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The spread of infectious diseases is intimately linked with the strength and
type of contact between individuals. Multiple observational and modelling
studies have highlighted the importance of two forms of social mixing:
age structure, where the likelihood of interaction between two individuals
is determined by their ages; and household structure, which recognizes
the much stronger contacts and hence transmission potential within the
family setting. Age structure has been ubiquitous in predictive models of
both endemic and epidemic infections, in part due to the ease of assessing
someone’s age. By contrast, although household structure is potentially
the dominant heterogeneity, it has received less attention, in part due to
an absence of the necessary methodology. Here, we develop the modelling
framework necessary to predict the behaviour of endemic infections
(which necessitates capturing demographic processes) in populations that
possess both household and age structure. We compare two childhood infec-
tions, with measles-like and mumps-like parameters, and two populations
with UK-like and Kenya-like characteristics, which allows us to disentangle
the impact of epidemiology and demography. For this high-dimensional
model, we predict complex nonlinear dynamics, where the dynamics of
within-household outbreaks are tempered by historical waves of infection
and the immunity of older individuals.

provided by Warwick Research Archives Portal R
1. Introduction
Epidemiological modelling plays a vital role in public-health planning, both in
terms of generic understanding of infectious disease transmission and control,
as well as in terms of detailed predictions for particular situations. The foun-
dation of these models is the compartmental epidemic model of Kermack &
McKendrick [1], but modern predictive models generally seek to capture
additional heterogeneities within the population [2,3]. These heterogeneities
often reflect differential risk structure in terms of the transmission dynamics;
high impact examples include age-stratified risk structure [4,5] and spatial
structure [6,7]. Producing robust and accurate predictions often relies on an
informed choice of which forms of structure to include and the reliable
inference of associated parameters.

Age-structured models have a rich history, particularly for endemic child-
hood infections (such as measles) where they have been used to capture the
greater rates of transmission between school-age children and the impact of
opening and closing of schools [4,5]. In this context, and before vaccination,
age structure is a major risk factor as only relatively young children are likely
to be susceptible to the disease, with older age cohorts having already been
infected and hence having developed immunity. Age-structured models have
also been vital in epidemic settings (such as influenza pandemics) where they
have been an integral part of disease forecasting [8,9]. For both endemic and
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epidemic infections, age-structured models benefit from the
ease with which the age of cases is recorded and the number
of recent studies which quantify social contact patterns with
reference to age stratification [10,11]. These studies provide a
growing body of empirical data with which to parametrize
age-structured models—overcoming the limitations of
inference that is based sole on age-distribution data [5].
In addition, it has been suggested that Bayesian hierarchical
models can be used to estimate contact patterns from
country-level socioeconomic indicators in the absence
of detailed survey data [12], vastly increasing the number of
settings amenable to this form of age-structured predictive
disease modelling.

Models that recognize household transmission are domi-
nated by the more theoretical literature, linking household
structure to the final distribution of infection following a
single outbreak [6,13]. In such models, households are treated
as discrete units characterized by their internal composition
with respect to the infection (i.e. two susceptibles, one infec-
ted and one recovered) and it is generally assumed that
transmission is strong within the household but weak and
homogeneous between households. This model formulation
has provided an important understanding of optimal control
in such structured populations [6,13–15], while related
approaches have commonly been used to infer the strength
of within-householdmixing [16,17]. More complex approaches
incorporate further levels of structure to model school- and
workplace-based contacts [18–20], and have been used to
study the efficacy of interventions such as school closure [21].
We motivate the use of household models for endemic
infections by the following question: is a child in a large house-
hold more at risk of infection than one in a small household?
Clearly having an older sibling (compared to being an only
child) increases the risk of infection, as older children are a con-
duit of infection into the home. However, older siblings could
already have been infected, and sowill be immune and cocoon
the younger child. Understanding this complex interaction
between infection and household demography requires the
use of mathematical models.

To date, only a limited number of simulation-based
approaches have been able to successfully combine age and
household structure [8,9] or to model the impact of household
structure for endemic infections [22,23]. In this paper, we
formulate a household infectious disease model with demography:
a continuous-time deterministic model of infectious disease
which incorporates both age- and household structure into
its transmission dynamics and captures the evolution of
households over time as events in a Markov process.
2. Methods
Here, we outline the fundamental processes under-pinning our
model, we focus on describing the mechanics of the model
while the detailed mathematical description is in the electronic
supplementary material.

The household infectious disease model with demography
combines aMarkov chain model for the slow evolution of a house-
hold with a Markovian SIR disease model that captures internal
transmissionwithin the household, homogeneous between-house-
hold transmission and age-structured transmission. The state of a
single household is defined by the quadruple (S, I, R, k), where
S, I and R are the number of susceptible, infectious and recovered
individuals in the household, and k is an integer-valued counter
which determines the demographic evolution of the household.
At specific values of k, demographic events occur which cause
individuals to be added to or removed from the household; k is
generally incremented (at exponentially distributed time intervals)
but can also be reset to allow repeated demographic events. The
demographic status of the household is entirely determined by
N( = S + I +R) and k, and these two values can be encoded as a
single integer T.

To avoid confusionwith the states of ourMarkov chain, and by
analogy with the concept of an age class, we refer to the demo-
graphic configuration encoded by T(N, k) as the household’s
demographic class. Fixing a maximum household size Nmax defines
a finite range of values of T and thus a finite state space for the
combined demographic–infectious process.We assume an asymp-
totically large population of households, such that the proportion
of households (H) in each state obeys a set of deterministic ordin-
ary differential equations (ODEs); this allows the calculation
of population-level epidemiological quantities from the house-
hold-level state distribution. Specifically, the population-level
disease prevalence �I of the disease is equal to the expected
number of infectious individuals per household divided by the
expected household size:

�I ¼
P

S,I,R,k IHS,I,R,kP
S,I,R,k (Sþ I þ R)HS,I,R,k

,

and the infectious prevalence stratified by demographic class
T(N, k), denoted by �IT, is given by the expected number of infec-
tious cases in a household conditioned on that household being
in demographic class T, divided by N:

�IT ¼
P

SþIþR¼N,k IHS,I,R,kP
SþIþR¼N,k NHS,I,R,k

,

whereH refers to the proportion of households in a given state. The
proportion of households in demographic classT, denoted byHT, is
calculated by summing over all states (S, I, R, T ):

HT ¼
X

SþIþR¼NT

HS,I,R,T ,

whereNT is the number of individuals in a household of class T. To
fully define the model, we also need to calculate the probability
that a child has infectious status R at the instant they leave home,
which we denote by PR.

Following Ross et al. [24], we denote the household state distri-
bution of the system at time t by H(t) and the transition matrix by
Q(H). The dependence of Q on H arises whenever external con-
ditions impinge upon the household dynamics, as such the
dependence is through the three key population-level variables �I,
�IT and PR. �I and �IT determine the transmission into the household
from homogeneous and age-dependent mixing respectively, while
new households (counter value k = 1) are formed of susceptible
and recovered adults drawn from the pool of children leaving
home—hence the immune status of these new households is
governed by PR. The transition matrix can be decomposed into
three components, Q(H) ¼ QDemo(H)þQInt þQExt(H), each of
which is described in more detail below. QDemo contains all the
rates for demographic events and depends nonlinearly on PR,
QInt contains all the rates for recovery and internal transmission
events and is a constant matrix, and QExt contains all the rates
for external transmission events and hence depends linearly
on both �I and �IT . The evolution of the state distribution is then
determined by the nonlinear set of ODEs

dH
dt

¼ HQ(H), (2:1)

with the nonlinearity arising from the dependence of QDemo and
QExt on H. In disease-free situations, the dynamics simplify to a



N = 2 N = 3 N = 4 N = 5
waiting for a child

waiting for eldest
child to mature

waiting for other
children to leave

waiting for household
replacement

Figure 1. The household demographics is defined by the household size N and phase. Each row corresponds to one phase of the household’s lifespan, moving
sequentially from the birth phase, to waiting for the oldest child to leave, to waiting for other children to leave, to the reset-and-replacement phase. The intervals
between transitions all follow an Erlang distribution. In this example, the maximum household size is 5.
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linear problem

dH
dt

¼ HQDemo(PR ¼ 0), (2:2)

whose long-term equilibrium is given by the eigenvector associated
with the largest (zero) eigenvalue of QDemo.

2.1. Demographic model
Our demographic model describes the evolution of a simple
nuclear household, beginning at counter value k = 1. At k = kB,
a child is born, adding an extra susceptible individual to the
household. The sequence k = 1,…, kB can be repeated a random
number of times, with the distribution informed by the family
size distribution of the population we wish to model. In this
way, multiple children can be born into the household, with k
only incrementing to kB + 1 once the last child is born.

The household loses an individual at k = kB + kL, when the
eldest child leaves home, and subsequently at k = 2kB + kL,
when any younger siblings leave home. The eldest child matures
during the interval of kL steps between when their youngest sib-
ling being born and them leaving home—hence the rate at which
the counter k moves through these kL states is dependent on the
number of children in the household. The kB steps between suc-
cessive children leaving home leads to the same age distribution
at leaving for all of the children in a household. The sequence k =
kB + kL + 1,…, 2kB + kL is repeated until all of the children have
left home; counter values above 2kB + kL are associated with
elderly couples. When the counter attains its maximum value
of k = 2kB + kL + kR, the household reaches the end of its lifetime
and is renewed, with the two remaining individuals in the
household being replaced by two new ones whose immunologi-
cal status is governed by PR (the proportion of recovered
individuals leaving home).

The demographic process is explained in more detail in
electronic supplementary material, S4 and is demonstrated sche-
matically in figure 1. The integers kB, kL and kR are fixed model
parameters and can be interpreted as shape parameters for a set
of Erlang distributions which define the waiting periods between
demographic events. The rate at which k increments depends on
the household’s position in the demographic process (i.e. which
row of the schematic in figure 1 it is currently on); this allows
us to control the mean and the shape parameter of each Erlang
waiting time independently.
To fully define the demographic model, we need to specify the
infectious status of the individuals who are added to or removed
from the household. We will assume for this model that all new-
borns are susceptible, so there is no maternal immunity or
vaccination. The two adults who arrive in the household at k = 0
are chosen at random from the pool of children currently leaving
home, so that they are independently recovered with probability
PR and susceptible with probability (1− PR), ignoring the (small)
probability that the individuals will be infectious. The calculation
of PR relies on knowing the probability that each parent was recov-
ered at the start of a household’s lifetime, which we call P0

R. The
‘current generation’ households will therefore be initiated with
an average of 2P0

R recovered individuals, and so if we choose the
infectious status of children leaving home by discounting these
recovered individuals from consideration:

PR ¼ 1P
S,I,R HS,I,R,Tleave

X

S,I,R

HS,I,R,Tleave

R� 2P0
R

N � 2P0
R
,

where HS,I,R,Tleave refers to household states where a leave event
occurs (k = kB + kL or k = 2kB + kL). In a population with no previous
exposure to infection, P0

R = 0,which admits a simple calculation for
PR; when the dynamics are at equilibrium P0

R = PR allowing us to
find the probability recursively using a self-consistency procedure.
The results presented in this paper are entirely concerned with
either the early growth or equilibrium behaviour of the model,
making these two values of P0

R sufficient for our purposes.
Determining the infectious status of fully grown children

leaving home follows the same logic as above, but is more compli-
cated as it must be conditioned on the infectious status of the
household—for example, it is only possible to removed recovered
children if recovered individuals are present in the household. (Full
details of the mechanism is given in electronic supplementary
material, S4.2).
2.2. Epidemiological model
The epidemiological dynamics incorporate three routes of infec-
tion, for a household of demographic class T and size N these are

(1) frequency-dependent internal infection at rate bint I
N�1 S

(2) homogeneous frequency-dependent external infection at rate
(1� s)bext�IS

(3) age-structured external infection at rate slT(H)S,



Table 1. Values of transmission rate, τ, and recovery rate, γ, for the
measles- and mumps-like diseases used throughout the paper. These are
calculated from the pairwise secondary attack rate p as derived by Hope-
Simpson [25] and from the expected infectious periods, IP [2]. (All time-
scales are in days).

p IP τ γ

measles 0.756 7 1.7822 0.143

mumps 0.311 8 0.4118 0.125
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where βint and βext are, respectively, the internal and external
person-to-person transmission rates, �I is the population-level
prevalence of infection, and lT(H) is the age-structured force of
infection on individuals in a household of demographic class T
when the state distribution of the population is H. These three
routes of infection result in an identical transition S→ I. Infec-
tious individuals recover and transition I→R at rate γ, leading
to exponentially distributed infectious periods. The value of
σ∈ [0, 1] defines the relative proportion of unstructured and
structured external mixing, tuning between homogeneous exter-
nal mixing at σ = 0 and purely age-structured external mixing at
σ = 1. Our choice of frequency-dependent internal mixing is
motivated by Hope-Simpson’s study on childhood infections,
in which the attack rates of measles and mumps are shown to
be only weakly dependent on household size [25]. Further sup-
port for this choice is offered by the data-driven work of
Cauchemez et al. [26] which suggests that within-household
transmission is substantially closer to the frequency-dependent
than to the density-dependent ideal.

The internal transmission rate βint is calculated by multiplying
the per unit-time transmission rate τ by the average time per day
spent exposed to within-household contacts, as calculated from
contact data. The external transmission rate βext is given by the ana-
logous formula using the average time per day spent exposed to
contacts from other households. Age-structured transmission
rates for a set of age classes C1,…, CK are calculated bymultiplying
τ by the average total duration of contacts between an individual in
age class Ci and all individuals in age class Cj who are in different
households—we label the resulting transmission ratebext

ij . By defin-
ing our total external infection rate to be a convex combination of
the homogeneous and age-structured infection rates (controlled
by the parameter σ), we can control the level of structure in our
model while keeping the total population-level transmission rate
constant. The calculation of τ and the required contact durations
is covered in electronic supplementary material, S5.

Our approach to age-structured mixing takes the typical
who-acquires-infection-from-whom approach first introduced
by Schenzle [4] but also requires a mapping between age classes
and demographic classes in order to model mixing structured by
demographic class. Because the counter k increments at exponen-
tially distributed intervals, the time spent in any amalgamation
of demographic classes is hypoexponentially distributed. Using
this information, we can define a matrix E ¼ ET,i such that ET,i

the expected number of individuals in age class Ci in a household
of demographic class T. As such, the population-level proportion
of individuals in age class Ci is then

Pi ¼
P

S,I,R,T HS,I,R,TET,iP
S,I,R,T HS,I,R,T(Sþ I þ R)

:

The force of infection on individuals in a household of type T is
then determined by summing across all associated age classes
multiplied by their interaction with other age classes and the
chance that those age classes are infectious:

lT ¼
X

i,j

ET,i

NT
bext
i,j

X

U

HUEU,j

�IU
P j

,

where the second sum approximates the proportion of infected
individuals in age class Cj. The full derivation of this equation
is given in more detail in electronic supplementary material, S6.

Under suitable parameter choices, our model contains the clas-
sic homogeneous mixing model (βint = σ = 0), an age-structured
model (βint = 0, σ = 1) and a household-structuredmodel as special
cases (σ = 0). As a set of (high-dimensional) differential equations,
the system is numerically tractable, allowing us to study both its
early behaviour following invasion and its endemic equilibrium;
both of these can be approached with considerable computational
efficiency by relying on the matrix structure of the underlying
ODEs (equation 1). In particular, we focus on the early growth
rate r and the household reproduction number R* [6] as measures
of early dynamics, as well as the equilibrium of the combined
demographic and epidemiological system. We compare the full
model to other sub-models (homogeneous, age structured and
household structured only) to assess the impact of individual
forms of structure and contact heterogeneity; this also informs
about the likely problems with predictions from simpler models
that ignore particular forms of contact structure.

To clarify the effects of demography and epidemiology, we
study two childhood diseases (a measles-like disease and a
mumps-like disease which differ in their transmission rate across
a contact [25] and infectious period [2] (table 1)) in two different
populations (a UK-like population and a Kenya-like population).
Our choice of these two populations is motivated by the avail-
ability of detailed contact survey data and the pronounced
socioeconomic differences between the two countries, which we
expect to be reflected in demography and contact behaviour. The
POLYMOD study provides contact data for the UK [10] and
the study conducted by Kiti et al. [11] provides contact data
from the region of coastal Kenya covered by the Kilifi Health
and Demographic Surveillance System [27]. The demographic
transition terms (QDemo) are parametrized directly from empirical
data [28–32], without recourse to any fitting procedure.
3. Results
Throughout, we study the dynamics of infection in the absence
of vaccination or other forms of control. We focus on the early
invasion dynamics and equilibrium distribution of infection,
and how these are impacted by accounting for different
transmission heterogeneities.
3.1. Demographic equilibrium distribution
The household size distribution at demographic equilibrium
(the solution of equation (2.2) is illustrated for the UK-like
and a Kenya-like populations in figure 2, and is partitioned
into younger (blue) and older (red) households. The UK-like
population is dominated by older households without children
as a result of its relatively long life expectancy and low birth
rate, in part a reflection of the high proportion of adults
(approx. 17% [29]) not having any children at all. The Kenya-
like population features a much higher proportion of house-
holds with children, resulting from a combination of a lower
life expectancy, a higher average number of children, and com-
parable inter-birth interval to the UK, which causes adults to
spend a much higher proportion of their life living with chil-
dren compared the UK-like population. These demographic
equilibrium solutions form the underlying population structure
to which invading and endemic infections are added.
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Figure 2. Household size and age distributions for populations with UK-like and Kenya-like parameters. Blue bars correspond to the first two phases of the demo-
graphic process outlined in figure 1 (prior to the eldest child leaving home), red bars correspond to the third and fourth phases (after the eldest child has left), so
that moving along the x axis can be thought of as moving through successive stages in a household’s life.

Table 2. Early growth parameters, equilibrium prevalence and childhood
infection probability for a mumps-like disease in a UK-like population, for
four sub-cases of the household infectious disease model with demography.
Mumps-like parameters are chosen for the full age- and household-
structured model, with τ chosen for the other three cases to give the same
early growth rate r = 0.121 in all cases. The corresponding household
prevalence distributions are visualized in figure 3.

model τ R* �I � 104 PR

homogeneous mixing 0.3308 2.057 1.756 0.425

age structured 0.3331 2.057 1.788 0.465

household structured 0.4265 2.647 1.748 0.444

full model 0.4118 2.691 1.760 0.480
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3.2. Impact of assumed transmission structure
Initially, we focus on a disease with mumps-like epidemiologi-
cal parameters, such that the rate of transmission across a
contact is relatively low (τmumps = 0.4118 per contact per day),
and consider the short- and long-term dynamics in a UK-like
population (table 2 and figure 3). We compare the full model
(which includes both age-structured and household-structured
transmission) to the homogeneous, purely age-structured and
purely household-structured sub-models. To fairly compare
the four models, the transmission rate τ in the three sub-
models is re-scaled to achieve the same initial growth rate r
in all cases—conceptualized as matching the four models to
the same early epidemic data and then making predictions
about the long-term dynamics.

Parameter values capturing early invasion dynamics into a
naive population, and those describing long-term endemicity
are listed in table 2. r defines the asymptotic rate of early
growth, such that Cases∼ exp(rt); whileR* (which is the house-
hold counterpoint of the basic reproductive ratio, R0) defines
the average number of secondary households infected as a con-
sequence of infection in an average household during the
early epidemic [6,33]. Although the transmission parameter
is chosen such that r is the same in all models, those with
household structure allow the amplification of infection
within the household, which naturally produces a larger R*.
The equilibrium level of infection, �I, is comparable between
the fourmodels, as for a fully immunizing infection prevalence
is largely determined by the birth-rate generating new suscep-
tibles. This birth rate provides an upper bound on the
equilibrium incidence of infection, with lower values only
occurring when individuals escape infection their entire lives.
The prevalence is marginally higher for the age-structured
model (compared to the other three) as this has greater trans-
mission between school-age children (where the majority
of the infection is maintained) but does not suffer from
the within-household depletion of susceptible individuals.
Finally, the probability of infection during childhood, PR, is
calculated the chance of an individual being infected before
they leave home and is increased slightly by the addition of
either household or age structure which focuses infection into
children, with a further increase when these two structures
are combined.

Figure 3 shows distribution of cases per household
(conditional on household size) for the four transmission
models. In the homogeneous-mixing model, due to the lack
of any structure, the probability of having at least one case
increases (almost) linearly with the number of individuals;
this idealized pattern is plotted as an open pink bar in the
other models. It is the departure from this idealized linear
case that informs about the actions of age and household struc-
ture. For the age-structuredmodel, the greater mixing between
school-children means that larger households (with more chil-
dren) have a disproportionately higher risk of infection (the
open circles correspond to the total expected amount of infec-
tion in households). However, for older households (red)
which are likely to contain older children, the chance of infec-
tion is less than in the homogeneous model as there is a
greater chance that these older children are immune from
past infection. In both the homogeneous and age-structured
model, the chance of observing multiple infections within the
same household is vanishingly rare as within household trans-
mission has been ignored. The household-structured model
allows for local outbreaks such that multiple members of the
same household are infected at the same time. This is visual-
ised in the bottom two subplots of figure 3 using colour-
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Figure 3. Percentage distribution of cases per household conditional on the size and age of the household, under the four different transmission models. These
results are for a mumps-like infection in a UK-like population. For purposes of clarity, we do not plot the percentage of disease-free households since this is several
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to older households (the second two rows in figure 1). The pink open bars correspond to the results from the homogeneous mixing model, which are shown for ease
of comparison; the open circles show the total amount of infection in the households accounting for multiple infections.
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coded stacked bars, with the height of each segment corre-
sponding to the proportion of households containing a given
number of cases. These local outbreaks lead to higher total
levels of infection (as shown by the open circles) concentrated
in the large households where sibling-to-sibling transmission
is likely. However, household outbreaks are generally limited
in scale due to levels of immunity in the household from his-
toric infections. The full model, which includes both
household and age structure, produces equilibrium distri-
butions with a more pronounced difference between older
and younger households than models with either one of
these transmission structures in isolation. Large households
in the earlier demographic stages (blue bars) are likely to con-
tain school-age children who expose the household to age-
structured transmission, while also containing younger chil-
dren who lack previous exposure and so are susceptible to
infection via these school-age siblings. While, in general, we
expect age-structuredmixing to boost infection (due to assorta-
tivity) and household-structured mixing to impede it (due to
susceptible depletion), these results demonstrate that the two
structures can act synergistically to amplify the concentration
of infection into large young households.
3.3. Impact of disease and demography
Having gained an understanding of the effects of model
structure, we now restrict our attention to the full model (with
both age and household structure) and consider the impact of
epidemiological and demographic parameters. The epidemiolo-
gicalparameters are those listed in table 1, such thatmeasleshas a
greater rate of transmission across a contact, but a slightly shorter
infectious period than mumps. UK- and Kenya-like demo-
graphic parameters are used as exemplars of a high-income
country with relatively low population growth and a stationary
population-age pyramid (similar numbers of individuals across
most ages) and a low-income countrywith relatively high popu-
lation growth and an expansive population-age pyramid (with
higher numbers of younger ages). Themain demographic differ-
ences between theUK andKenya are captured byamuch higher
number of children per woman in Kenya (leading to a higher
birth-rate) and a slightly shorter life expectancy; while Kenyan
age-structured mixing is less assortative than the UK ([10,11],
electronic supplementary material).

To illustrate the effects of epidemiological anddemographic
parameters on the full age- and household-structured model,
we first calculated early growth dynamics and equilibrium
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Figure 4. Percentage distribution of cases per household stratified by demographic state under UK- and Kenya-like demographic parameters for measles- and
mumps-like infectious parameters. For purposes of clarity, we do not plot the percentage of disease-free households. As in figure 2, blue bars correspond to younger
households (the first two rows in figure 1) and red to older households (the second two rows in figure 1). The pink open bars correspond to the results from the
homogeneous mixing model with the same early growth rate (r) to demonstrate the effect of stratifying contact behaviour; the open circles show the total amount
of infection in the households accounting for multiple infections. All plots are at the same scale to improve comparison, and we note that the data in figure4a is the
same as that in figure 3d.

Table 3. Early growth parameters, equilibrium prevalence, and childhood
infection probability for measles- and mumps-like diseases in UK- and
Kenya-like populations, from the household infectious disease model with
demography. The corresponding household prevalence distributions are
visualized in figure 4.

r R* �I�104 PR

measles UK 0.968 15.283 1.886 0.908

Kenya 1.781 44.334 3.086 0.990

mumps UK 0.133 2.691 1.760 0.480

Kenya 0.320 6.728 3.083 0.833
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distributions formeasles- andmumps-like diseases in UK- and
Kenya-like populations (table 3). As expected, we find that
measles has greater growth than mumps in a naive population
(as characterized by both r and R*) and that these measures of
early behaviour are higher inKenya than theUK. Such findings
are attributable to the greater transmission rate of measles
across a contact compared to mumps, and the larger average
family size (and hence greater number of close contacts) in
theKenyanpopulation compared to theUK.When considering
endemic quantities, the higher birth-rate in the Kenya-like
population (due to larger family sizes) is the main factor deter-
mining the endemic prevalence of infection (�I), with relatively
little difference between measles and mumps. The population
birth rate, and hence the rate that new susceptible individuals
are produced, generates an upper bound on the equilibrium
level of infection—lower values of equilibrium prevalence
only occur when individuals escape infection for their entire
lives. By contrast, the proportion of children infected before
they leave home (PR) is strongly influenced by both the epide-
miological characteristics and the demography of the
population; almost all children are predicted to catch measles
in a Kenyan-like population, but less than half predicted to
catch mumps in a UK-like population.

The histograms of infection levels in different household
types providemore details of the underlying dynamical behav-
iour (figure 4, again the frequency of 1, 2, 3 or more cases
conditional on the size and phase of the household is shown;
the electronic supplementary material contains plots that
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show the absolute frequency, such that the lower density of the
largest households is reflected). As before, the equilibrium dis-
tribution from a homogeneous model with the same early
growth rate (pink bars) shows the simplest assumption where
heterogeneities are only driven by the size and age of the house-
hold, households containing older individuals are already
likely to have been infected experience less infection leading
tononlinear infection probabilitywith household size.We com-
pare our full model predictions to this homogeneous ideal. For
mumps in both theUK andKenya, the action of age and house-
hold structure is to exaggerate thedifferencesbetweenolderand
younger households, and between small and large households
(cfpink bars and open circles)—due to the greater concentration
of infection in school-age children, and the concentration of
school-age children in larger younger households. For mumps
in Kenya, we observe a slight saturating effect, with larger
households less likely to experience infection than in the homo-
geneousmodel (cfpink and solid bars); although the scale of the
outbreaks within the infected households more than compen-
sates for this effect. When considering a highly transmissible
infection like measles, this saturation is far greater as fewer chil-
dren escape early infection and therefore reservoirs of
susceptibility cannot build-up within households. In this way,
young households of size 5 in the UK are predicted to contain
more measles than households of size 6. In Kenya, these non-
linear saturating effects are even more pronounced: infection
is concentrated in households with young children and these
young households in general only ever have single measles
cases; two or more cases within the household is relatively
uncommon despite the strong rate of within-household trans-
mission. This saturation is amplified by age and household
structure, as age-structured transmission concentrates infection
in school-aged children and household structure leads to rapid
infection of any (younger) susceptible siblings. Formeasles-like
infection inaKenya-likepopulation,householdsof size10 show
a substantially elevated level of infection in both the full and
homogeneous model; this is because (under our demographic
assumptions) such households always contain very young
children who are the most likely to become infectious.

4. Discussion
The strong interactions within households and between
individuals of similar ages dominates epidemiological trans-
mission dynamics for a range of infectious diseases. The
POLYMOD study [10] was revolutionary in quantifying our
understanding of age-structured mixing, and shows strong
diagonal and off-diagonal elements within the mixing matrix
corresponding to connections between similar age cohorts
and within families. This work has led to a number of
diary-based studies that have improved our knowledge of
age-structured mixing [11,34,35], and this wealth of new data
has been pivotal in helping to produce accurate models of mul-
tiple infectious diseases [36,37]. However, in suchmodels, there
is no distinction between the repeated close-contact within the
home environment and a ‘random’ contact; the repeated
nature of contacts within the household means that this pool
of susceptibles is rapidly depleted reducing the transmission
potential compared to the frequently used homogeneous
mixing assumption. By contrast, householdmodels [6,13] expli-
citly recognize both the strong within-household transmission
and the rapid depletion of susceptibles within the household
environment, but generally do not capture the structure of
between household mixing and ignore births into the popu-
lation, restricting their application to epidemic scenarios
[14,15]. Here, we have combined these two approaches to gen-
erate simple mechanistic models that capture the impact of
household and age-structured mixing on the spread and distri-
bution of endemic infectious diseases. A range of infectious and
demographic settings can be simulated by choosing suitable
parameters. While our model specifically describes infection
in a population of nuclear households, our basic approach of
coupling infectious and demographic dynamics can be applied
to a more diverse set of demographic settings by coupling to a
more complex set of demographic events.

Although high-dimensional, our model can be formulated
frommechanistic principles and can be expressed as a series of
coupled ODEs. These equations can be re-written in terms of
matrix operations, with nonlinear transmission terms acting
to re-scale elements of these matrices; this allows us to exploit
computationally efficient methods to calculate early growth
rates of outbreaks as well as endemic equilibria. The emergent
dynamics are highly complex and are the result of four interact-
ing processes: (i) age structure acts to focus transmissionwithin
school-age children (due to their greater social mixing) which
in turn disperses infection between households; (ii) in contrast
with age structure, household structure concentrates infection
within family groups and hence leads to transmission between
distinct age classes; (iii) exposure over time means that an
individual’s probability of immunity increases with age so
that older households tend to contain a higher density of
immune individuals and thus experience less infection,
(iv) the continuous circulation means that newborns often
find themselves in householdswhich have already experienced
infection, increasing the local density of immune individuals
and sheltering newborns from infection, making large local
outbreaks relatively rare. The tension between these four
factors is determined by the demographic and epidemiological
parameters. Our comparison between model structures
includes the important finding that while age structure and
household structure have opposite effects on the population-
level growth of infection, they act in tandem to concentrate
infection in younger households. This demonstrates the impor-
tance of more detailed outputs in understanding the behaviour
of complex models. From a public-health perspective our
results suggest that household-based control (such as prophy-
laxis [14] or cocoon vaccination [38,39]) is most likely to be
effective for weakly transmitted or non-immunizing infections
where many older individuals remain susceptible and hence
household outbreaks are common.

Although our model incorporates only a single level of
spatial structure (that of the household), it can easily be
adapted to incorporate more detailed location-based contact
data. Contact studies including the POLYMOD study stratify
contacts by location according to categories including school,
work and transport [10], allowing us to express our age-
structured contact matrix as a sum of location-based
components. By considering this extra level of structure, we
can then model interventions such as school closure by scaling
down or removing the appropriate contact rates.
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Competing interests. We declare we have no competing interests.

Funding. This work was partly funded by the EPSRC, with grant refer-
ence no. EP/P511079/1.

http://github.com/JBHilton/HiltonKeeling_EndemicDiseases
http://github.com/JBHilton/HiltonKeeling_EndemicDiseases


9
References
royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190317
1. Kermack WO, McKendrick AG. 1927 A contribution
to the mathematical theory of epidemics.
Proc. R. Soc. Lond. A 115, 700–721. (doi:10.1098/
rspa.1927.0118)

2. Anderson RM, May RM. 1992 Infectious diseases of
humans: dynamics and control. Oxford, UK: Oxford
University Press.

3. Keeling MJ, Rohani P. 2007 Modeling infectious
diseases in humans and animals. Princeton, NJ:
Princeton University Press.

4. Schenzle D. 1984 An age-structured model of
pre- and post-vaccination measles transmission.
Math. Med. Biol. 1, 169–191. (doi:10.1093/
imammb/1.2.169)

5. Grenfell BT, Anderson RM. 1985 The estimation of
age-related rates of infection from case notifications
and serological data. J. Hyg. 95, 419–436. (doi:10.
1017/S0022172400062859)

6. Ball F, Mollison D, Scalia-Tomba G. 1997 Epidemics
with two levels of mixing. Ann. Appl. Probab. 7,
46–89. (doi:10.1214/aoap/1034625252)

7. Grenfell B, Harwood J. 1997 (Meta)population
dynamics of infectious diseases. Trends Ecol. Evol. 12,
395–399. (doi:10.1016/S0169-5347(97)01174-9)

8. Longini IM, Nizam A, Xu SF, Ungchusak K,
Hanshaoworakul W, Cummings D, Halloran ME. 2005
Containing pandemic influenza at the source. Science
309, 1083–1087. (doi:10.1126/science.1115717)

9. Ferguson NM, Cummings D, Cauchemez S, Fraser C,
Riley S, Meeyai A, Lamsirithawom S, Burke DS. 2005
Strategies for containing an emerging influenza
pandemic in Southeast Asia. Nature 437, 209–214.
(doi:10.1038/nature04017)

10. Mossong J et al. 2008 Social contacts and mixing
patterns relevant to the spread of infectious
diseases. PLoS Med. 5, 1–1. (doi:10.1371/journal.
pmed.0050074)

11. Kiti MC, Kinyanjui TM, Koech DC, Munywoki PK,
Medley GF, Nokes DJ. 2014 Quantifying age-related
rates of social contact using diaries in a rural coastal
population of kenya. PLoS ONE 9, 1–9. (doi:10.
1371/journal.pone.0104786)

12. Prem K, Cook AR, Jit M. 2017 Projecting
social contact matrices in 152 countries using
contact surveys and demographic data. PLoS
Comp. Biol. 13, 1–21. (doi:10.1371/journal.pcbi.
1005697)

13. Ball F, Lyne OD. 2001 Stochastic multi-type SIR
epidemics among a population partitioned into
households. Adv. Appl. Probab. 33, 99–123. (doi:10.
1017/S000186780001065X)

14. Black AJ, House T, Keeling MJ, Ross JV. 2013
Epidemiological consequences of household-based
antiviral prophylaxis for pandemic influenza.
J. R. Soc. Interface 10, 20121019. (doi:10.1098/rsif.
2012.1019)

15. Keeling MJ, Ross JV. 2015 Optimal prophylactic
vaccination in segregated populations: when can we
improve on the equalising strategy? Epidemics 11,
7–13. (doi:10.1016/j.epidem.2015.01.002)

16. Viboud C, Boelle PY, Cauchemez S, Lavenu A,
Valleron AJ, Flahault A, Carrat F. 2004 Risk factors of
influenza transmission in households. Br. J. Gen.
Pract. 54, 684–689. (doi:10.1016/j.ics.2004.01.013)

17. Fraser C, Cummings DAT, Klinkenberg D, Burke DS,
Ferguson NM. 2011 Influenza transmission in
households during the 1918 Pandemic. Am. J.
Epidemiol. 174, 505–514. (doi:10.1093/aje/kwr122)

18. Pellis L, Ball F, Trapman P. 2012 Reproduction
numbers for epidemic models with households and
other social structures. I. Definition and calculation
of R0. Math. Biosci. 235, 85–97. (doi:10.1016/j.
mbs.2011.10.009)

19. Ball F, Neal P. 2002 A general model for stochastic
SIR epidemics with two levels of mixing. Math.
Biosci. 180, 73–102. (doi:10.1016/S0025-
5564(02)00125-6)

20. Pellis L, Ferguson NM, Fraser C. 2009 Threshold
parameters for a model of epidemic spread among
households and workplaces. J. R. Soc. Interface 6,
979–987. (doi:10.1098/rsif.2008.0493)

21. Cauchemez S, Valleron AJ, Boelle PY, Flahault A,
Ferguson NM. 2008 Estimating the impact of school
closure on influenza transmission from Sentinel
data. Nature 452, 750–754. (doi:10.1038/
nature06732)

22. Glass K, McCaw JM, McVernon J. 2011 Incorporating
population dynamics into household models of
infectious disease transmission. Epidemics 3,
152–158. (doi:10.1016/j.epidem.2011.05.001)

23. Geard N, Glass K, McCaw JM, McBryde ES, Korb KB,
Keeling MJ, McVernon J. 2015 The effects of
demographic change on disease transmission and
vaccine impact in a household structured
population. Epidemics 13, 56–64. (doi:10.1016/j.
epidem.2015.08.002)

24. Ross JV, House T, Keeling MJ. 2010 Calculation of
disease dynamics in a population of households.
PLoS ONE 5, 1–9.

25. Hope-Simpson RE. 1952 Infectiousness of
communicable diseases in the household: (measles,
chickenpox and mumps). The Lancet 260, 549–554.
Originally published as Volume 2, Issue 6734
(doi:10.1016/S0140-6736(52)91357-3)

26. Cauchemez S, Carrat F, Viboud C, Valleron A, Boelle
P. 2004 A Bayesian MCMC approach to study
transmission of influenza: application to household
longitudinal data. Stat. Med. 23, 3469–3487.
(doi:10.1002/sim.1912)

27. Scott JAG et al. 2012 Profile: the kilifi health and
demographic surveillance system (KHDSS).
Int. J. Epidemiol. 41, 650–657. (doi:10.1093/ije/
dys062)

28. Office for National Statistics. 2017 National life
tables: England. See https://www.ons.gov.uk/
peoplepopulationandcommunity/
birthsdeathsandmarriages/lifeexpectancies/datasets/
nationallifetablesenglandreferencetables.

29. Office for National Statistics. 2017 Births by parents’
characteristics. See https://www.ons.gov.uk/
peoplepopulationandcommunity/
birthsdeathsandmarriages/livebirths/datasets/
birthsbyparentscharacteristics.

30. Office for National Statistics. 2017 Childbearing for
women born in different years. See https://www.ons.
gov.uk/peoplepopulationandcommunity/birthsdeaths
andmarriages/conceptionandfertilityrates/datasets/
childbearingforwomenbornindifferent years
referencetable.

31. Eurostat, the statistical office of the European Union.
Estimated average age of young people leaving the
parental household by sex; 2017. See http://appsso.
eurostat.ec.europa.eu/nui/show.do?
dataset=yth˙demo_030.

32. Kenya National Bureau of Statistics, Ministry of
Health/Kenya, National AIDS Control Council/Kenya,
Kenya Medical Research Institute, and National
Council for Population and Development/Kenya.
Kenya Demographic and Health Survey 2014; 2015.
See http://dhsprogram.com/pubs/pdf/FR308/FR308.
pdf.

33. Pellis L, Ferguson NM, Fraser C. 2011 Epidemic
growth rate and household reproduction number in
communities of households, schools and
workplaces. J. Math. Biol. 63, 691–734. (doi:10.
1007/s00285-010-0386-0)

34. Eames KTD, Tilston NL, Brooks-Pollock E, Edmunds
WJ. 2012 Measured dynamic social contact patterns
explain the spread of H1N1v influenza. PLoS
Comput. Biol. 8, e1002425. (doi:10.1371/journal.
pcbi.1002425)

35. Read JM, Edmunds WJ, Riley S, Lessler J, Cummings
DAT. 2012 Close encounters of the infectious kind:
methods to measure social mixing behaviour.
Epidemiol. Infect. 140, 2117–2130. (doi:10.1017/
S0950268812000842)

36. Baguelin M, Hoek AJV, Jit M, Flasche S, White PJ,
Edmunds WJ. 2010 Vaccination against pandemic
influenza A/H1N1v in England: a real-time
economic evaluation. Vaccine 28, 2370–2384.
(doi:10.1016/j.vaccine.2010.01.002)

37. Rohani P, Zhong X, King AA. 2010 Contact network
structure explains the changing epidemiology of
pertussis. Science 330, 982–985. (doi:10.1126/
science.1194134)

38. Healy C, Rench M, Baker C. 2011 Implementation of
cocooning against Pertussis in a high-risk
population. Clin. Infect. Dis. 52, 157–162. (doi:10.
1093/cid/ciq001)

39. Kinyanjui T, House T, Kiti M, Cane P, Nokes D,
Medley G. 2015 Vaccine induced herd immunity for
control of respiratory syncytial virus disease in a
low-income country setting. PLoS ONE 10,
e0138018. (doi:10.1371/journal.pone.0138018)

http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1093/imammb/1.2.169
http://dx.doi.org/10.1093/imammb/1.2.169
http://dx.doi.org/10.1017/S0022172400062859
http://dx.doi.org/10.1017/S0022172400062859
http://dx.doi.org/10.1214/aoap/1034625252
http://dx.doi.org/10.1016/S0169-5347(97)01174-9
http://dx.doi.org/10.1126/science.1115717
http://dx.doi.org/10.1038/nature04017
http://dx.doi.org/10.1371/journal.pmed.0050074
http://dx.doi.org/10.1371/journal.pmed.0050074
http://dx.doi.org/10.1371/journal.pone.0104786
http://dx.doi.org/10.1371/journal.pone.0104786
http://dx.doi.org/10.1371/journal.pcbi.1005697
http://dx.doi.org/10.1371/journal.pcbi.1005697
http://dx.doi.org/10.1017/S000186780001065X
http://dx.doi.org/10.1017/S000186780001065X
http://dx.doi.org/10.1098/rsif.2012.1019
http://dx.doi.org/10.1098/rsif.2012.1019
http://dx.doi.org/10.1016/j.epidem.2015.01.002
http://dx.doi.org/10.1016/j.ics.2004.01.013
http://dx.doi.org/10.1093/aje/kwr122
http://dx.doi.org/10.1016/j.mbs.2011.10.009
http://dx.doi.org/10.1016/j.mbs.2011.10.009
http://dx.doi.org/10.1016/S0025-5564(02)00125-6
http://dx.doi.org/10.1016/S0025-5564(02)00125-6
http://dx.doi.org/10.1098/rsif.2008.0493
http://dx.doi.org/10.1038/nature06732
http://dx.doi.org/10.1038/nature06732
http://dx.doi.org/10.1016/j.epidem.2011.05.001
http://dx.doi.org/10.1016/j.epidem.2015.08.002
http://dx.doi.org/10.1016/j.epidem.2015.08.002
http://dx.doi.org/10.1016/S0140-6736(52)91357-3
http://dx.doi.org/10.1002/sim.1912
http://dx.doi.org/10.1093/ije/dys062
http://dx.doi.org/10.1093/ije/dys062
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesenglandreferencetables
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesenglandreferencetables
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesenglandreferencetables
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesenglandreferencetables
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesenglandreferencetables
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/datasets/birthsbyparentscharacteristics
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/datasets/birthsbyparentscharacteristics
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/datasets/birthsbyparentscharacteristics
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/datasets/birthsbyparentscharacteristics
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/datasets/birthsbyparentscharacteristics
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/datasets/childbearingforwomenbornindifferent yearsreferencetable
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/datasets/childbearingforwomenbornindifferent yearsreferencetable
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/datasets/childbearingforwomenbornindifferent yearsreferencetable
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/datasets/childbearingforwomenbornindifferent yearsreferencetable
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/datasets/childbearingforwomenbornindifferent yearsreferencetable
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/datasets/childbearingforwomenbornindifferent yearsreferencetable
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=yth.demo_030
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=yth.demo_030
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=yth.demo_030
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=yth.demo_030
http://dhsprogram.com/pubs/pdf/FR308/FR308.pdf
http://dhsprogram.com/pubs/pdf/FR308/FR308.pdf
http://dhsprogram.com/pubs/pdf/FR308/FR308.pdf
http://dx.doi.org/10.1007/s00285-010-0386-0
http://dx.doi.org/10.1007/s00285-010-0386-0
http://dx.doi.org/10.1371/journal.pcbi.1002425
http://dx.doi.org/10.1371/journal.pcbi.1002425
http://dx.doi.org/10.1017/S0950268812000842
http://dx.doi.org/10.1017/S0950268812000842
http://dx.doi.org/10.1016/j.vaccine.2010.01.002
http://dx.doi.org/10.1126/science.1194134
http://dx.doi.org/10.1126/science.1194134
http://dx.doi.org/10.1093/cid/ciq001
http://dx.doi.org/10.1093/cid/ciq001
http://dx.doi.org/10.1371/journal.pone.0138018

	Incorporating household structure and demography into models of endemic disease
	Introduction
	Methods
	Demographic model
	Epidemiological model

	Results
	Demographic equilibrium distribution
	Impact of assumed transmission structure
	Impact of disease and demography

	Discussion
	Data accessibility
	Competing interests
	Funding
	References


