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Abstract 

Live shrimp movements pose a potential route for site-to-site transmission of acute 

hepatopancreatic necrosis disease (AHPND) and other shrimp diseases. We present the first 

application of network theory to study shrimp epizootiology, providing quantitative information 

about the live shrimp movement network of Thailand (LSMN), and supporting practical and policy 

implementations of disease surveillance and control measures. We examined the LSMN over a 13-

month period from March 2013 to March 2014, with data obtained from the Thailand Department 

of Fisheries. The LSMN had a mixture of characteristics both limiting and facilitating disease spread. 

Importantly, the LSMN exhibited power-law distributions of 𝑖𝑛 and 𝑜𝑢𝑡 degrees with exponents of 

2.87 and 2.17, respectively. This characteristic indicates that the LSMN behaves like a scale-free 

network and suggests that an effective strategy to control disease spread in the Thai shrimp farming 

sector can be achieved by removing a small number of targeted inter-site connections (arcs 

between nodes). Specifically, a disease-control algorithm based on betweenness centrality (defined 

as the number of shortest paths between node pairs that traverse a given arc) is proposed here to 

prioritise targets for disease surveillance and control measures.  

Keywords: AHPND; graph theory; risk-based surveillance 
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1 Introduction 

Shrimp farming has helped drive the socio-economic growth of Thailand since the 1980s (Szuster, 

2006). Nevertheless, invasion of infectious diseases presents a major barrier to success in the 

sector. Looking at the last 30 years of production, microorganisms, i.e. viruses and bacteria, are a 

major cause of Asian farmed shrimp deaths, and represented a substantial economic loss over US$ 

15 billion during the period 1990-2005 (Flegel, 2012). To minimise these losses, the World 

Organisation for Animal Health (OIE) requires all member countries to develop disease surveillance 

and control measures for aquatic animals.  

For shrimp, long-distance transmission, largely by movements of live shrimp, poses a high risk for 

site-to-site disease spread. A recent example, acute hepatopancreatic necrosis disease (AHPND, 

earlier known as EMS) has hit Thai shrimp farming since late 2011, and has been transmitted across 

Thai regions via the movements of infectious live shrimp (FAO, 2013; OIE, 2013). This epizootic 

disease reduced Thai shrimp production by an estimated 500 000 tonnes of shrimp during the 3-

year period from 2011 to 2014 (Songsanjinda, 2015). Although there have been many worldwide 

efforts to stop the spread of AHPND, such as movement restrictions, biofloc technology, genetic 

improvements and enhanced breeding techniques (Hong et al., 2016; Pakingking et al., 2016), risk-

based surveillance and control approaches are needed. 

In recent years, contact network analysis has played a growing role in epidemiology as increasingly 

rich data sets become available. At large spatial scales, epidemiological networks typically consist 

of a set of nodes (sites) connected by directionless edges or directed arcs. Network approaches can 

mathematically study disease dynamics and persistence (Kurvers et al., 2014; Meyers et al., 2003), 

as well as the impact of potential control measures. Centrality measures can be used to identify 

high-risk network features whose removal from the network minimises potential disease spread. 

As suggested by Woolhouse et al. (1997), for heterogeneous networks, it may be that a small 



 

4 
 

fraction of infectious nodes correspond to most of the transmission. Thus, surveillance and control 

targeted at the core group of nodes can be the most effective strategy (Woolhouse et al., 2005). 

Appropriate algorithms for identifying influential nodes or contacts appear to be network specific 

(Newman and Park, 2003). Degree centrality is one means to demonstrate the most important 

nodes in networks (Bohm et al., 2009; Christley et al., 2005; Zhang et al., 2010). Algorithms based 

on betweenness centrality were the most efficient way to reduce potential epizootic size for the 

network of cattle movements in France (Rautureau et al., 2011), as measured through component 

structure; and for the network of pig movements in Germany (Lentz et al., 2016). Betweenness 

centrality was also effective in reducing potential epizootic size in models of the live salmonid 

movements in Scotland (Green et al., 2009). For comparison, other measures of centrality include 

closeness centrality (Fournie et al., 2013) and eigenvector centrality (Herrera et al., 2016), but 

which centrality measures will be effective cannot be assumed without studying the specific system 

of interest and its structure. 

In this paper, we perform the first analysis of the structure of the live shrimp movement network 

(LSMN) for Thailand, with several aims. First, we explore its connectedness and how that may relate 

to potential disease transmission; second, we model optimal disease-control algorithms for the 

Thai shrimp farming system at large spatial scales. This is possible following on from the aquatic 

animal trade regulation of Thailand, B.E.2553 (2010) that requires farmers to report most farmed-

shrimp movements to the authorities. The outcome is quantitative information concerning 

potential epizootic dynamics via live shrimp movements, which can form part of the process of 

implementing mitigation measures for management areas, either in real time during an epizootic, 

or in peacetime for developing disease surveillance and control programmes.  
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2 Material and Methods 

2.1 Data sources 

The live shrimp movement network (LSMN) data—a Thai government electronic database—was 

provided by the Thailand Department of Fisheries. The sample contained some 99 000 records 

collected from daily batch movements consisting of: (1) the farm registration number of source and 

destination sites, which also indicates province and status as an ongrowing or seed (postlarvae for 

ongrowing) producing site (2) details on site location i.e. house number, sub-district and district, 

(3) the date of movement and (4) the seed quantity. We omitted any records containing missing 

data in one or more fields. Multiple records between a pair of sites on a single day were combined. 

The data included the 13-month period  from March 2013 to March 2014 during which AHPND 

continued to spread around the country (NACA, 2017; Putth & Polchana, 2016), and covered up to 

three production cycles of farmed shrimp (Flaherty et al., 2000). This is the first time series of 

shrimp movements were readily available for Thailand, due to the advent of computerised 

recording and centralised data collection.  We discuss the likely completeness of the data set below. 

2.2 Characterisation of the LSMN 

We used a selection of network metrics to quantify and describe the LSMN, as well as visualise it at 

provincial level. This allows us to identify network features that limit or facilitate disease spread. Inter- 

and intra- provincial movements for 37 provinces were visualised using Pajek Software (Mrvar and 

Batagelj, 1996).  

Quantitative analysis of the LSMN structure was performed in the 𝑅 environment (R Core Team, 

2018), where a number of helpful packages are available, detailed below. We performed both a 

qualitative and quantitative analysis of the network by representing the LSMN by both weighted 

(𝑤) and unweighted (𝑎) adjacency matrices. In the absence of knowledge of how batch size of 

shrimp might relate to disease risk, we chose to weight by frequency of contact, in terms of 
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numbers of days with movement events. A weight 𝑤𝑖𝑗 implies the frequency of shrimp batches 

moved from March 2013 to March 2014 as directed arcs between a node pair (𝑖, 𝑗). Element 𝑎𝑖𝑗 

took the value 1 if a directed arc existed from site 𝑖 to site 𝑗 and the value 0 otherwise. About 300 

self-loop arcs (𝑎𝑖𝑖 = 1) were removed from the analysis because these self-loops were assumed 

not to contribute to further spread of diseases inter-farm (Britton et al., 2011; Draief et al., 2008), 

and likely represent intra-site operations.  

A node's degree is its number of contacts, the most basic indicator of network structure and 

infection risk posed. Nodes with high degree will be more at risk of becoming infected or causing 

infection, depending on the direction of the arcs. Examining the local network structure around a 

node, 𝑖𝑛 and 𝑜𝑢𝑡 degrees (𝑘𝑖
𝑖𝑛 and 𝑘𝑖

𝑜𝑢𝑡 for node 𝑖), and undirected degrees (𝑘𝑖
𝑢𝑛𝑑) were calculated 

as in in Barrat et al. (2004) and Green et al. (2009). All summation limits are taken as 1 … 𝑁 where 

𝑁 is the total number of nodes. 

𝑘𝑖
𝑢𝑛𝑑 = 𝑘𝑖

𝑖𝑛 + 𝑘𝑖
𝑜𝑢𝑡 − ∑ 𝑎𝑗𝑖𝑎𝑖𝑗

𝑗

 

Additionally, weighted degree measures were calculated for the quantitative network analysis, 

which requires a slightly different formulation for undirected degree. 

𝑘𝑖
𝑢𝑛𝑑 = 𝑘𝑖

𝑖𝑛 + 𝑘𝑖
𝑜𝑢𝑡 

As higher variance in degree distribution reduces the threshold for disease spread (Pastor-Satorras 

and Vespignani, 2002a), the degree distributions of the LSMN (the weighted network) were 

statistically analysed for power-law characteristics and exponents were estimated, using the 

Kolmogorov–Smirmov test with the igraph software package (Csardi and Nepusz, 2006). Its 

implementation uses the method of Clauset et al. (2009) and Newman (2005); the null hypothesis 

is that the LSMN is generated from a power-law distribution. Other basic statistics of the degrees, 

i.e. mean, maximum and minimum, and coefficient of variation, were also derived. 
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Short path lengths (number of arcs between pairs of nodes across the network)—as found in "small 

world"-type networks—imply the potential for fast disease spread through the network (Moore 

and Newman, 2000). Therefore, we examined the connectivity of the LSMN to determine the length 

and existence of these paths. The path-length matrix for non-weighted directed networks was 

calculated by using Dijkstra's algorithm (Csardi and Nepusz, 2006; Dijkstra, 1959). Weighted 

directed networks require more care, however. For these, the path length matrix was computed by 

using the tnet package from Opsahl (2009): first, the matrix 𝐿𝑖𝑗 was calculated by using Dijkstra's 

algorithm, then divided by the mean arc weight of the network (∑ 𝑤𝑖𝑗𝑖𝑗 ∑ 𝑎𝑖𝑗𝑖𝑗⁄ ).  Weighted and 

unweighted path length would therefore be equivalent where all weights are equal. The mean 

shortest path length ⟨𝐿⟩ was computed following Mao and Zhang (2013) : 

〈𝐿〉 = ∑ 𝐿𝑖𝑗

𝑖≠𝑗

∑[𝐿𝑖𝑗 ≠ ∞]

𝑖≠𝑗

⁄  

Here, we use Iverson bracket notation to show the average is taken only over those paths (𝑖, 𝑗) 

where a route is possible (defined as non-infinite) within the network. 

Clustering refers to the presence of non-random mixing with preferential connection amongst 

subgroups (Shirley and Rushton, 2005). In an epizootiological context, high clustering tends to lower 

the spread of disease across networks as a whole due to sharing of contacts amongst pairs of 

connected nodes (Keeling, 2005). The widely used global clustering coefficient 𝐶 was calculated as a 

ratio of the number of triangles to the number of triples. Ahnert and Fink (2008) defined a triangle as 

a set of three nodes with arcs {𝑖 → 𝑗, 𝑗 → 𝑘, 𝑖 → 𝑘}, meaning that both direct and indirect routes for 

𝑖 → 𝑘 exist, whereas a triple is merely three connected nodes {𝑖 → 𝑗, 𝑗 → 𝑘}.  

Assortativity measures the degree to which nodes contact like nodes, usually based on degree. 

Increased assortativity leads to increased likelihood of epidemic spread (Kiss et al., 2008). We 

computed the assortativity coefficient (𝑟) to represent the assortative mixing by degree in the 

LSMN. Foster et al. (2010) state that the assortativity of directed networks can be represented by 
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four distinct measures: 𝑟(𝑜𝑢𝑡, 𝑖𝑛), 𝑟(𝑖𝑛, 𝑜𝑢𝑡), 𝑟(𝑜𝑢𝑡, 𝑜𝑢𝑡) and 𝑟(𝑖𝑛, 𝑖𝑛). Among these four 

measures, however, the most interesting for epizootiological studies is probably 𝑟(𝑖𝑛, 𝑜𝑢𝑡)—

pertaining to directed arcs joining nodes with a high 𝑖𝑛 degree to nodes with high 𝑜𝑢𝑡 degree. This 

is because this motif produces arcs that can easily propagate infection from high-risk node to high-

risk node. Its equation is shown in Green et al. (2009). 

Heesterbeek and Dietz (1996) define the basic reproduction number  𝑅0 as the expected number 

of secondary cases generated by a typical case over the whole infectious period in a particular group 

of susceptible individuals. The disease percolation threshold is in general 𝑅0 > 1 (Heesterbeek and 

Dietz, 1996). In order to estimate an upper limit for 𝑅0 (in the absence of disease-specific 

transmission rates, and a single equation for 𝑅0 that applies to all networks) based on network 

topology, one estimate is based on node degree (Green et al., 2009): 

𝑅0~
〈𝑘𝑖𝑛𝑘𝑜𝑢𝑡〉

〈𝑘𝑜𝑢𝑡〉
 

Here, ⟨∙⟩ represents an average. In addition, the largest eigenvalue () of the LSMN’s adjacency 

matrix 𝑤 was calculated, since this also relates closely to the epizootic transmission rate in the 

network (Becker and Hall, 1996; Chakrabarti et al., 2008; Prakash et al., 2010). With few closed 

cycles in the network, however, this measure could easily be zero, or highly non-representative of 

the whole network. Thus, a simple adjustment was made, following Green et al. (2009), i.e. adding 

a constant number (𝐾 = 0.5) to all arcs.  

𝑤𝑖𝑗
𝑎𝑑𝑗𝑢𝑠𝑡

= 𝑤𝑖𝑗 +
𝐾

𝑁
⟨𝑤⟩ 

Then, the largest eigenvalue  was computed with the eigen_centrality function in the igraph 

package (Csardi and Nepusz, 2006). This result was obtained by solving the equation 𝑤𝑎𝑑𝑗𝑢𝑠𝑡 =

𝑉 , where 𝑉 is the corresponding  eigenvector (Restrepo et al., 2007). 
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To evaluate the significance of the clustering coefficient and the mean shortest path length, the 

network was compared with randomly rewired networks, which preserved the number of nodes 

and degree distributions of the original (Evans, 2007; Kiss and Green, 2008; Maslov and Sneppen, 

2002; Noldus and Van Mieghem, 2013). One thousand rewired networks were developed using the 

igraph software package (Csardi and Nepusz, 2006), where in such rewired networks the probability 

of rewiring was set at one, resulting in all arcs in the LSMN being swapped. For example, two arcs 

𝑖 → 𝑗 and 𝑢 → 𝑣 are replaced by the simulated arcs 𝑖 → 𝑣 and 𝑢 → 𝑗. A non-parametric two-tailed 

test was used to compare ⟨𝐿⟩ in the original network with the distribution of rewired networks. The 

null hypothesis was rejected when ⟨𝐿⟩ lay below the 2.5th percentile, or above the 97.5th percentile 

for the same parameter in 1000 rewired networks. 

2.3 Disease-control algorithms for risk-based disease surveillance and 
control 

To find optimal disease control targets for preventing disease spread in the LSMN, disease-control 

algorithms were developed in R to locate high-risk arcs 𝑖 → 𝑗, whose removal from the network 

reduced the potential transmission of disease. 

Risk-based surveillance can be visualised as focussed on those nodes or arcs that are most likely to 

pose a risk of disease transmission, either as sources (outbound arcs only) or sinks (inward arcs 

only). Thus, here, we focus on arc removal rather than node removal, representing a scenario where 

prevention or control measures are focused at the level of shipment, rather than all shipments from 

a particular site. A static network representation is used here, so the smallest possible removal from 

the network is a whole arc. The algorithms used in this research were developed from those 

described by Green et al. (2012), which described four risk-based approaches based on 

betweenness centrality, arc weight, eigenvector centrality, and subnet crossing to identify targets 

for removal. As a control, a random non-targeted approach was used. For efficient disease control, 

relatively few removals should markedly reduce susceptibility of the network to epizootic spread. 
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The algorithms each begin with the whole network. Then, the arcs 𝑖 → 𝑗 in the network are ranked 

according to one of the following criteria. Where two or more arcs have equal rank, their order of 

removal is randomised for each repeat of the algorithm. 

Betweenness Arc betweenness was calculated for each arc in the network. It was 

defined by Girvan and Newman (2002) as the number of shortest paths between all possible pairs 

of nodes that utilise an arc (using the unweighted network). These arcs were identified using the 

edge-betweenness function in the R igraph package (Brandes, 2001; Csardi and Nepusz, 2006). 

Arc weight Nodes with the highest numbers of days with movement events 

can be considered more important for disease transmission (Christley et al., 2005; Tanaka et al., 

2014). We chose arcs 𝑖 → 𝑗 with the highest value of 𝑤𝑖𝑗 for removal from the network. 

Eigenvector centrality Eigenvector centrality can be a useful measure in disassortative 

networks (Bonacich, 2007). We can think of the eigenvector as a measure of the relative likelihood 

of infection of a node in the case of a rare disease propagating through the network. For the LSMN, 

the high-risk nodes, with the highest eigenvector centrality, were detected using an eigenvector 

criterion within the evcent function in the igraph package (Csardi and Nepusz, 2006). Then 

randomisation was used to choose outbound arcs for removal. 

Subnet crossing We define a subnet here as a set of interconnected nodes that are 

relatively poorly connected to other such sets. Arcs joining such subnets are therefore of interest 

in maintaining connectivity of the network as a whole. The fastgreedy.community algorithm in the 

igraph package was used (Clauset et al., 2004; Csardi and Nepusz, 2006), and arcs linking subnets 

found with the crossing function (Clauset et al., 2004; Csardi and Nepusz, 2006). 

Non-targeted (control) Arcs were chosen completely at random, representing the case of 

non risk-based control 



 

11 
 

To measure impact of arc removal, node reach 𝑅𝑖—the number of nodes reachable from a node 𝑖 

and therefore at risk of infection—was calculated according to Green et al., (2012) using the path 

length matrix.  As used by Green et al., (2012), the maximum value of 𝑅𝑖 across all nodes served as 

an estimate of the worst-case epizootic size, and the arithmetic mean of 𝑅𝑖 across all nodes serves 

as an estimate of typical epizootic size in terms of the number of sites affected. 

Each algorithm was repeated for 1 000 arc removals using the 𝑅 environment. At each iteration of 

the algorithm, the highest-ranked arc is identified according to the criterion under consideration, 

and permanently removed from the network. As removing an arc can have a substantial impact on 

the network as a whole, rerouting shortest paths, etc., network properties were recalculated for 

each iteration—each new removal.  

As this is computationally intensive, and there is no guarantee that such "greedy" algorithms (which 

make stepwise, locally optimal choices rather than identify a globally best solution, which here 

would involve evaluating a mind-boggling 𝑃(𝑁, 1000) possible combinations) work best with a step 

size of one, larger numbers of removals prior to recomputation of network properties were also 

explored, varying from 1 to 500 removals, e.g. 1 000 total removals in 100 batches of the 10 highest-

ranking arcs each. 

As the algorithms contain a stochastic element, we present averages of 1 000 replicates. 

Furthermore, the properties of removed arcs were investigated in terms of arc length. Straight-line 

distance between sources and destinations were estimated using the coordinates of the Thai sub-

districts available from Google Earth (2015) according to Dubé et al. (2008). 
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3 Results 

3.1 The live shrimp movement network at provincial level 

Figure 1 displays the general characteristics of the LSMN. A total of 13 801 shrimp farming sites 

were located in 37 provinces of five regions, i.e. south (5 665 sites; 41 % of the total), east (4 874 

sites; 35 %), central (1 949 sites; 14 %), west (1 312 sites; 9 %) and one site in the northeast. Overall, 

there were 33 720 site-to-site arcs (Figure 2).  

Those arcs contained 74 462 repeated movements that included 57 281 arcs entailing inter-

province movements (77 % of the total repeated arcs), peaking at 5 831 arcs in March 2014. The 

remaining movements were intra-province (23 %), peaking at 1 814 arcs in September 2013. Mean 

straight-line distances were 24 and 192 km, respectively, for intra- and inter-province movements. 

A total of 252 movement records were removed due to incompleteness. 

The network is visualised in Figure 3 at provincial level. The most active inter-province arcs are 

Chonburi (CBI) → Chanthaburi (CTI), Chonburi (CBI) → Chachoengsao (CCO), Chachoengsao (CCO) 

→ Chanthaburi (CTI), Trat (TRT) → Chanthaburi (CTI) and Chumphon (CPN) → Suratthani (SNI), 

whereas the most arcs intra-province occur in Chachoengsao (CCO), Nakhonsithammarat (NRT), 

Phuket (PKT), Songkhla (SKA) and Prachuapkhirikhan (PKN). 

3.2 The node-level network 

The contrast in descriptive statistics for the weighted and non-weighted node-level networks are 

shown in Table 1. For the non-weighted network, there was noticeably more variability in out 

degree (mean 2.4, coefficient of variation 9.2) than in degree (mean 2.4, c.v. 0.9) or undirected 

degree (mean 4.9, c.v. 4.6). This reflects the narrower range in in degree compared with out (zero 

to 30 versus 932).The Pearson correlation between the node degrees 𝑘𝑖𝑛 and 𝑘𝑜𝑢𝑡 was weakly 

positive with a value of 0.03 (𝑃 < 0.01). This weakly positive correlation indicated that nodes with 
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a high risk of becoming infected posed a low risk for onward transmission of the disease (assuming 

solely network spread) (Kiss et al., 2006).  

The same general pattern was visible in the weighted network albeit the node degrees are about 

twice as high, with more variability in out degree (mean 5.4, c.v. 13.4, max 5839) than in degree 

(mean 5.4, c.v. 1.7, max 232) and undirected (mean 10.8, c.v. 6.9). The significant in–out degree 

correlation remained and was stronger (𝑟 = 0.24; 𝑃 < 0.01).  This suggests that studying the non-

weighted network would neglect this correlation, and underestimate potential epizootic spread.  

The weighted network obeyed a power-law, scale-free degree distribution, 𝑃(𝑘)~𝑘−𝛾 for both 𝑖𝑛 

and 𝑜𝑢𝑡 degree distributions with exponents  𝛾 = 2.87 and 2.17, respectively (Figure 4). Exponents 

in the range 2–3 are similar to many scale-free networks, as proposed in Goh et al. (2002), and, the 

Kolmogorov–Smirnov test accepted a power-law as a plausible model (P-values for 𝑘𝑖𝑛 = 0.7 

and 𝑘𝑜𝑢𝑡 = 0.54), consistent with scale-free topology.  

The upper-limit 𝑅0 estimate from the weighted degree-based calculation was high (34.5), 

compared to the largest eigenvalue (16.2). This difference may reflect the bipartite structure of the 

network, with two types of nodes: seed-producing sites and ongrowing sites. To understand this 

better, Table 2 accounts for the arcs between the two node types in the weighted LSMN. The 

bipartite structure is also evident in the non-weighted LSMN (Table 3). The majority of arcs (>80%) 

join sites of the two types. The remaining arcs join sites within the same type of site, of which most 

of them terminate the arcs at seed-producing sites (14.5%), illustrating the nursery system for 

shrimp in Thailand. 

The in–out degree correlation for the weighted network was 𝑟 = −0.09. This low preference for 

high in-degree nodes to have outbound arcs to nodes with high out-degree is a feature that lowers 

transmission risk. A key property of small-world networks, short average path length, is shown by 

both the non-weighted and weighted LSMN. Focusing on the non-weighted network, the value of 
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the mean path length ⟨𝐿⟩ was small (3.47), but with a small fraction (0.5 %) of potential total paths 

𝑁(𝑁 − 1) possible. For the weighted LSMN, ⟨𝐿⟩ was equal to 2.99, with 0.14 % of potential total 

paths. The relatively small fraction of possible paths also reflects the hierarchical nature of the 

network with seed-producer and ongrowing sites, reducing potential for loops, as well as its nature 

as a sparse network. 

The distribution of weighted path lengths is plotted in Figure 5, clearly demonstrating many short 

paths and few long paths. The same network features also gave rise to a very low clustering 

coefficient (weighted, 𝐶 = 0.1; non-weighted, 𝐶 = 0.00051) due to the hierarchical structure and 

paucity of triangles within the LSMN.  

We explored the significance of these aspects of network structure using a comparison against 

partly randomised networks using a rewiring algorithm. For 1 000 randomly rewired networks with 

a rewiring probabilities of one (conserving the original LSMN’s weighted degree distribution and 

the number of nodes 𝑁), the average 𝐶 was 0.06 (s.d. 0.008), and the average of ⟨𝐿⟩ was 3.84 (s.d. 

2.12), with 0.5  % of potential paths existing. These values are close to those of the original network.  

3.3 Risk-based removal in the live shrimp movement network 

To evaluate effective disease surveillance strategies, the results of the five disease-control 

algorithms with unit step size are shown in Figure 6. The algorithms demonstrate different abilities 

to reduce maximum and mean reach in the LSMN. After removal of 1 000 arcs, the betweenness-

based algorithm performed well for both network measures. The maximum and mean 𝑅𝑖 were 

reduced by 50 % after 400 removals from the network. The other algorithms (arc weight-, 

eigenvector-, subnet crossing- and random-based) performed relatively poorly. The betweenness-

based algorithm still performed well when a step size of more than one removal was applied. For 

example, after 400 removals from the network, a step size of 10 (one of removal tests), also shows 

the 50 % reduction in maximum and mean 𝑅𝑖. 
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The targeted arcs from the disease-control algorithms above are denoted as potential high-risk arcs 

for disease spread in the LSMN. Analysing these 1 000 target arcs from the betweenness algorithm, 

we found that the geographic distances of the targeted arcs were (on average) longer (mean 271 

km), compared to the mean arc length in the whole arcs of the original LSMN (mean 200 km). In 

addition, Table 4 shows that, based on the betweenness algorithm, most targeted arcs join nodes 

of the same type, i.e. seed-producing sites. 
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4 Discussion 

Network analysis of 13-months of live shrimp movement data for Thailand found epizootiological 

properties both facilitating and limiting the spread of diseases. Because the movements of live 

shrimp play a crucial role in infectious disease transmission from site to site, particularly in respect 

to the recent outbreak of AHPND and other known shrimp diseases, these results are a step towards 

designing an effective disease surveillance and control programme for Thai shrimp farming. 

Overall, we found a hierarchical network structure with relatively few nodes as sources for many 

arcs, in common with certain other aqua- and agricultural industries. This structure naturally leads 

to short average path lengths and low clustering. Limiting transmission, the LSMN showed a weak 

correlation between node degrees and a low fraction of possible paths between nodes. Repeated 

connections between nodes are frequent because there are relatively few shrimp seed producers 

in Thailand. Facilitating transmission, the LSMN showed a small characteristic path length (𝐿), 

particularly for the weighted network, and a low clustering coefficient. Shirley and Rushton (2005) 

note that a network with short average path lengths is likely to have a fast rate of infection during 

epizootics. Fast decision-making is therefore required to prevent disease epizootics in Thai shrimp 

farming. The low transitivity clustering coefficient (𝐶) is a very local measure of network clustering. 

That 𝐿 and 𝐶 resembled those in the partly-rewired networks suggests a lack of structure; however 

not all clustering coefficients are necessarily that local, and our analysis provides evidence of 

clustering at larger spatial scales with local trading being common in the LSMN (i.e. within 

province). Furthermore, certain network characteristics were conserved during this rewiring. 

The structure of the LSMN was found to be consistent with scale-free behaviour (exhibiting 

power-law 𝑖𝑛-and 𝑜𝑢𝑡-degree distributions) with exponents less than three. Pastor-Satorras and 

Vespignani (2002a) showed that the variances of power-law distributions with exponent 𝛾 < 3 are 

infinite, removing the threshold transmission rate for epizootic spread even at low transmission 

rate. To prevent disease spread in such power-law networks, therefore, control strategies targeting 
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highly connected nodes are more effective (Dezső and Barabási, 2002). Nevertheless, we should 

not overplay these theoretical considerations: Any real dataset—as opposed to a theoretical 

distribution—must have a finite mean and variance. 

With the scale-free properties in the LSMN, random arc removal tends to become highly inefficient 

and costly as a control strategy (Dezső and Barabási, 2002; Eubank et al., 2004; May and Lloyd, 

2001; Pastor-Satorras and Vespignani, 2002b). Hence, the effectiveness of five disease-control 

algorithms was evaluated on the LSMN. As surveillance resources are limited, each algorithm was 

specified to allow a maximum of 1 000 removals, accounting for 3 % of all node-to-node arcs in the 

LSMN. Algorithms were evaluated according to reduction in theoretical epizootic size as measured 

by maximum and mean reach 𝑅𝑖. Maximum 𝑅𝑖 compromises between the giant strongly connected 

component size (the largest number of nodes in a network that are interconnected by directed 

arcs) and the giant weakly connected component size (the largest number of nodes that are 

interconnected by undirected arcs), but effectively captures the tree-like nature of chains of 

infection amongst nodes. 

In the LSMN, the betweenness-based algorithm performed well in reducing the susceptibility of the 

network to a disease epizootic with few removals. This is evaluated by using the total number of 

sites affected, which represents the overall epidemic size at country level, more practical in terms 

of regulating disease preventive and control measures than using number of shrimp infected. 

Removal of 3% of arcs led to a decrease in maximum 𝑅𝑖 in excess of 68%. This is network structure 

dependent, and other centrality measures may become more effective for different networks. In 

other words, the performance of the betweenness-based algorithm is network dependent and 

dependent on the outcome selected (e.g. sites affected, shrimp affected, or cost). Nevertheless, 

betweenness centrality was linked to disease risk for bovine diarrhoea virus in Scotland (Gates et 

al., 2014) and for the cattle network of France (Rautureau et al., 2011).  Most high-betweenness 

arcs were long distance (mean 271 km), between seed-producing sites, and constitute a very small 
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proportion of total arcs. These arcs play an important role in distributing shrimp seed (with their 

pathogens) to many ongrowing sites in the network. Onward connections can occur within a short 

time window, due to the life cycle of shrimp (Quispe et al., 2016). For example, nursery sites rear 

seed from nauplius until postlarva over 20 days before selling on to ongrowing sites (FAO, 2014). 

Given this rate of turnover, disease surveillance and control measures applied to high-betweenness 

arcs (e.g. diagnostic testing) needs to be fast to achieve early detection. In this paper, arc-based 

surveillance is considered, rather than node-based, though most of the metrics used above to apply 

to arcs can be applied in a related manner to nodes. We do not intend to make recommendations 

on the form of surveillance measures here, only identify algorithms that can intelligently identify 

targets where to deploy them. 

The LSMN as described excludes unreported movements and 320 self-loop arcs. Unreported 

movements are typically generated from non-commercial farming with low productivity and for 

breeding improvement purposes, whereas self-loops are caused by nodes that act as both 

seed-producing and ongrowing sites, but hold the same farm registration number.  As of 2014 there 

were 21 071 registered shrimp farms in Thailand (either active but also including inactive sites), 

thus the majority of these are represented in our network. Production destined for export (the large 

majority of production) must comply with application of movement documents, however this is 

optional for the domestic market. However, companies producing for the domestic market will 

frequently also be producing for the export market and reporting movements, increasing coverage 

of the movement documents. 

We examine here a relatively short time period of 13 months of data. Future analyses will allow for 

seasonal variation in network structure to be categorised, and its consistency over time. Though 

the data relate to an outbreak period, and thus must be treated with caution in terms of their 

relevance during "peace time", it is noteworthy that Thai shrimp production and annual losses were 

broadly similar throughout the longer time period of 2013-2015 (Putth & Polchana, 2016). 



 

19 
 

Nevertheless, 2013 marks however a notable drop in production mass compared with 2012, largely 

due to AHPND. 

Additionally, our analysis takes place using the single network layer of live shrimp movements. 

Different results might arise if, for example, direct (unreported) local contact or water-borne 

contact were included. This extra complexity could be explored using simulation models, potentially 

supplemented by GIS techniques and spatial data. The implications of incompleteness of the 

network data due to the relatively small proportion of non-reported movements could also be 

explored, and whether that incompleteness is missing at random across the network, or not, 

introducing potential biases. 

In summary, our network analysis describes the scope of potential disease transmission among the 

Thai shrimp farming sites via live shrimp movements. The LSMN is characterised by important 

epizootiological properties that both facilitate and limit disease transmission. Because scale-free 

properties are found in the LSMN, we emphasise that optimal targeted disease surveillance and 

control can potentially reduce the spread of epizootics in Thai shrimp farming, and note that arc 

betweenness was the most effective algorithm to identify important arcs within the network. 
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Tables 

Table 1. Degree properties of the live shrimp movement network of Thailand (LSMN) for the 
weighted and non-weighted networks of 13 801 nodes.  

Property Non-weighted network Weighted network 

Total degrees  

𝑖𝑛 degree = out degree 

𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 degree 

 

33 720 

67 414 

 

74 462 

148 924 

Mean degree 

𝑖𝑛 degree = out degree 

𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 degree 

 

2.4 

4.9 

 

5.4 

10.8 

Coefficient of variation 

𝑖𝑛 degree 

𝑜𝑢𝑡 degree 

𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 degree 

 

0.9 

9.2 

4.6 

 

1.7 

13.4 

6.9 

In–out degree correlation 
(Pearson) 

0.03 0.24 

Table 2. Number of arcs (and percentage of total) between seed-producing sites and ongrowing 
sites based on the weighted degree for the live shrimp movement network. 

 Destination 

Seed-producing site Ongrowing site 

Source  
Seed-producing site 10 775  (14.5 %) 63 596  (85.4 %) 

Ongrowing site 7     (<0.1 %) 84    (0.1 %) 

Table 3. Number of arcs (and percentage of total) between seed-producing sites and ongrowing 
sites based on the non-weighted degree for the live shrimp movement network.  

 Destination 

Seed-producing site Ongrowing site 

Source  
Seed-producing site 2 047 (6.1 %) 31 589  (93.7 %) 

Ongrowing site 7  (<0.1 %) 77 (0.2 %) 
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Table 4. Source and destination site types of the top 1 000 removals identified by the 
betweenness-based algorithm. The percentage of total arcs is shown in parentheses.  

 Destination 

Seed-producing site Ongrowing site 

Source  
Seed-producing site 99.3 % (2.9 %) 0 %  

Ongrowing site 7 % (<0.1 %) 0 %  
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Figures 

 

Figure 1. Distribution of the c. 13 800 shrimp farming sites across the five regions and 37 
provinces of Thailand. Values in parentheses are the number of seed-producing sites and 
ongrowing sites, respectively. Data correspond to sources and destinations of live shrimp 
movements from March 2013 to March 2014. Map royalty free from www.dreamstime.com. 

(a) 

 

(b) (c) 

 

 

 

Figure 2. Distribution of the number of repeated live shrimp movements in Thailand, according to: 
(a) inter- and intra-province movements; (b) Calendar month for inter-province movements. (c) 
Calendar month for intra-province movements. 
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Figure 3. The provincial network structure of shrimp movements in Thailand over a 13-month 
period (March 2013–March 2014), at province (n=37) level. The line width is plotted on a log scale 
according to the number of repeated arcs. The abbreviation list of national provincial centres is 
shown in Appendix. 

 (a)  (b)  

 
 𝒊𝒏 degrees (log scale)  𝒐𝒖𝒕 degrees (log scale)  

Figure 4. Weighted degree distributions for the live shrimp movement network plotted on a log–
log scale.  
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Figure 5. Distribution of weighted path lengths in the live shrimp movement network of Thailand, 
as a fraction of total possible paths. (Only a fraction of possible paths exists).  
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(a) 

 

(b) 

 
Figure 6. Evaluating reduction in network reachability using several disease-control algorithms. 
The betweenness algorithm performs well for both measures: (a) maximum reach and (b) mean 
reach. 
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Appendix  

National provincial centres and abbreviation 

National provincial centre Abbreviation 
 

National provincial centre Abbreviation 

Samutprakan SPK  Nakhonratchasima NMA 

Chainat CNT  Prachuapkhirikhan PKN 

Nakhonpathom NPT  Ratchaburi RBR 

Suphanburi SPB  Kanchanaburi KRI 

Uthaithani UTI  Phetchaburi PBI 

Samutsakhon SKN  Songkhla SKA 

Pathumthani PTE  Pattani PTN 

Phranakhonsiayutthaya AYA  Nakhonsithammarat NRT 

Nakhonnayok NYK  Suratthani SNI 

Samutsongkhram SKM  Chumphon CPN 

Bangkok BKK  Phangnga PNA 

Nakhonsawan NSN  Krabi KBI 

Nonthaburi NBI  Phuket PKT 

Trat TRT  Narathiwat NWT 

Chachoengsao CCO  Satun STN 

Rayong RYG  Ranong RNG 

Chonburi CBI  Trang TRG 

Chanthaburi CTI  Phatthalung PLG 

Prachinburi PRI    

 

 


