers6,23, and across some
marginal regions of the Greenland Ice Sheet1,9, but this is the first
time that surface meltwater-induced speed-up has been observed
in Antarctica.

Antarctic Peninsula melt seasons are currently characterised by
sporadic melt events interspersed with longer periods where
surface melting does not occur (Fig. 2b). Spikes in modelled melt
are concurrent with Föhn wind conditions21, which are short-
lived. As a result, the supraglacial hydrological network is not
extensive, with few moulins and restricted growth of surface lakes;
a configuration that favours refreezing rather than drainage of
surface lakes (Fig. 6a). This low volume of surface-derived
meltwater, and more restricted surface-to-bed hydraulic con-
nections, along with the high dynamic sensitivity to surface
meltwater input of Antarctic Peninsula glaciers demonstrated

here, suggests an inefficient subglacial hydrological system
dominates for most of the year (Fig. 6b). The variable meltwater
inputs to the bed may cause more efficient subglacial drainage to
occur temporarily, but this is likely short-lived given that velo-
cities rapidly return to pre-meltwater input magnitudes. Many
High-Arctic glaciers are sensitive to surface meltwater inputs25,26,
which have the effect of inducing short-lived speed-ups super-
imposed on a seasonal melt season signal7. The subglacial
hydraulic configuration, glacier dynamic response and lack of
seasonal patterns in meltwater-induced velocity of Antarctic
Peninsula glaciers creates a regime that is perhaps even more
sensitive to meltwater inputs than that of High-Arctic glaciers.

Longer, more intense melt seasons are projected for the Ant-
arctic Peninsula15, with the potential to create a positive melt-
elevation feedback as lakes grow and ice thins to expose bedrock3

(Fig. 6b). Our observations indicate that ice-flow dynamics and
atmospheric conditions are already coupled over short-timescales
on the Antarctic Peninsula. We expect that this mechanism also
operates in other parts of the Antarctic Ice Sheet that experience
surface melting, and is likely to become more widespread, fre-
quent and important for net annual ice motion if climate con-
tinues to warm. In the ablation area of the Greenland Ice Sheet,
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prolonged surface melt sustains meltwater input into moulins27

and leads to numerous surface lake drainages28,29 each melt
season. Under such conditions, melt-induced ice flow variations
over sub-daily to seasonal timescales combine to create an annual
velocity signal1,30, reflecting the adjustment of the basal hydro-
logical system to seasonal meltwater inputs22,31. Surface melt has
also been shown to influence glacier velocity throughout the year
in Alaska32, with a strong positive correspondence between
greater summer surface melting and winter velocity slow-down.
This is a consequence of more efficient subglacial drainage during
high summer melt seasons reducing the availability of subglacial
water during the following winter. Increases in surface melting
over the coming decades15 could change Antarctic Peninsula
glacier dynamics, with an increasing role for forcing by longer-
term climatic change rather than individual weather events such
as Föhn winds. We envisage that the current Antarctic Peninsula
glacier regime will transition toward a High-Arctic regime (a
seasonal signal with sensitive yet short-lived response to melt-
water variations) and eventually toward a Greenlandic or Alaskan
style meltwater-driven system of glacier flow11,32 (Fig. 6c, d),
whereby frequent and sustained speed-up events interact with the
subglacial drainage system to regulate ice flow over seasonal
timescales. The potential for such shifts caused by increasing melt
is yet to be incorporated into numerical models used to predict
the future mass balance of the Antarctic Ice Sheet and its con-
tribution to sea level change33 and future work should aim to
determine the threshold volumes of melt required to generate
these proposed shifts in glacier dynamics.

Methods
Ice velocity. Ice velocity estimates were derived from feature and speckle tracking
of Sentinel 1a and 1b Interferometric Wide Swath mode Single-Look Complex
Synthetic Aperture Radar amplitude images. These data cover two swaths and
include 184 6- or 12-day repeat image pairs between October 2016 and mid-
April 2018.

Each image was split into many image patches, and cross-correlation of each
image patch between repeat-pass image pairs was used to determine the offset of
features (e.g., crevasses) over time34. Image pairs were initially co-located using
precise satellite orbit ephemerides and converted to amplitude in GMTSAR35,36. A
Butterworth high-pass spatial-frequency filter was then used to remove image
brightness variations with a wavelength of greater than ~1 km34, isolating movable
surface features. Tracking of the co-located and filtered images was undertaken in
MATLAB within PIVSuite (https://uk.mathworks.com/matlabcentral/fileexchange/
45028-pivsuite) adapted for quantifying ice flow. Computationally efficient sub-
pixel displacement estimates for each image patch were made by obtaining an
initial estimate of the cross-correlation peak using a fast Fourier transform, and
then up-sampling the discrete Fourier transform using matrix-multiplication of a
small neighbourhood (1.5 × 1.5 pixels) around the original estimated location37.
We oversampled the amplitude images in the azimuth direction by a factor of
two38 and used image patch sizes of 96 × 256 single-look oversampled azimuth and
range pixels, with an overlap of 64 and 24 pixels respectively between patches.
Correlation signal-to-noise ratios were used to filter the velocity results, with a
threshold set at 5.835. Spurious correlations which evaded this first sift were
removed by a threshold strain filter39, and a kernel density filter based on the
paired displacements in the range and azimuth directions for each image patch40. A
Visible Structured Noise Filter (VSNR)41 was used to remove any anomalous
stripes in the azimuth displacement data which sometimes result from fluctuating
electron density along the sensor path through the ionosphere38. Noise in the
azimuth displacement data was quantified using a Blind/Referenceless Image
Spatial Quality Evaluator, and the VSNR filter was only employed if it helped to
improve image quality (i.e., reduced striping). The filtered velocity fields were
transformed from radar to map coordinates using the Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global Digital Elevation Model. The
median velocity error was estimated to be 30.5 m a−1 by measuring the mean
velocity over bedrock areas.

Regions of interest (ROIs) 1 km by 1 km were drawn along the central flow lines
of each glacier, allowing area-averaged velocity values to be extracted. The number
and positioning of ROIs for each glacier was primarily dictated by velocity data
coverage, with a minimum threshold of 80% required. ROIs were numbered
sequentially inland from the grounding line, with each ROI indicating an
approximate number of kilometres inland. We calculated velocities both for each
ROI, and also a mean value for each glacier by averaging all the respective ROIs. A
single chain of between six and ten ROIs were drawn for each glacier.

Tidal modelling. Tidal constituents for a location just off the east coast of the
Antarctic Peninsula (−65.72 N, −61.12W) were generated using the Oregon State
University TOPEX/Poseidon Global Inverse Solution tide model TPXO42. This
model is available at http://volkov.oce.orst.edu/tides/global.html. The Tide Model
Driver package was run in MATLAB to produce modelled tidal amplitudes and
frequencies for the study period from these constituents. These data were used as
an approximation of the tidal signal for the whole study region. We calculated a
continuous wavelet transform (using a standard Morse wavelet) of daily-averaged
tidal amplitudes and the 6-day velocity data to investigate temporal correlations
between the tides and the area-averaged ice velocity from each ROI for each glacier.
The results of this analysis are plotted as a scalogram (Fig. 4). A scalogram is a
visualisation of the absolute value of the continuous wavelet transform of a signal,
plotted as a function of time (x-axis) and signal frequency (y-axis). The colours
represent the strength of a signal of a particular frequency at a given point in time.
The scalogram can be conceptualised as similar to a Fast Fourier Transform of a
time-series, but one that retains information about the strength of signals of dif-
ferent frequencies at different times (or indeed distances) rather than just dis-
playing a time-independent visualisation of the frequency of the strongest signals
within a time-series.

Satellite image analysis. Ice front position and conditions were mapped using the
tool GEEDiT43 in Google Earth Engine ©. This analysis used cloud free Landsat 8
and Sentinal 2 optical imagery, as well as Sentinel 1 radar return images. In total
750 ice front margins were manually identified and mapped (Supplementary Fig.
11). Margin position change using was then defined using a extrapolated centre-
line method44 implemented in the MaQiT tool43.

To look for possible routes of water getting to the ice-bed interface, visible
waveband Landsat 4,5,7, and 8, and Sentinel 2 imagery was analysed to identify
patterns of surface melt across the studied glaciers. GEEDiT was used to cycle
through available imagery43. Images with a cloud cover of greater than 80% were
excluded from the analysis. In many of the remaining images, cloud cover obscured
the ice surface. We therefore extended our analysis beyond the period of time
which velocity data were available, to that of the Landsat record (1984 onward).
Where the ice surface was visible (in 600 instances), images were classified as to
whether obvious signs of surface meltwater, in the form of surface lakes, meltwater-
filled crevasses and streams, were present. Meltwater features were found to recur
in the same positions on glacier surfaces, meaning the Supplementary Figs. 5–9 are
indicative of typical inter-annual meltwater patterns.

Regional climate modelling. We used a high-resolution (5.5 km) version of the
Regional Atmospheric Climate Model (RACMO) version 2.3p2 of the Antarctic
Peninsula region21. The model run was initialised on 1st January 1979, with out-
puts from October 2016 to mid-April 2018 analysed here. The surface mass balance
model has been validated against 132 observational records21. Mean values of
snowmelt were extracted from the modelled snowmelt data in 1 km by 5 km areas
along the centreline and extending inland from the grounding line of each glacier.
These regions of analysis overlap with the ROIs used to generate velocity data. Data
were extracted using MATLAB and ArcMap.

Data availability
The data that support the findings of this study are available from https://figshare.shef.ac.

uk/s/896c34d71a41caf5d03b

Code availability
Image processing to derive velocity estimates was performed using GMSTAR (https://

topex.ucsd.edu/gmtsar/)

and the following Matlab © functions: Particle Image Velocimetry framework: https://

uk.mathworks.com/matlabcentral/fileexchange/45028-pivsuite

Normalised cross-correlation with same-sized images: https://uk.mathworks.com/

matlabcentral/fileexchange/29005-generalized-normalized-cross-correlation

Sub-pixel cross-correlation peak determination: https://uk.mathworks.com/

matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-

correlation

Image segmentation filtering: https://uk.mathworks.com/matlabcentral/fileexchange/

19084-region-growing

Visible Structured Noise Filter: https://www.math.univ-toulouse.fr/~weiss/Codes/

VSNR/VNSR_VariationalStationaryNoiseRemover.html.
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