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ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS\ast 

JEREMIE HOUSSINEAU\dagger , AJAY JASRA\ddagger , AND SUMEETPAL S. SINGH\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this article we consider the smoothing problem for hidden Markov models.
Given a hidden Markov chain \{ Xn\} n\geq 0 and observations \{ Yn\} n\geq 0, our objective is to compute
\BbbE [\varphi (X0, . . . , Xk)| y0, . . . , yn] for some real-valued, integrable functional \varphi and k fixed, k \ll n and
for some realization (y0, . . . , yn) of (Y0, . . . , Yn). We introduce a novel application of the multilevel
Monte Carlo method with a coupling based on the Knothe--Rosenblatt rearrangement. We prove
that this method can approximate the aforementioned quantity with a mean square error (MSE) of
\scrO (\epsilon 2) for arbitrary \epsilon > 0 with a cost of \scrO (\epsilon  - 2). This is in contrast to the same direct Monte Carlo
method, which requires a cost of \scrO (n\epsilon  - 2) for the same MSE. The approach we suggest is, in general,
not possible to implement, so the optimal transport methodology of [A. Spantini, D. Bigoni, and
Y. Marzouk, J. Mach. Learn. Res., 19 (2018), pp. 2639--2709; M. Parno, T. Moselhy, and Y. Marzouk,
SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 1160--1190] is used, which directly approximates
our strategy. We show that our theoretical improvements are achieved, even under approximation,
in several numerical examples.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . smoothing, multilevel Monte Carlo, optimal transport

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 62M05, 62E17

\bfD \bfO \bfI . 10.1137/18M1198004

1. Introduction. Given a hidden Markov chain \{ Xn\} n\geq 0, Xn \in \sansX \subset \BbbR d and
observations \{ Yn\} n\geq 0, Yn \in \sansY , we consider a probabilistic model such that for Borel
A \in \scrX , \BbbP (X0 \in A) =

\int 
A
f(x)dx, for every n \geq 1, x0:n - 1 \in \sansX n

(1.1) \BbbP (Xn \in A| x0:n - 1) =

\int 
A

f(xn - 1, x)dx

with dx Lebesgue measure and for Borel B \in \scrY and all n \geq 0, (y0:n - 1, x0:n) \in 
\sansY n \times \sansX n+1

(1.2) \BbbP (Yn \in B| y0:n - 1, x0:n) =

\int 
B

g(xn, y)dy,

where we have used the compact notation ak:n = (ak, . . . , an) for any k, n \geq 0 and
any sequence (an)n\geq 0 with the convention that the resulting vector of objects is null
if k > n. The model defined by (1.1) and (1.2) is termed a hidden Markov model.
In this article, given y0:n, our objective is to compute \BbbE [\varphi (X0:k)| y0:n] for some real-
valued, integrable functional \varphi and k fixed, k \ll n, which we refer to as large-lag
smoothing. Hidden Markov models and the smoothing problem are found in many
real applications, such as finance, genetics, and engineering; see, e.g., [4] and the
references therein.
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ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS 2813

The smoothing problem is notoriously challenging. First, \BbbE [\varphi (X0:k)| y0:n] is
seldom available analytically and hence numerical methods are required. Second,
if one wants to compute \BbbE [\varphi (X0:k)| y0:n] for several values of n, i.e., potentially
recursively, then several of the well-known methods for approximation of
\BbbE [\varphi (X0:k)| y0:n] can fail. For instance the particle filter (e.g., [8] and the references
therein) suffers from the well-known path degeneracy problem (see, e.g., [19]). Despite
this, several methods are available for the approximation of \BbbE [\varphi (X0:k)| y0:n], such as
particle Markov chain Monte Carlo [1] or the PaRIS algorithm [22], which might be
considered the current state-of-the-art. The latter algorithm relies on approximating
\BbbE [\varphi (X0:k)| y0:n\ast ] for some n\ast < n and is then justified on the basis of using forgetting
properties of the smoother (see, e.g., [4, 7]). We will extend this notion as will be
explained below.

The main approach that is followed in this paper is to utilize the multilevel Monte
Carlo method (e.g., [10, 13, 12, 15]). Traditional applications of this method are
associated to discretizations of continuum problems, but we adopt the framework in
a slightly nonstandard way. To describe the basic idea, suppose one is interested in
\BbbE \pi [\varphi (X)] for \pi a probability, \varphi real-valued and bounded, but one can only hope to
approximate \BbbE \pi l

[\varphi (X)] with \pi l a probability (assumed on the same space as \pi ), l \in \BbbN ,
and in some loose sense one has \pi l approaches \pi as l grows. Now, given \pi 0, . . . , \pi L a
sequence of increasingly more ``precise"" probability distributions on the same space,
one trivially has

(1.3) \BbbE \pi L
[\varphi (X)] = \BbbE \pi 0

[\varphi (X)] +

L\sum 
l=1

\{ \BbbE \pi l
[\varphi (X)] - \BbbE \pi l - 1

[\varphi (X)]\} .

The approach is now to sample dependent couplings of (\pi l, \pi l - 1) independently for
1 \leq l \leq L and approximate the difference \BbbE \pi l

[\varphi (X)]  - \BbbE \pi l - 1
[\varphi (X)] using Monte

Carlo. The term \BbbE \pi 0 [\varphi (X)] is also approximated using Monte Carlo with independent
and identically distributed (i.i.d.) sampling from \pi 0. Then, given a ``good enough""
coupling and a characterization of the bias, for many practical problems the cost to
achieve a prespecified mean square error (MSE) against i.i.d. sampling from \pi L and
Monte Carlo is significantly reduced. To elaborate the effectiveness of the coupling
(as discussed in [11]), the main issue is to approximate (as in (1.3))

(1.4) \BbbE \pi l
[\varphi (X)] - \BbbE \pi l - 1

[\varphi (X)] = \BbbE \v \pi l,l - 1
[\varphi (X) - \varphi (Y )],

where \v \pi l,l - 1 is any probability on the product space (say, \BbbR \times \BbbR ) of the original
probability measures \pi l, \pi l - 1 with for any measurable A \subseteq \BbbR ,

\int 
A\times \BbbR \v \pi l,l - 1(d(x, y)) =\int 

A
\pi l(dx),

\int 
\BbbR \times A

\v \pi l,l - 1(d(x, y)) =
\int 
A
\pi l - 1(dy). Now, if one performs i.i.d. sampling

from \v \pi l,l - 1 to approximate the right-hand side (R.H.S.) of (1.4), the variance of this
approximation (of, say, N \geq 1 samples) is upper-bounded by a term of the form

\| \varphi \| Lip
N

\BbbE \v \pi l,l - 1
[| X  - Y | 2],

where we assume \varphi is Lipschitz, and | \varphi (x) - \varphi (y)| \leq \| \varphi \| Lip| x - y| . Now, the gain of
MLMC is possible if the coupling can strongly correlate X,Y . In the case above, we
know that the optimal coupling is that w.r.t. squared Wasserstein distance.

We leverage the idea of MLMC where the ``level"" l corresponds to the time
parameter and L is some chosen n\ast , so as to achieve a given level of bias. The
main issue is then how to sample from couplings which are good enough. We show
that, as elaborated on above, when d = 1 (the dimension of the hidden state) using
the optimal coupling, in terms of squared Wasserstein distance, can yield significant
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2814 J. HOUSSINEAU, A. JASRA, AND S. S. SINGH

improvements over the case where one directly approximates \BbbE [\varphi (X0:k)| y0:n] with
Monte Carlo and i.i.d sampling from the smoother. That is, for \epsilon > 0 given, to
achieve an MSE of \scrO (\epsilon 2), the cost is \scrO (\epsilon  - 2), whereas for the ordinary Monte Carlo
method the cost is \scrO (n\epsilon  - 2). The same conclusion with d > 1 can be achieved using
the Knothe--Rosenblatt rearrangement. The main issue with our approach is that it
cannot be implemented for most problems of practical interest. However, using the
transport methodology in [26], it can be approximated. We show that in numerical
examples our predicted theory is verified, even under this approximation. We also
compare our method directly with PaRIS, showing substantial improvement in terms
of cost for a given level of MSE. Note that the transport methodology used here
differs fundamentally from the ``particle flow"" methods discussed in [6, 3, 14], where
samples from a base probability distributions are moved using an ordinary differential
equation adapted to the target distribution.

This article is structured as follows. In section 2 we detail our approach and
theoretical results. In section 3 we demonstrate how our approach can be implemented
in practice. In section 4 we give our numerical examples. Section 5 summarizes the
article. The appendix includes the assumptions, technical results, and proofs of our
main results.

1.1. Notation. Let (\sansX ,\scrX ) be a measurable space. For \varphi : \sansX \rightarrow \BbbR we write
\scrB b(\sansX ) and Lip(\sansX ) as the collection of bounded measurable and Lipschitz functions,
respectively. For \varphi \in \scrB b(\sansX ), we write the supremum norm \| \varphi \| = supx\in \sansX | \varphi (x)| . For
\varphi \in \scrB b(\sansX ), Osc(\varphi ) = sup(x,y)\in \sansX \times \sansX | \varphi (x)  - \varphi (y)| , and we write Osc1(\sansX ) for the set
of functions \varphi on \sansX such that Osc(\varphi ) = 1. For \varphi \in Lip(\sansX ), we write the Lipschitz
constant \| \varphi \| Lip. P(\sansX ) denotes the collection of probability measures on (\sansX ,\scrX ). For
a measure \mu on (\sansX ,\scrX ) and a \varphi \in \scrB b(\sansX ), the notation \mu (\varphi ) =

\int 
\sansX 
\varphi (x)\mu (dx) is used.

Letting K : \sansX \times \scrX \rightarrow [0, 1] be a Markov kernel and \mu be a measure, then we use the
notation \mu K(dy) =

\int 
\sansX 
\mu (dx)K(x, dy) and for \varphi \in \scrB b(\sansX ), K(\varphi )(x) =

\int 
\sansX 
\varphi (y)K(x, dy).

For a sequence of Markov kernels K1, . . . ,Kn we write

K1:n(x0, dxn) =

\int 
\sansX n - 1

n\prod 
p=1

Kp(xp - 1, dxp).

For \mu , \nu \in P(\sansX ), the total variation distance is written \| \mu  - \nu \| tv = supA\in \scrX | \mu (A) - 
\nu (A)| . For A \in \scrX the indicator is written \BbbI A(x). \scrU A denotes the uniform distribution
on the set A. \scrN (a, b) is the one-dimensional Gaussian distribution of mean a and
variance b.

2. Model and approach. We are given a hidden Markov model (HMM) and
we seek to compute

\BbbE \pi n,0 [\varphi (X0)| y0:n] =
\int 
\sansX n+1 \varphi (x0)

\prod n
p=0 g(xp, yp)f(xp - 1, xp)dx0:n\int 

\sansX n+1

\prod n
p=0 g(xp, yp)f(xp - 1, xp)dx0:n

,

where f(x - 1, x0) := f(x0) and for ease of simplicity we suppose that \varphi \in \scrB b(\sansX ) \cap 
Lip(\sansX ) and \sansX is a compact subspace of the real line. \pi n,0 is the probability density (we
also use the same symbol for probability measure) of the smoother given n observations
at the coordinate at time 0. That is,

\pi n,0(x0| y0:n) \propto 
\int 
\sansX n

n\prod 
p=0

g(xp, yp)f(xp - 1, xp)dx1:n.

D
ow

nl
oa

de
d 

04
/2

8/
20

 to
 3

5.
17

6.
47

.6
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS 2815

Let 0 < n\ast < n be fixed, and then we propose to consider

\BbbE \pi n\ast ,0
[\varphi (X0)| y0:n\ast ] = \BbbE \pi 0,0

[\varphi (X0)| y0]+
n\ast \sum 
p=1

\{ \BbbE \pi p,0
[\varphi (X0)| y0:p] - \BbbE \pi p - 1,0

[\varphi (X0)| y0:p - 1]\} .

2.1. Case \bfsansX \subset \BbbR . Let us denote the cumulative distribution function (CDF) of
\pi p,0 as \Pi p,0. An approximation of \BbbE \pi p,0 [\varphi (X0)| y0:p] - \BbbE \pi p - 1,0 [\varphi (X0)| y0:p - 1] is

1

Np

Np\sum 
i=1

[\varphi (\Pi  - 1
p,0(U

i)) - \varphi (\Pi  - 1
p - 1,0(U

i))],

where for i \in \{ 1, . . . , Np\} , U i i.i.d.\sim \scrU [0,1] and \Pi  - 1
p,0 is the (generalized) inverse CDF

of \Pi p,0. If we do this independently for each p \in \{ 1, . . . , n\} and use an independent

estimator 1
N0

\sum N
i=1 \varphi (\Pi 

 - 1
0 (U i)) for \BbbE \pi 0,0

[\varphi (X0)| y0] one can estimate \BbbE [\varphi (X0)| y0:n].
The utility of the coupling is that it is optimal in terms of 2-Wasserstein distance.
We have the following result, where the assumption and proof are in the appendix.

Theorem 2.1. Assume (A1). Then there exists \rho \in (0, 1), C < +\infty such that
for any \varphi \in \scrB b(\sansX ) \cap Lip(\sansX ), n\ast \geq p \geq 1, Np \geq 1, we have

\BbbV ar
\Bigl[ 1

Np

Np\sum 
i=1

[\varphi (\Pi  - 1
p,0(U

i)) - \varphi (\Pi  - 1
p - 1,0(U

i))]
\Bigr] 
\leq 

C\rho p - 1\| \varphi \| 2Lip
Np

.

The main implication of the result is the following. In the approach to
be considered later in this paper the cost of computing (an approximation of)

(\Pi  - 1
p,0,\Pi 

 - 1
p - 1,0) is \scrO (1) per time step. So the cost of this method is C(n\ast +

\sum n\ast 

p=0 Np).
Thus the MSE and cost associated with this algorithm are (at most in the first case)

C(\| \varphi \| 2 \vee \| \varphi \| 2Lip)
\Bigl( 1

N0
+

n\ast \sum 
p=1

\rho p - 1

Np
+ \rho 2n

\Bigr) 
and

(2.1) C

\biggl( 
n\ast +

n\ast \sum 
p=0

Np

\biggr) 
.

Let \epsilon > 0 be given. To achieve an MSE of \scrO (\epsilon 2) we can choose n\ast = | log(\epsilon )/ log(\rho )| 
(here we of course mean n\ast = \lceil | log(\epsilon )/ log(\rho )| \rceil , but this is omitted for simplicity)
and Np = \epsilon  - 2(p + 1) - 1 - \delta for any \delta > 0 yields that the associated cost is \scrO (\epsilon  - 2). If
one just approximates \BbbE \pi n,0 [\varphi (X0)| y0:n] using

1

N

N\sum 
i=1

\varphi (\Pi  - 1
n,0(U

i)),

then to achieve an MSE of \scrO (\epsilon 2) the cost would be \scrO (n\epsilon  - 2), which is considerably
larger if n is large. That is, the cost of the ML approach is essentially \scrO (1) w.r.t. n.
If one stops at n\ast = | log(\epsilon )/ log(\rho )| and uses the estimate

1

N

N\sum 
i=1

\varphi (\Pi  - 1
n\ast ,0(U

i))
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2816 J. HOUSSINEAU, A. JASRA, AND S. S. SINGH

to achieve an MSE of \scrO (\epsilon 2), the cost is \scrO (\epsilon  - 2| log(\epsilon )| ). A similar approach can show
that these results are even true when smoothing for \BbbE [\varphi (X0:k)| y0:n] for k fixed (and
hence \BbbE [\varphi (Xs:s+k)| y0:n]). The strategy of choosing n\ast and N0:n\ast detailed above is
the one used throughout the paper. Note that in practice, we do not know \rho , so we
choose a value such as \rho = 0.8 which should lead to an n\ast which is large enough. This
is also the reason for setting Np = \epsilon  - 2(p+ 1) - 1 - \delta and not Np = \epsilon  - 2(\rho 1/2)p - 1, say.

It is remarked that the compactness of \sansX could potentially be removed by using
Kellerer's extension of the Kantorovich--Rubenstein theorem (see [9] for a summary)
along with the techniques of [17]. Such an extension is mainly of a technical nature and
is not required in the continuing exposition. We now establish that the construction
here can be extended to the case \sansX \subset \BbbR d.

2.2. Case \bfsansX \subset \BbbR \bfitd . We consider the Knothe--Rosenblatt rearrangement, which
is assumed to exist (see, e.g., [26]). For simplicity of notation, we set \sansX = \sansE d for some
compact \sansE \subset \BbbR . Denote by \Pi p,0(\cdot | x1:j) the conditional CDF of \pi p,0(xj+1| x1:j) with
1 \leq j \leq d  - 1. Note that here we are dealing with the d-dimensional coordinate at
time zero and we are considering conditioning on the first j of these dimensions. Then

to approximate \BbbE \pi p,0 [\varphi (X0)| y0:p] - \BbbE \pi p - 1,0 [\varphi (X0)| y0:p - 1], sample U1
1:d, . . . , U

Np

1:d , where

for i \in \{ 1, . . . , Np\} , U i
1:d

i.i.d.\sim \scrU [0,1]d . Then we have the estimate for \varphi \in \scrB b(\sansX )\cap Lip(\sansX )

1

Np

Np\sum 
i=1

[\varphi (\xi ip,d) - \varphi (\xi ip - 1,d)],

where for ease of notation, we have set \xi ip,1 = \Pi  - 1
p,0(U

i
1) (resp., \xi ip - 1,1 = \Pi  - 1

p - 1,0(U
i
1))

and \xi ip,j = (\xi ip,1, . . . , \xi 
i
p,j - 1,\Pi 

 - 1
p,0(U

i
j | \xi ip,j - 1)), 2 \leq j \leq d (resp., \xi ip - 1,j =

(\xi ip - 1,1, . . . , \xi 
i
p - 1,j - 1, \Pi 

 - 1
p - 1,0(U

i
j | \xi ip - 1,j - 1)), 2 \leq j \leq d). We have the following result,

whose proof and assumptions are in the appendix.

Theorem 2.2. Assume (A1--2). Then there exists \rho \in (0, 1), C < +\infty such that
for any \varphi \in \scrB b(\sansX ) \cap Lip(\sansX ), n\ast \geq p \geq 1, Np \geq 1, we have

\BbbV ar
\Bigl[ 1

Np

Np\sum 
i=1

[\varphi (\xi ip,d) - \varphi (\xi ip - 1,d)]
\Bigr] 
\leq 

C\rho p - 1\| \varphi \| 2Lip
Np

.

As will be detailed in the following section and in particular in Algorithm 3.1,
it is often more convenient in practice to use the standard normal distribution
instead of the uniform distribution as a base distribution. The only difference is
that samples from the standard normal distribution first have to be mapped through
the corresponding CDF before taking the inverse image through the CDF of interest,
e.g., \Pi  - 1

p,0(\cdot | x1:j) for some p \geq 0 and some 1 \leq j \leq d - 1.
We end this section with some remarks. First, the MLMC strategy could be

debiased w.r.t. the time parameter using the trick in [25], which is a straightforward
extension. One minor issue with this methodology is that the variance can blow up in
some scenarios. Second, the idea of using the approach in [25], when approximating
\BbbE [\varphi (X0;n)| y0:n], has been adopted in [16]. The authors use a conditional version
of the coupled particle filter (e.g., [5, 18]) to couple smoothers, versus the optimal
Wasserstein coupling. The goal in [16] is unbiased estimation, which is complementary
to ideas in this article, where we focus upon reducing the cost of large lag smoothing.
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3. Transport methodology.

3.1. Standard approach. The basic principle of the transport methodology
introduced in [26] is to determine a mapping T relating a base distribution \eta , e.g.,
the normal distribution, to a potentially sophisticated target distribution \~\pi related to
the problem of interest. The distribution \eta should be easy to sample from so that,
given the map T , we can obtain samples from \~\pi by simply mapping samples from \eta 
via T . More precisely, the considered mapping T is characterized by

T\#\eta (x) = \eta (T - 1(x))| det\nabla T - 1(x)| = \~\pi (x),

that is, the push-forward distribution of \eta by T is \~\pi . Such a mapping can be
approximated using deterministic or stochastic optimization methods. However, the
underlying optimization problem is only amenable when the space on which \~\pi is
defined is of a low dimension, e.g., up to 4. This is not the case in general for the
smoothing distributions introduced in the previous sections, especially as the number
of observations increases. This is addressed in [26] by identifying the dependence
structure between the random variables of interest. In particular, for a hidden
Markov model on \BbbR d, it is possible to decompose the problem into transport maps
of dimension 2d, which does not depend on the number n of observations that define
the smoother. The problem at time p can be solved by introducing a mapping Tp of
the form

Tp(xp, xp+1) =

\biggl[ 
T 0
p (xp, xp+1)
T 1
p (xp+1)

\biggr] 
,

which will transform the 2d-dimensional base distribution \eta 2d into a target distribution
related to the considered hidden Markov model, as detailed below. This target
distribution can be expressed as

\~\pi p(xp, xp+1) \propto \eta d(xp)f
\bigl( 
T 1
p - 1(xp), xp+1

\bigr) 
g(xp+1, yp+1)

for any p > 0, which can be seen to be related to the 1-lag smoother. When p = 0,
we simply define \~\pi 0(x0, x1) = f(x0)f(x0, x1)g(x0, y0)g(x1, y1). The base distribution
\eta 2d (resp., \eta d) is the standard normal distribution of dimension 2d (resp., d). The
mapping Tp can be embedded into the 2d(n+ 1)-dimensional identity mapping as

\=Tp(x0, . . . , xn) = (x0, . . . , xp - 1, T
0
p (xp, xp+1), T

1
p (xp+1), xp+2, . . . , xn)

t

with \cdot t denoting the matrix transposition. It follows that

\bfitT n = \=T0 \circ \cdot \cdot \cdot \circ \=Tn

is the map such that the pushforward (\bfitT n)\#\eta d(n+1) is equal to the probability
density function of the smoother at time n. Obtaining samples from the smoothing
distribution is then straightforward: it suffices to sample from \eta d(n+1) and to map the
obtained sample via \bfitT n.

Even in low dimension, the optimization problem underlying the computation of
the transport maps of interest is not trivial. One first has to consider an appropriate
parametrization of these maps, e.g., via polynomial representations. The parameters
of the considered representation then have to be determined using the following
optimization problem:

(3.1) T \ast 
p = argmin

T
 - \BbbE 

\biggl[ 
log \~\pi p(T (X)) + log

\bigl( 
det\nabla T (X)

\bigr) 
 - log \eta 2d(X)

\biggr] 
,
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where the minimum is taken over the set of monotone increasing lower-triangular
maps. This minimization problem can be solved numerically by considering a
parametrized family of maps and deterministic or stochastic optimization methods.
Let T be any acceptable map in the minimization (3.1) and denote by T (i) the ith
component of T , which only depends on the ith first variables, i \in \{ 1, . . . , 2d\} , then
the considered parametrization can be expressed as

T (i)(x1, . . . , xi) = ai(x1, . . . , xi - 1) +

\int xi

0

bi(x1, . . . , xi - 1, t)
2dt

for some real-valued functions ai and bi on \BbbR i - 1 and \BbbR i, respectively. It is assumed
that the functions xj \mapsto \rightarrow ai(x1, . . . , xi - 1) and xj \mapsto \rightarrow bi(x1, . . . , xi - 1, t) are probabilists'
Hermite functions [2] extended with constant and linear components for any j \leq i - 1,
and the function t \mapsto \rightarrow bi(x1, . . . , xi - 1, t) is also a probabilists' Hermite function which
is only extended with a constant component. In particular, these functions take the
form

ai(x1, . . . , xi - 1) =

2d(omap+1)\sum 
k=1

ck\Phi k(x1, . . . , xi - 1),

bi(x1, . . . , xi - 1, t) =

2domap\sum 
k=1

c\prime k\Psi k(x1, . . . , xi - 1, t)

with omap the map order, with \{ ck\} k\geq 1 and \{ c\prime k\} k\geq 1 some collections of real
coefficients, and with \Phi k and \Psi k basis functions based on the above-mentioned
probabilists' Hermite functions. The expectation in (3.1) is then approximated using
a Gauss quadrature of order oexp in each dimension and the minimization is solved
via the Newton algorithm using the conjugate-gradient method for each step.

The desired function Tp can be recovered through the relation

(3.2) Tp((xp,1, . . . , xp,d), (xp+1,1, . . . , xp+1,d))

= (S\sigma \circ T \ast 
p \circ S\sigma )(xp,1, . . . , xp,d, xp+1,1, . . . , xp+1,d),

where \sigma = (2d, 2d  - 1, . . . , 1) and S\sigma is the linear map corresponding to the
permutation matrix of \sigma , which verifies S - 1

\sigma = S\sigma .

3.2. Fixed-point smoothing with transport maps. The approach described
in section 3.1 allows for obtaining samples from the distribution \pi n,0 of X0 given
(Y0, . . . , Yn) = (y0, . . . , yn) by simply retaining the first d components of samples from
\eta d(n+1) after mapping them through \bfitT n. However, the computational cost associated
with the mapping of samples by \bfitT n increases with n, making the complexity of the
method of the order \scrO (n2).

This can, however, be addressed by considering X0 as a parameter and by
only propagating the transport map corresponding to the posterior distribution of
(X0, Xn). This approach has been suggested in [26, section 7.4]. We assume in the
remainder of this section that observations start at time step 1 instead of 0. When
considering X0 as a parameter, the elementary transport maps take the form

Tp(x0, xp, xp+1) =

\left[  TX0
p (x0)

T 0
p (x0, xp, xp+1)
T 1
p (x0, xp+1)

\right]  ,
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and the corresponding target distributions become

\~\pi 1(x0, x1, x2) \propto p0(x0)f(x0, x1)f(x1, x2)g(x1, y1)g(x2, y2)

and

\~\pi p(x0, xp, xp+1) \propto \eta 2d(x0, xp)f
\bigl( 
T 1
p - 1(x0, xp), xp+1

\bigr) 
g(xp+1, yp+1)

for any p > 1. The transport map associated with the posterior distribution of
(X0, Xn) is

\^Tn(x0, xn) =

\biggl[ 
TX0
1 \circ \cdot \cdot \cdot \circ TX0

n - 1(x0)
T 1
n - 1(x0, xn)

\biggr] 
.

By recursively approximating the composition TX0
1 \circ \cdot \cdot \cdot \circ TX0

n - 1 by a single map, the
computation of samples from the posterior distribution of X0 becomes linear in time.
The pseudocode for this approach is given in Algorithm 3.1.

Algorithm 3.1 Multilevel transport.

1: Input: \epsilon , \delta , \rho 
2: Output: estimate \^X0 of \varphi (X0) | y0:n\ast 

3: n\ast = log(\epsilon )/ log(\rho )
4: for p = 1, . . . , n\ast do
5: if p = 1 then
6: \~\pi p(x0, x1, x2) \propto p0(x0)f(x0, x1)f(x1, x2)g(x1, y1)g(x2, y2)
7: else
8: \~\pi p(x0, xp, xp+1) \propto \eta 2d(x0, xp)f

\bigl( 
T 1
p - 1(x0, xp), xp+1

\bigr) 
g(xp+1, yp+1)

9:  \triangleleft T 1
p - 1 is the second component of \^Tp - 1

10: end if
11: \eta = \scrN (02d, I2d)
12: \^Tp = FilteringDistributionTransportMap(\eta , \~\pi p)
13:  \triangleleft Compute transport map from \eta to the law of (X0, Xp) | y1:p based on \~\pi p

14: Np = \epsilon  - 2(p+ 1) - 1 - \delta  \triangleleft Compute the number of samples
15: for i = 1, . . . , Np do
16: S \sim \eta 
17: \xi ip = \^Tp(S)
18: if p = 1 then
19: \zeta ip = \varphi (\xi i,1:dp )  \triangleleft Map the first d components of \xi ip through \varphi 
20: else
21: \xi ip - 1 = \^Tp - 1(S)

22: \zeta ip = \varphi (\xi i,1:dp ) - \varphi (\xi i,1:dp - 1 )
23: end if
24: end for
25: \^X0 \leftarrow \^X0 +

1
Np

\sum Np

i=1 \zeta 
i
p

26: end for

4. Case studies.

4.1. Linear Gaussian.

4.1.1. Theoretical result. The results in section 2 do not apply to the linear
Gaussian case. We extend our results to this scenario. We assume that the dynamical
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and observations models are one-dimensional as well as linear and Gaussian such that
the state and observation random variables at time n can be defined as

Xn| xn - 1 \sim \scrN (\alpha xn - 1, \beta 
2), n \geq 1,(4.1a)

Yn| xn \sim \scrN (xn, \tau 
2), n \geq 0,(4.1b)

and X0 \sim \scrN (0, \sigma 2) for some \alpha \in \BbbR and some \beta , \sigma , \tau > 0. We have the following
result, whose proof is in the appendix.

Theorem 4.1. Assuming that \BbbV ar(Xp | y0:p) \approx \gamma 2 for all p large enough, it holds
that

\BbbV ar
\biggl[ 

1

Np

Np\sum 
i=1

[\Pi  - 1
p,0(U

i) - \Pi  - 1
p - 1,0(U

i)]

\biggr] 
= \scrO 

\biggl( 
1

Np

\Bigl( 
\alpha +

\beta 2

\alpha \gamma 2

\Bigr)  - 2p
\biggr) 
.

Theorem 4.1 shows that, under assumptions on the parameters of the model, the
variance of the approximated multilevel term at level p tends to 0 exponentially fast
in p and with an order of 1/Np for the number of samples. This theorem also indicates
that the behavior depends on all the parameters in the model, although implicitly in
\tau . For instance, if \beta \gg \tau , then one can consider \gamma = \tau in the above expression. The
assumption about the variance of the filter can be justified in terms of reachability
and observability of the system [20].

This rate can get extremely beneficial for the proposed approach when \beta is large
and \gamma is small, but it can also make it of little use in the opposite case. This does not
come as a surprise since a large \beta means that the initial condition is quickly forgotten
so that obtaining a high number of samples from the smoother \pi p,0 for large p would
be inefficient, whereas small values of \beta incur a much higher dependency between the
initial state and the observations at different time steps.

4.1.2. Numerical results. The performance of the proposed method is first
assessed in the linear-Gaussian case where an analytical solution of the fixed-point
smoothing problem is available, this solution being known as the Rauch--Tung--Striebel
smoother [24]. More specifically, we consider the model (4.1) with X0 \sim \scrN (1, \sigma 2),
\sigma = 2, and \alpha = \beta = \tau = 1. The transport maps of interest are approximated1 to
the order omap = 3 while the expectation is approximated to the order oexp = 5 and
the minimization is performed with a tolerance of 10 - 4. The number of samples at
each time step as well as the time horizon n\ast is computed according to the method
proposed in section 2.1 with different values for the parameter \epsilon and with \rho = 0.8.
The performance of the proposed method is compared against the PaRIS algorithm
introduced in [22] using the observations y1, . . . , y50 with a varying number N of
samples and with \~N = 2 terms for the propagation of the estimate of X0. In the
simulations, it always holds that n\ast \leq 50 to ensure the fairness of the comparison.
The criteria for performance assessment is the MSE at the final time step, defined as

1

M

M\sum 
i=1

(\^xi  - x\ast )2,

where M is the number of Monte Carlo simulations, \^xi is the estimate of X0 | y1:n\ast 

(with n\ast = 50 for the PaRIS algorithm), and x\ast is the corresponding estimate given
by the Rauch--Tung--Striebel smoother.

1The solver used for the determination of the transport maps is the one provided at
http://transportmaps.mit.edu/docs/index.html.
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Fig. 1. Performance of the proposed method against the PaRIS algorithm and the single-level
transport-map approach for the linear-Gaussian model, averaged over 100 Monte Carlo simulations.
The reference for the computation of the MSE is the Rauch--Tung--Striebel smoother. The displayed
cost for the multilevel approach includes the computation of the transport maps.

The values of the MSE at the final time obtained in simulations are shown
in Figure 1, where the proposed approach displays smaller errors than the PaRIS
algorithm for different values of \epsilon and N . The comparison is also made with a single-
level transport-map approach, i.e., without the multilevel decomposition, for different
numbers of samples. The advantage when representing the probability distributions
of interest with transport maps is that the computational effort required to obtain a
sample is extremely limited once the maps have been determined. For instance, the
highest and lowest considered values of \epsilon in Figure 1 correspond to N1 = 1250 and
N1 = 500,000 samples, respectively, which induces a comparatively small increase in
computational time.

In this linear-Gaussian case, using maps of order omap < 3 would have been
sufficient, but this would have been equivalent to making an assumption on the type
of distribution considered for the proposed algorithm whereas the PaRIS algorithm
makes no such assumption. The reason for choosing specifically omap = 3 is that this
value was found to be sufficient for nonlinear models as in the next section.

4.2. Stochastic volatility model. In order to further demonstrate the
performance of the proposed approach, the assessment conducted in the previous
section is applied to the estimation of X0 | y1:n\ast in a nonlinear case. A stochastic
volatility model is considered with

Xn = \mu + \phi (Xn - 1  - \mu ) + Vn, n \geq 1, X0 \sim \scrN 
\Bigl( 
\mu ,

1

1 - \phi 2

\Bigr) 
,

Yn = Wn exp
\Bigl( 1
2
Xn

\Bigr) 
, n \geq 0,

with Vn \sim \scrN (0, \beta 2) and Wn \sim \scrN (0, 1), where \mu =  - 0.5, \phi = 0.95, and \beta = 0.25.
In the absence of an analytical solution, the reference is determined by the PaRIS
algorithm with N = 214 samples. Since the observation process of this model is
generally less informative than the one of the Gaussian model, the PaRIS algorithm
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Fig. 2. Performance of the proposed method against the PaRIS algorithm and the single-
level transport-map approach for the stochastic volatility model, averaged over 100 Monte Carlo
simulations. The reference for the computation of the MSE is the PaRIS algorithm with 214 samples.
The displayed cost for the multilevel approach includes the computation of the transport maps.

is given the observations up to the time step 50 and, similarly, it is ensured that
n\ast \leq 50 for the proposed approach. The other parameters are the same as in the
linear-Gaussian case, that is, maps of order omap = 3 are used, the expectation
is approximated to the order oexp = 5, and the minimization is performed with a
tolerance of 10 - 4.

The MSE at the final time obtained for the two considered methods is shown
in Figure 2. Once again, the error for the proposed approach is lower than for the
PaRIS algorithm although the difference is less significant. In particular, the gain
in accuracy between the lowest and the second lowest value of \epsilon seem to indicate
that simply increasing the number of samples would not allow for reducing the error
much further. However, increasing the order of the transport maps or decreasing
the tolerance in the optimization could further reduce the error, although with a
significantly higher computational cost.

The computational costs obtained for the two models considered in simulations
are shown in Figure 3 for different values of \epsilon . These results confirm the order \scrO (\epsilon  - 2)
that was predicted in section 2.

5. Summary. In this article we have considered large lag smoothing for HMMs,
using the MLMC method. We showed that under an optimal coupling when the
hidden state is in dimension 1 or higher, but on a compact space, that, essentially,
the cost can be decoupled from the time parameter of the smoother. As this optimal
method is not possible in practice, we showed how it could be approximated and
established numerically that our theory still holds in this approximated case. Several
extensions to the work are possible: first, to extend our theoretical results to the case
of the approximated coupling, and second, to investigate whether the coupling used
in [16] can also yield, theoretically, the same improvements that have been seen in the
work in this article.

Appendix A. Variance proofs. We write the density (or probability measure)
of the smoother, at time p, on the coordinate at time zero as \pi p,0 and the associated
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Fig. 3. Computational cost as a function of \epsilon , averaged over 100 Monte Carlo simulations.
The fitted curves are based on a function of the form \epsilon \mapsto \rightarrow  - a\epsilon  - 2  - b log(\epsilon ), with a and b some
parameters, which is justified by the form of the cost (2.1).

CDF as \Pi p,0 (with generalized inverse \Pi  - 1
p,0). Recall that throughout \sansX is a compact

subspace of \BbbR d. Throughout the observations are fixed and often omitted from the
notation. The appendix gives our main assumptions, followed by a technical lemma
(Lemma A.1) which features some technical results used in the proofs. Then the
proof of Theorem 2.1 is given. The appendix is concluded by a second technical
lemma (Lemma A.2) followed by the proof of Theorem 2.2.

(A1) There exists 0 < C < C < +\infty such that

inf
x\in \sansX 

g(x, y0)f(x) \wedge inf
p\geq 1

inf
(x,x\prime )\in \sansX 2

g(x\prime , yp)f(x, x
\prime ) \geq C,

sup
x\in \sansX 

g(x, y0)f(x) \vee sup
p\geq 1

sup
(x,x\prime )\in \sansX 2

g(x\prime , yp)f(x, x
\prime ) \leq C.

(A2) There exists C < +\infty such that for every (x, x\prime ) \in \sansX 2

| g(x, y0) - g(x\prime , y0)| \leq C| x - x\prime | ,
sup
z\in \sansX 
| f(x, z) - f(x\prime , z)| \leq C| x - x\prime | ,

| f(x) - f(x\prime )| \leq C| x - x\prime | .

Below \pi p,0(\cdot | x1:j) denotes the probability of the (j + 1)th coordinate of the
smoother at time 0, given the first j coordinates at time 0, and conditional upon
the observations up to time p.

Lemma A.1. Assume (A1--2). Then there exists (C,C \prime ) \in (0,\infty )2, \rho \in (0, 1) such
that

1. for any 1 \leq j \leq d, supp\geq 0 \pi p,0(x0,1:j) \leq C, infp\geq 0 \pi p,0(x0,1:j) \geq C \prime ,
2. for any p \geq 1, \| \pi p,0  - \pi p - 1,0\| tv \leq C\rho p - 1,
3. for any 1 \leq j \leq d, p \geq 1, supx1:j\in \sansE j \| \pi p,0(\cdot | x1:j) - \pi p - 1,0(\cdot | x1:j)\| tv \leq C\rho p - 1,

4. for any p \geq 0, (x, x\prime ) \in \sansX 2, | \pi p,0(x) - \pi p,0(x
\prime )| \leq C| x - x\prime | ,

5. for any p \geq 0, 1 \leq j \leq d, (x1:j , x
\prime 
1:j) \in (\sansE j)2, | \pi p,0(x1:j)  - \pi p,0(x

\prime 
1:j)| \leq 

C| x1:j  - x\prime 
1:j | .
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Proof. Item 1 follows trivially from (A1) and the compactness of \sansE .
Item 2 follows from the backward Markov chain representation of the smoother

and (A1); see, for instance, [4] and the references therein.
To prove item 3, we first consider controlling for any fixed 1 \leq j \leq d p \geq 1,

| \pi p,0(x1:j) - \pi p - 1,0(x1:j)| .

Denoting \pi (p) as the filter at time p and setting for k \geq 0

Bk(xk+1, xk) =
\pi (k)(xk)f(xk, xk+1)\int 

\sansX 
\pi (k)(xk)f(xk, xk+1)dxk

we can write

(A.1) | \pi p,0(x1:j) - \pi p - 1,0(x1:j)| 

= Osc(B0(\cdot , x1:j))
\bigm| \bigm| \bigm| [\pi (p)Bp - 1  - \pi (p - 1)](Bp - 2:1)

\Bigl( B0(\cdot , x1:j)

Osc(B0(\cdot , x1:j))

\Bigr) \bigm| \bigm| \bigm| .
Using standard results for the total variation distance

| \pi p,0(x1:j) - \pi p - 1,0(x1:j)| \leq Osc(B0(\cdot , x1:j))

p - 2\prod 
s=1

\omega (Bs),

where \omega (Bs) is the Dobrushin coefficient of the Markov kernel Bs. Standard
calculations yield that there exists a \rho \in (0, 1) such that Osc(B0(\cdot , x1:j))\vee \omega (Bs) \leq C\rho ,
where C does not depend upon x1:j . Hence we have shown that

(A.2) sup
x1:j\in \sansE j

| \pi p,0(x1:j) - \pi p - 1,0(x1:j)| \leq C\rho p - 1.

To prove the result of interest we have for any \varphi \in Osc1(\sansE )

| \pi p,0(\varphi | x1:j) - \pi p - 1,0(\varphi | x1:j)| =
1

\pi p,0(x1:j - 1)

\int 
\sansE 

\varphi (xj)[\pi p,0(x1:j) - \pi p - 1,0(x1:j)]dxj

+
\pi p - 1,0(x1:j - 1) - \pi p,0(x1:j - 1)

\pi p,0(x1:j - 1)\pi p - 1,0(x1:j - 1)

\int 
\sansE 

\varphi (xj)\pi p - 1,0(x1:j)dxj .

The conclusion then follows by using (A.2) and 1.
Item 4 follows almost immediately from (A2) and the definition of the smoother.

Item 5 follows from 4 on marginalization and the compactness of \sansE .

Proof of Theorem 2.1. Standard calculations for i.i.d. random variables and the
Lipschitz property of \varphi clearly yield

\BbbV ar
\Bigl[ 1

Np

N\sum 
i=1

[\varphi (\Pi  - 1
p,0(U

i)) - \varphi (\Pi  - 1
p - 1,0(U

i))]
\Bigr] 
\leq 
\| \varphi \| 2Lip
Np

\int 
[0,1]

| \Pi  - 1
p,0(u) - \Pi  - 1

p - 1,0(u)| 2du.

Now we note that\int 
[0,1]

| \Pi  - 1
p,0(u) - \Pi  - 1

p - 1,0(u)| 2du = W2(\pi p,0, \pi p - 1,0)
2,
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where W2(\pi p,0, \pi p - 1,0) is the 2-Wasserstein distance between \pi p,0 and \pi p - 1,0. As \sansX 
is compact it follows that

W2(\pi p,0, \pi p - 1,0)
2 \leq 

\Bigl( \int 
\sansX 

dx
\Bigr) 2

\| \pi p,0  - \pi p - 1,0\| tv,

where \| \cdot \| tv is the total variation distance. Under our assumptions one can show that
there exists \rho \in (0, 1), C < +\infty such that for any p \geq 1 (see Lemma A.1 2., which
holds when d = 1)

\| \pi p,0  - \pi p - 1,0\| tv \leq C\rho p - 1.

The proof is then easily concluded.

Lemma A.2. Assume (A1--2). Then there exists C < +\infty , \rho \in (0, 1) such that
for any p \geq 1

\BbbE [| \xi 1p,d  - \xi 1p - 1,d| 2] \leq C\rho p - 1.

Proof. The proof is by induction on d, the case d = 1 being proved by the approach
in the proof of Theorem 2.1. Throughout C is a finite constant whose value may
change from line-to-line, but does not depend upon p.

We suppose the result for d  - 1 and consider d. For simplicity of notation, we
drop the superscript 1 from the notation, e.g., we write \xi p,d instead of \xi 1p,d. We have

\BbbE [| \xi p,d  - \xi p - 1,d| 2] = \BbbE [\BbbE [| \xi 1p,d  - \xi 1p - 1,d| 2| U1:d - 1]]

\leq C\BbbE [\| \pi p,0(\cdot | \xi p,d - 1) - \pi p - 1,0(\cdot | \xi p - 1,d - 1)\| tv],(A.3)

where, to go to the second line, we have used (conditional upon U1:d) the relationship
between the squared 2-Wasserstein distance and the (generalized) inverse CDF, along
with the total variation bound as used in the proof of Theorem 2.1.

Now, we have
\| \pi p,0(\cdot | \xi p,d - 1) - \pi p - 1,0(\cdot | \xi p - 1,d - 1)\| tv

(A.4)
\leq \| \pi p,0(\cdot | \xi p,d - 1) - \pi p - 1,0(\cdot | \xi p,d - 1)\| tv + \| \pi p - 1,0(\cdot | \xi p,d - 1) - \pi p - 1,0(\cdot | \xi p - 1,d - 1)\| tv.

By Lemma A.1 3. it follows that

(A.5) \| \pi p,0(\cdot | \xi p,d - 1) - \pi p - 1,0(\cdot | \xi p,d - 1)\| tv \leq C\rho p - 1

so we consider \| \pi p - 1,0(\cdot | \xi p,d - 1) - \pi p - 1,0(\cdot | \xi p - 1,d - 1)\| tv. For any \varphi \in Osc1(\sansE )

\pi p,0(\varphi | \xi p,d - 1) - \pi p - 1,0(\varphi | \xi p,d - 1)

=
1

\pi p - 1,0(\xi p - 1,d - 1)

\int 
\sansE 

\varphi (x)[\pi p - 1,0(\xi p,d - 1, x) - \pi p - 1,0(\xi p - 1,d - 1, x)]dx

+
\pi p - 1,0(\xi p - 1,d - 1) - \pi p - 1,0(\xi p,d - 1)

\pi p - 1,0(\xi p,d - 1)\pi p - 1,0(\xi p - 1,d - 1)

\int 
\sansE 

\varphi (x)\pi p - 1,0(\xi p - 1,d - 1, x)dx.

Applying Lemma A.1 item 4 to the first term on the R.H.S. and Lemma A.1 item 5
to the second term on the R.H.S. along with the boundedness of \varphi and compactness
of \sansE , we have that

| \pi p,0(\varphi | \xi p,d - 1) - \pi p - 1,0(\varphi | \xi p,d - 1)| \leq 
C

\pi p - 1,0(\xi p - 1,d - 1)
| \xi p,d - 1  - \xi p - 1,d - 1| 

+
C

\pi p - 1,0(\xi p,d - 1)\pi p - 1,0(\xi p - 1,d - 1)
| \xi p,d - 1  - \xi p - 1,d - 1| .
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Applying Lemma A.1 1. we can then establish that

(A.6) \| \pi p - 1,0(\cdot | \xi p,d - 1) - \pi p - 1,0(\cdot | \xi p - 1,d - 1)\| tv \leq C| \xi p,d - 1  - \xi p - 1,d - 1| .

Combining (A.5) and (A.6) with (A.4) and noting (A.3), we have shown that

\BbbE [| \xi p,d  - \xi p - 1,d| 2] \leq C
\Bigl( 
\rho p - 1 + \BbbE [| \xi p,d - 1  - \xi p - 1,d - 1| ]

\Bigr) 
.

The proof is completed by using the Jensen inequality and the induction
hypothesis.

Proof of Theorem 2.2. We have

\BbbV ar
\Bigl[ 1

Np

Np\sum 
i=1

[\varphi (\xi ip,d) - \varphi (\xi ip - 1,d)]
\Bigr] 
\leq 
\| \varphi \| 2Lip
Np

\BbbE [| \xi 1p,d  - \xi 1p - 1,d| 2].

The proof is then completed by applying Lemma A.2.

Appendix B. Linear Gaussian result.

Proof of Theorem 4.1. The Rauch--Tung--Striebel smoother gives an expression of
the smoothed mean mp| n and variance vp| n at time p given the observations y0, . . . , yn
as

mp| n = mp| p + cp(mp+1| n  - mp+1| p),

vp| n = vp| p + c2p(vp+1| n  - vp+1| p)

with cp = \alpha mp| p/mp+1| p, where mp+1| p and vp+1| p are the predicted mean and
variance at time p+ 1 given the observations y0, . . . , yp. It follows that the mean mp

and variance vp of \pi p,0 satisfy similar relations to the filtered means and variances:

mp =

p\sum 
i=0

mi| i\alpha 
i(1 - \BbbI i<p\alpha 

2dp)

i - 1\prod 
j=0

dj and vp =

p\sum 
i=0

vi| i\alpha 
2i(1 - \BbbI i<p\alpha 

4d2p)

i - 1\prod 
j=0

d2j ,

where dp = vp| p/vp+1| p and where \BbbI c is the indicator of condition c. The objective is
to compute the order of

\Pi  - 1
p,0(u) - \Pi  - 1

p - 1,0(u) = mp  - mp - 1 +
\surd 
2 erf - 1(2u - 1)(\sigma p  - \sigma p - 1),

where \sigma p =
\surd 
vp. From the above expression, it follows easily that

mp - mp - 1 = \alpha p(mp| p - mp| p - 1)

p - 1\prod 
i=0

di and vp - vp - 1 = \alpha 2p(vp| p - vp| p - 1)

p - 1\prod 
i=0

d2i ,

which yields the same order for both mp  - mp - 1 and \sigma p  - \sigma p - 1. The desired result
follows from the fact that

\alpha p

p - 1\prod 
i=0

di = \alpha p

p - 1\prod 
i=0

vi| i

\alpha vi| i + \beta 2
=

p - 1\prod 
i=0

\alpha 

\alpha 2 + \beta 2/vi| i
=

p - 1\prod 
i=0

\biggl( 
\alpha +

\beta 2

\alpha vi| i

\biggr)  - 1

and from the assumption that vp| p = \BbbV ar(Xp | y0:p) \approx \gamma 2 for all p large enough.
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Fig. 4. Performance of the Rhee--Glynn estimator against the PaRIS algorithm with a linear-
Gaussian model, averaged over 100 Monte Carlo simulations, where the number of samples is
indicated on the figure. The reference for the computation of the MSE is the Rauch--Tung--Striebel
smoother. The results for the Rhee--Glynn estimator are averaged over 210 runs of the estimator.

Appendix C. The Rhee--Glynn smoothing estimator. We compare the so-
called Rhee--Glynn smoothing estimator described in [16] with the PaRIS algorithm
[22] on the linear-Gaussian model considered in section 4.1.2. The Rhee--Glynn
smoothing estimator is implemented with ancestor sampling [21] and where all the
generated paths are used in the estimate of X0 | y1:n\ast , as originally suggested in [1]
in the context of particle Markov chain Monte Carlo.

The result of the comparison is given in Figure 4, where it appears that the PaRIS
algorithm slightly outperforms the Rhee--Glynn smoothing estimator. Although the
scenario considered here is linear and Gaussian, none of the compared methods relies
on these assumptions so that the conclusions made for this case are generalizable to
some other classes of scenarios. This justifies the sole use of the PaRIS algorithm in
section 4 for comparison against the proposed approach.
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