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Pricing of Reusable Resources under Ambiguous Distributions of

Demand and Service Time with Emerging Applications

Xuan Vinh Doan∗ Xiao Lei† Siqian Shen‡

Abstract

Monopolistic pricing models for revenue management are widely used in practice to set prices

of multiple products with uncertain demand arrivals. The literature often assumes deterministic

time of serving each demand and that the distribution of uncertainty is fully known. In this

paper, we consider a new class of revenue management problems inspired by emerging appli-

cations such as cloud computing and city parking, where we dynamically determine prices for

multiple products sharing limited resource and aim to maximize the expected revenue over a

finite horizon. Random demand of each product arrives in each period, modeled by a function

of the arrival time, product type, and price. Unlike the traditional monopolistic pricing, here

each demand stays in the system for uncertain time. Both demand and service time follow

ambiguous distributions, and we formulate robust deterministic approximation models to con-

struct efficient heuristic fixed-price pricing policies. We conduct numerical studies by testing

cloud computing service pricing instances based on data published by the Amazon Web Ser-

vices (AWS) and demonstrate the efficacy of our approach for managing revenue and risk under

various distributions of demand and service time.

Keywords: dynamic pricing; demand and service time uncertainty; distributional ambiguity; robust

optimization; cloud computing

1 Introduction

As a central role of revenue management, pricing offers a strategy to increase revenue by intelligently

matching limited resource capacities with demand. It allows companies to promptly adjust prices

based on demand variation, inventory levels, or production schedules. The literature of pricing

strategies dates back to studies of yield management in airlines (see, e.g., Rothstein 1971), and

the related revenue management problems that widely arise in most capacity-constrained service

industries including car rental, workforce planning, and hotel management.

In this paper, we focus on monopolistic pricing in which prices of products are dynamically

set by one company to maximize the company’s revenue over a finite sales horizon, as opposed to
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oligopolistic pricing, in which multiple firms set product prices that will affect their competitors’

demand and future pricing strategies. Monopolistic pricing models have a wide spectrum of ap-

plications that involve setting prices dynamically over a finite sales horizon, shared resource with

capacity, random demand arrivals following certain known distribution. We refer to Talluri and

van Ryzin (2005) as a comprehensive overview that summarizes different pricing models and solu-

tion methods for revenue management. Elmaghraby and Keskinocak (2003), Bitran and Caldentey

(2003), McGill and van Ryzin (1999), Chiang et al. (2007), Chen and Chen (2015) all conduct

surveys of pricing models for monopolistic revenue management of a single product or multiple

perishable products sharing nonrenewable resources.

In the dynamic pricing literature, demand realization is considered following a stochastic process

(e.g., a Poisson process) with parameters (e.g., the expected arrival rate) depending on the product

price. The existing literature has discussed pricing problems of a single perishable product (Gallego

and van Ryzin 1994), of multiple perishable products (Gallego and van Ryzin 1997, Maglaras and

Meissner 2006), and of nonperishable products (Kachani and Perakis 2006), given initial inventory

and demand functions over a finite sales horizon. Feng and Xiao (2000) develop a dynamic pricing

model with discrete price choices and reversible price changes. Federgruen and Heching (1999) and

Chen and Simchi-Levi (2004) study how to decide price and inventory simultaneously for a single

product, finite time horizon system. Popescu and Wu (2007) study dynamic pricing strategy with

customer reference effect, while Liu and Cooper (2015), Chen and Farias (2015) take into account

patient customers who are willing to wait. Zhao and Zheng (2000) consider complex model settings

with the demand following a non-homogeneous Poisson process and under time-varying distribution

of reservation price.

However, exact demand distribution in real-world applications is often unknown and a decision

maker can only observe realized demand after releasing product prices in each period. Corre-

spondingly, the state-of-the-art revenue management literature has started investigating problems

with unknown demand functions and proposed different models and approaches for handling the

demand ambiguity. These approaches include online learning for obtaining demand function pa-

rameters over time (see Besbes and Zeevi 2012a, Keskin and Zeevi 2014, Besbes and Zeevi 2012b,

Araman and Caldentey 2009, Harrison et al. 2012, den Boer 2014, Cheung et al. 2017), and robust

optimization methods using a class of possible demand functions that do not admit any parametric

representation (see Besbes and Zeevi 2009, Perakis and Roels 2010, Dokka Venkata Satyanaraya

et al. 2018). Lim and Shanthikumar (2007) utilize relative entropy to capture the ambiguity of the

distribution of price-dependent customer arrival process and develop models to hedge against the

ambiguity. Haviv and Randhawa (2014) focus on pricing problems in queues without exact demand

information.

Papier and Thonemann (2010), Levi and Radovanović (2010) consider dynamic pricing for

reusable resources, but with deterministic service time, with application mainly in the hotel revenue

management. We also study pricing problems with reusable resources in this paper, and assume

that random demand of each product arrives in each period, as a function depending on the time of

arrival, product type, and current price. It requires a fixed amount of resources to satisfy each unit
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demand of a product, and the total resource capacity shared by all products is constant throughout

the process. Furthermore, demand of all the products arriving in each period cannot be immediately

processed, but each demand stays in the system for an uncertain number of periods, which can

be viewed as random service time. This differs from the assumptions made in most dynamic

pricing literature for manufacturing-to-stock systems, and is motivated by emerging application

domains of revenue management, e.g., cloud computing and city parking. For instance, with fixed

number of servers and their computing capacity, a manager dynamically sets prices for multiple

cloud computing products, each of which has a random number of demand submissions over time.

Furthermore, the computation takes a certain amount of machine memory for different products,

but the total CPU time for processing each demand unit is uncertain, meaning that a job stays for

unknown time periods in the system. We refer the interested readers to Püschel et al. (2015), Kashef

et al. (2013) for a broad of revenue management decision-making models for cloud computing service

admission problems. Similarly, in city parking, the total number of parking spaces in a parking

structure is fixed, and the demand for parking spaces and the required time by each vehicle to stay

in a parking structure are random.

Lei and Jasin (2016) considers general models for on-demand pricing with reusable resources and

random demand, but they also assume deterministic service time. Besbes et al. (2019) investigate

the efficacy of constant-price policy for revenue management of reusable resources, but they assume

exponential service time. To the best of our knowledge, the pricing models with both uncertain

demand and service time have not been considered in the literature. Under practical concerns, we

consider that parameters in the demand functions and service time for processing each demand are

unknown, yielding ambiguity associated with the distributions of the two independent uncertainties.

The main contribution of the paper is twofold. First, we develop fixed-price pricing policies

using robust deterministic approximation models, which take into account ambiguous distributions

of reservation price and random service time taken by each product. We show that the deterministic

approximation approach provides good asymptotic bounds for the expected revenue under optimal

pricing policies. Second, we provide solution methods to find fixed-price policies when distributional

ambiguity of random demand and service time is modeled based on limited historical data. Through

comprehensive computational studies of diverse instances, we demonstrate that under the proposed

fixed-price policy, the robust approach yields better results in terms of revenue as compared to those

of models with fixed distributions of demand and service time. In addition, the proposed fixed-price

policy outperforms the commonly-used constant-price policy in out-of-sample tests.

The remainder of the paper is organized as follows. In Section 2, we develop a base model to

dynamically optimize products’ prices under random demand and service time. In Section 3, we

formulate a robust counterpart of the stochastic dynamic program and develop asymptotic bounds

for the expected revenue under optimal pricing policies using the approximation. In Section 4, we

formulate a robust optimization model to find fixed-price policies derived from the deterministic

approximation given a distributional ambiguity model. In Section 5, we demonstrate the perfor-

mance of the fixed-price policies on a set of instances randomly generated from real data of the

Amazon Web Services (AWS). In Section 6, we conclude the paper and propose future research
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directions.

2 Problem Description and Formulations

In this paper, we formulate a dynamic pricing problem for multiple products subject to a capacity

constraint of a single, shared resource over a finite time horizon. The setting of single resource

is relevant to most systems of cloud computing and city parking, where we do not differentiate

the types of servers and parking spaces, respectively. The consideration of finite time horizon is

appropriate given that cloud computing servers usually have finite operating time before being

maintained or turned off and parking companies update pricing strategies regularly to incorporate

new information about customer preferences. The detailed description of the considered problem

is as follow.

A service provider offers n different products to customers, and all the products share a single

type of resources. Each product i, i = 1, . . . , n, requires ci units of resource, ci ∈ Z+, for up to τmax
i

time units, τmax
i > 0. There are total C units of resources, C ∈ Z+. The problem is formulated

over a finite time horizon, t = 1, . . . , T . In each period t, there are random rti units of requests

for product i, i = 1, . . . , n, and the service provider seeks an optimal price pti within a price set

Pi ⊆ [pmin
i , pmax

i ] with 0 ≤ pmin
i ≤ pmax

i for each product i, i = 1, . . . , n, to maximize the total

revenue of all the products over the T periods. We assume that the time period is small enough

so that there is at most one product request in each period t, i.e.,
n∑
i=1

rti ≤ 1 for all t = 1, . . . , T .

Under this assumption, rti ∈ {0, 1} and the request arrival of each product i in each period t can be

considered as Bernoulli with the probability qti = r̄ti = E
[
rti
]

for all i = 1, . . . , n and t = 1 . . . , T .

The probability that there is no request arrival in period t is qt0 = 1 −
n∑
i=1

r̄ti , which is clearly

non-negative under the above assumption for all t = 1, . . . , T . The overall request arrival process

can be considered as multinomial with n+ 1 categories and T trials.

In each period t, given pti, each customer either accepts or rejects the offer based on his/her

reservation price. The amount of actual demand, di(p
t
i, t), of each product i in period t depends on

the arrival rate rti , the price pti and acceptance probability ai(p
t
i), modeled as

di(p
t
i, t) = rti · I

{
pti ≤ πi(t)

}
. (1)

Here πi(t) represents the random reservation price of the actual customer for product i at time t if

one arrives; I {•} is an indication function which returns 1 if • is true and 0 otherwise. If rti = 0,

we can set πi(t) as the random reservation price of an arbitrary customer for product i given that

the product with arrival rate rti is always 0 in this case no matter how πi(t) is set. Following the

majority of revenue management literature, we assume the same probabilistic acceptance behavior

for all customers given price offers for a particular product. More concretely, we consider a single

acceptance probability function for each product, i.e., P (p ≤ πi(t)) = ai(p) given a price offer p

for product i. In order to make sure one can reject a request right away by setting a sufficiently
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high price when there is not enough capacity of the resource, we assume that there exists a so-

called null price p̄i such that ai(p̄i) = 0. Clearly, p̄i ≥ pmax
i and the actual set of feasible prices

is P̄i = Pi ∪ {p̄i}. In general, it is difficult to know the exact acceptance probability functions.

In this paper, we assume that the acceptance probability ai(.) is unknown to the decision maker

and it belongs to an uncertainty set Uai instead. We later use statistical information to construct

these uncertainty sets (see, e.g., Bertsimas et al. (2017), Bandi and Bertsimas (2012) for how to

construct uncertainty sets using statistical analysis.)

Now, using the actual demand di(p
t
i, t), the total revenue in the period t is given by:

R(t) =

n∑
i=1

Ri(t) =

n∑
i=1

di(p
t
i, t) · pti. (2)

Note that the revenue is computed when the requests are accepted and we assume that all accepted

requests will be served until they finish, which implies that we do not need to consider whether the

requests can be served within the finite time horizon T when making accept/reject decisions. We

now compute the number of requests of product i that are still in the system at the end of period

t, t = 1, . . . , T , as follows:

Di(t) =
t∑

s=1

di(p
s
i , s) · I {τi(s) > t− s} , (3)

where τi(s) represents the random service time of the actual demand of product i in period s if

there is one. If di(p
s
i , s) = 0, we can simply assume τi(s) is the random service time of an arbitrary

demand of product i given that the product with di(p
s
i , s) is always 0 no matter how τi(s) is set.

Here an implicit assumption is that the service time of a demand request in period t is considered

from the beginning of period t+1. The random variables τi(s) follow a probability distribution with

a tail probability function βi(t) = P(τi(s) > t) for each product i, i = 1, . . . , n, and t = 0, . . . , τmax
i .

Clearly, βi(0) = 1 and βi(τ
max
i ) = 0. Similar to the acceptance probability function ai(·), we assume

that the tail probability function βi(·) of service time is unknown but belongs to an uncertainty set

Ubi .

The feasibility constraints of the problem are the following capacity constraints:

n∑
i=1

ciDi(t) ≤ C, ∀ t = 1, . . . , T. (4)

A pricing policy is feasible if the feasibility constraints are satisfied almost surely given any prob-

ability function ai(·) ∈ Uai and βi(·) ∈ Ubi . Note that these feasibility constraints will affect the

decision of whether to accept or reject of a particular request in each period t. More precisely, one

indeed needs to reject a request right away if there is not enough available resource to accommodate

that request. In this paper, we seek feasible pricing policies, which can be used to determine pti for

product i, i = 1, . . . , n, as functions of past demand and actions up to time t, t = 1, . . . , T . This

ensures the non-anticipativity property of the considered policies.

To characterize the feasible policies, let yti(τ) be the number of requests of product i appearing

in period t that have been in the system for τ time periods, τ = 0, . . . , τmax
i − 1. Under the

5



assumption that there is at most one product request per period, we have yti(τ) ∈ {0, 1} for all τ .

In addition, yti(0) = di(p
t−1
i , t − 1) for all t > 1. Suppose yti(τ) = 1 for some t < τmax

i − 1, that

product request can remain in the system at the end of period t (or the beginning of period t+ 1),

i.e., yt+1
i (τ + 1) = yti(τ), with the probability

bi(τ) = P (τi(s) > τ + 1 | τi(s) > t) =
βi(τ + 1)

βi(τ)
. (5)

Suppose that for all functions βi(·) ∈ Ubi , βi(τ) > 0 for all τ < τmax
i , and random service time are

independent. Then, there is a positive probability that the number of requests of product i that

are still in the system at the end of period t is the maximum possible value of

τmax
i −2∑
τ=0

yti(τ). To

make sure that the capacity constraints are satisfied almost surely, a request of product i needs to

be rejected immediately in period t if there is not enough capacity, i.e.,

C −
n∑
k=1

ck

τmax
k −2∑
τ=0

ytk(τ)

 < ci.

With p̄i ∈ P̄i and ai(p̄i) = 0, it is guaranteed that there is always a feasible pricing policy since

imposing the null price p̄i allows us to reject requests right away in those situations. Given the

current state Y t
i = (yti(0), . . . , yti(τ

max
i − 1)) ∈ {0, 1}τmax

i for i = 1, . . . , n, the feasible set Ai(Y t
i) of

prices can then be defined as follows:

Ai(Y t
i) =


Pi, C −

n∑
k=1

ck

τmax
k −2∑
τ=0

ytk(τ)

 ≥ ci,
{p̄i} , otherwise.

(6)

The objective of the problem is to maximize the total expected revenue E

[
T∑
t=1

n∑
i=1

Ri(t)

]
. Given

that the revenue Ri(t) only depends on the price pti and the action of the concerned customer in

period t, it is sufficient to define a feasible pricing policy as a function of the current state, i.e.,

pti(·) : {0, 1}τmax → P̄i with τmax =

n∑
i=1

τmax
i , whose domain is restricted as described in (6).

Let Fi be the set of feasible pricing policies pti(·), i = 1, . . . , n. Given a feasible pricing policy

pti(·) ∈ Fi, let Vt(Y t
1, . . . ,Y

t
n) be the total expected revenue from period t onwards given the state

Y t = (Y t
1, . . . ,Y

t
n). We can define this revenue function recursively as follows:

Vt(Y t
1, . . . ,Y

t
n) =

n∑
i=1

ai(p
t
i(Y

t)) · r̄ti · pti(Y
t)

+

n∑
i=1

ai(p
t
i(Y

t)) · r̄ti · E
[
Vt+1

(
(0,Y

t+1

1 ), . . . , (1,Y
t+1

i ), . . . , (0,Y
t+1

n )
)]

+

(
1−

n∑
i=1

ai(p
t
i(Y

t)) · r̄ti

)
· E
[
Vt+1

(
(0,Y

t+1

1 ), . . . , (0,Y
t+1

n )
)]
,

(7)
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where r̄ti = E[rti ] (as previously defined) and Y
t
i = (yti(1), . . . , ytn(τmax

i − 1)) ∈ {0, 1}τmax
i −1, i.e.,

Y t
i = (yti(0),Y

t
i), with the boundary condition VT+1(·) = 0. The first term is the expected revenue

obtained in period t given the price offers pti(Y
t). The second term is the expected revenue from

period t+ 1 onwards if the customer accepts the price offer in period t. The remaining term is the

expected revenue from period t+ 1 onwards if there is no additional service added in period t. The

state (Y
t+1
1 , . . . ,Y

t+1
n ) in period t + 1 depends on (Y t

1, . . . ,Y
t
n) and the transition probabilities

can be computed as follows given the independence of random service times:

P
(
Y
t+1
i | (Y t

i, y
t
i(τ

max
i − 1))

)
=

∏
τ∈Ti(Y t

i)

[bi(τ)]y
t+1
i (τ+1) · [1− bi(τ)]1−y

t+1
i (τ+1) , (8)

for all Y
t+1
i ≤ Y t

i, where Y t
i = (yti(0), . . . , yti(τ

max
i − 2)) ∈ {0, 1}τmax

i −1 and T (Y t
i) = {τ <

τmax
i − 1 : yti(τ) = 1}. For Y

t+1
i ∈ {0, 1}τmax

i −1 and Y
t+1
i 6≤ Y t

i, P
(
Y
t+1
i | (Y t

i, y
t
i(τ

max
i − 1))

)
is

set to be 0. The two expected values in (7) can then be computed accordingly using those transition

probabilities.

The total expected revenue is V1(0, . . . ,0), which is uncertain given that ai(·) ∈ Uai and βi(·) ∈
Ubi . We consider the maximin formulation of the problem to maximize the worst-case expected

revenue

max
pti(·)∈Fi:i=1,...,n

{
min

ai(·)∈Ua
i ,βi(·)∈Ub

i :i=1,...,n
V1(0, . . . ,0)

}
. (9)

The difficulty of this problem comes from the recursive definition of the value function Vt(·) and

it also depends on the structure of the uncertainty sets Uai and Ubi . Under the case when there is

no ambiguity in demand and service time distributions, i.e., Uai = {âi(·)} and Ubi = {β̂i(·)} for all i,

the problem can be rewritten as a dynamic programming formulation using the interchangeability

property of expectation and optimization operators (see, e.g., Wets 2002). The resulting Bellman

equation of the problem reads:

Vt(Y t
1, . . . ,Y

t
n) =

max
pi∈Ai(Y t

i):i=1,...,n

{
n∑
i=1

âi(pi) · r̄ti
(
pi + E

[
Vt+1

(
(0,Y

t+1

1 ), . . . , (1,Y
t+1

i ), . . . , (0,Y
t+1

n )
)])

+

(
1−

n∑
i=1

âi(pi) · r̄ti

)
E
[
Vt+1

(
(0,Y

t+1

1 ), . . . , (0,Y
t+1

n )
)]}

,

(10)

with the boundary condition VT+1(·) = 0. The transition probabilities are computed as in (8)

with βi(·) ≡ β̂i(·) for all i. The maximum number of feasible values of Y
t+1
i is 2|T (Y t

i)|, which

makes this dynamic programming formulation for fixed demand and service time distributions

still difficult to solve for large instances. Instead of focusing on optimal policies for (9) given

general uncertainty sets, in the next section, we shall consider a deterministic approximation of

the problem, in which random parameters are replaced by their corresponding expected values.

This deterministic approximation will be used to generate heuristic-based fixed-price policies for

the problem.
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3 Deterministic Approximation

The deterministic formulation is constructed by removing the stochastic variability of actual de-

mand and service processes following the similar approach used in revenue management literature

such as Gallego and van Ryzin (1994), Gallego and van Ryzin (1997), and Maglaras and Meissner

(2006). In each time period t, the random realized demand di(p
t
i, t) of product i is replaced by its

mean value:
E
[
di(p

t
i, t)
]

= E
[
rti · I

{
pti ≤ πi(t)

}]
= E

[
rti
]
· P
(
pti ≤ πi(t)

)
= r̄ti · ai(pti).

Similarly, the random number of requests of product i remaining in the system in each period t is

replaced by its mean

E [Di(t)] = E

[
t∑

s=1

di(p
s
i , s) · I {τi(s) > t− s}

]

=

t∑
s=1

E [di(p
s
i , s)] · P (τi(s) > t− s)

=

t∑
s=1

r̄si · ai(psi ) · βi(t− s).

The total revenue with the mean realized demand can be formulated as
T∑
t=1

n∑
i=1

r̄ti · ai(pti) · pti and

the deterministic capacity constraints are given by:

n∑
i=1

ci

(
t∑

s=1

r̄si · ai(psi ) · βi(t− s)

)
≤ C, t = 1, . . . , T.

As ai(·) ∈ Uai , i = 1, . . . , n, the total revenue is uncertain. Similarly, the capacity constraints

depend on ai(·) ∈ Uai and βi(·) ∈ Ubi for i = 1, . . . , n. Applying the robust optimization framework,

we obtain the following deterministic relaxation of (9) to maximize the worst-case total revenue

while satisfying the capacity constraints for any realization of ai(·) and βi(·), i = 1, . . . , n:

max
P

min
ai(·)∈Ua

i :i=1,...,n

T∑
t=1

n∑
i=1

r̄ti · ai(pti) · pti

s.t.
n∑
i=1

ci

(
t∑

s=1

r̄si · ai(psi ) · βi(t− s)

)
≤ C, ∀ ai(·) ∈ Uai , βi(·) ∈ Ubi , i = 1, . . . , n,

∀ t = 1, . . . , T,

pti ∈ Pi, ∀ i = 1, . . . , n, t = 1, . . . , T,

(11)

where P denotes the collection of pti, i = 1, . . . , n and t = 1, . . . , T . Note that, for this deterministic

approximation when mean values are considered for demand and service time, we only consider

pti ∈ Pi with the implicit assumption that the capacity is large enough to handle mean demand and

service time. Next, we would like to reformulate this robust formulation and in order to do so, we

make the following assumption regarding the uncertainty set Uai , i = 1, . . . , n:
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Assumption 1. Both functions ai(·) and āi(·) defined with ai(p) = min
ai(·)∈Ua

i

ai(p) and āi(p) =

max
ai(·)∈Ua

i

ai(p) respectively, for all p ∈ Pi, belong to the uncertainty set Uai for all i = 1, . . . , n.

The assumption that ai(·), āi(·) ∈ Uai as described in Assumption 1 is reasonable in general,

especially when the uncertainty set Uai is constructed from experiments historical data as discussed

later in Section 4. Now, given a fixed pricing solution p, the inner minimization objective function

of (11) can be restructured as follows:

min
ai(·)∈Ua

i :i=1,...,n

T∑
t=1

n∑
i=1

r̄ti · ai(pti) · pti =
T∑
t=1

n∑
i=1

r̄ti · min
ai(·)∈Ua

i

ai(p
t
i) · pti (12)

=

T∑
t=1

n∑
i=1

r̄ti · ai(pti) · pti, (13)

since ai(·) ∈ Uai for all i = 1, . . . , n. Similarly, the left-hand side of the capacity constraint in (11)

has its maximum value

max
ai(·)∈Ua

i :i=1,...,n

n∑
i=1

ci

(
t∑

s=1

r̄si · ai(psi ) · βi(t− s)

)

=
n∑
i=1

ci max
ai(·)∈Ua

i

(
t∑

s=1

r̄si · ai(psi ) · βi(t− s)

)

=
n∑
i=1

ci

(
t∑

s=1

r̄si · max
ai(·)∈Ua

i

ai(p
s
i ) · βi(t− s)

)

=

n∑
i=1

ci

(
t∑

s=1

r̄si · āi(psi ) · βi(t− s)

)
,

since āi(·) ∈ Uai for all i = 1, . . . , n. The deterministic relaxation of (9) can then be reformulated

as:

max
P

T∑
t=1

n∑
i=1

r̄ti · ai(pti) · pti

s.t.
n∑
i=1

ci

(
t∑

s=1

r̄si · āi(psi ) · βi(t− s)

)
≤ C, ∀βi(·) ∈ Ubi , i = 1, . . . , n,

∀ t = 1, . . . , T,

pti ∈ Pi, ∀ i = 1, . . . , n, t = 1, . . . , T.

(14)

The deterministic relaxation (14) does not take into account the stochasticity of demand and

service time, and its feasible solutions do not represent any feasible pricing policy, which needs to

satisfy the feasibility constraints (4) almost surely given actual realizations of demand and service

time. However, they can be used to construct fixed-price pricing policies, i.e., policies with state-

independent prices if there are enough capacities, following the same approach as discussed in

Gallego and van Ryzin (1994). Since both original problem and its deterministic relaxation have

the same objective of maximizing the expected revenue, an optimal solution of (14) will be chosen

9



to construct fixed-price pricing policies. Given optimal prices P ∗ of (14), a fixed-price policy H

can be defined as follows:

pt,Hi (Y t) =

{
pt,∗i , Y t ∈ YH ,
p̄i, otherwise,

(15)

for all Y t = (Y t
1, . . . ,Y

t
n) with Y t

i ∈ {0, 1}τ
max
i , i = 1, . . . , n, and t = 1, . . . , T , where YH ⊆ YF =Y t |C −

n∑
k=1

ck

τmax
k −2∑
τ=0

ytk(τ)

 ≥ ci
 is used to indicate when one should not reject requests

under the defined policy. Note that under this setting, YH can be a proper subset of YF , i.e.,

YH ( YF , which allows us to define relevant fixed-price policies used in later proofs. In general,

solving (14) is difficult and we are going to discuss its tractability in Section 4 but before that,

we shall first consider the relationship between the deterministic approximation and the original

stochastic problem.

3.1 Deterministic Revenue as an Upper Bound

Similar to Gallego and van Ryzin (1997), we shall first attempt to show that the uncertainty

stemmed from customers’ decisions and service time reduces the expected revenue that one could

achieve. More concretely, let Z∗(a,β) be the expected revenue obtained from an optimal pricing

policy of the original stochastic problem, given probability functions a = {ai(·)}i=1,...,n with ai(·) ∈
Uai and β = {βi(·)}i=1,...,n with βi(·) ∈ Ubi for all i = 1, . . . , n. In addition, let ZD be the optimal

revenue obtained from the deterministic approximation problem (14). To establish the relationship

between the deterministic revenue ZD and the expected revenues Z∗(a,β), similar to Gallego and

van Ryzin (1997), we need to consider some regularity conditions of (actual) demand functions to

guarantee the convexity of the deterministic approximation problem with respect to its decision

variables. Under the general setting with uncertain acceptance probability functions, one regularity

condition is that two upper and lower acceptance probability functions āi(·) and ai(·) are affine

for all i = 1, . . . , n. This condition indicates that uncertain acceptance probability functions are

confined in linear confidence bands, which can be considered as reasonable. When acceptance

probability functions are fixed, this condition can be further relaxed. The following proposition

shows the relationship between ZD and expected revenues obtained from optimal policies given

linear confidence bands of acceptance probability functions.

Proposition 1. Assuming that confidence bands of acceptance probability functions are linear, i.e.,

āi(·), ai(·) ∈ Uai are non-increasing affine functions, and P̄i = [pmin
i , pmax

i ] for all i = 1, . . . , n, then

min
ai(·)∈Ua

i ,βi(·)∈Ub
i :i=1,...,n

Z∗(a,β) ≤ ZD.

Proof. Let āi(p) = ᾱi · p+ γ̄i and ai(p) = αi · p+ γ
i

with ᾱ ≤ 0 and α ≤ 0. Consider an optimal

pricing policy that results in pti(Y
t) for all possible states Y t = (Y t

1, . . . ,Y
t
n) with Y t

i ∈ {0, 1}τ
max
i ,

i = 1, . . . , n, and t = 1, . . . , T . We have

E [Ri(t)] = E
[
di(p

t
i(Y

t), t) · pti(Y t)
]

= r̄ti · E
[
ai(p

t
i(Y

t)) · pti(Y t)
]
.

10



The second equality is obtained by taking expectation with respect to random request arrivals and

customer reservation price in period t, which are independent of Y t. We then have

min
ai(·)∈Ua

i ,βi(·)∈Ub
i :i=1,...,n

Z∗(a,β) ≤ Z∗(a,β) =

T∑
t=1

n∑
i=1

r̄ti · E
[
ai(p

t
i(Y

t)) · pti(Y t)
]
.

The function ai(p) · p = αi · p2 + γ
i
· p is a concave (quadratic) function in p given that αi ≤ 0 for

all i = 1, . . . , n. Applying Jensen’s inequality, we have:

min
ai(·)∈Ua

i ,βi(·)∈Ub
i :i=1,...,n

Z∗(a,β) ≤
T∑
t=1

n∑
i=1

r̄ti · ai(E
[
pti(Y

t)
]
) · E

[
pti(Y

t)
]
.

Now we have:

E [Di(t)] =

t∑
s=1

r̄si · E [ai(p
s
i (Y

s))] · βi(t− s).

The constraint (4) is satisfied almost surely. Taking the expectation, we have: E

[
n∑
i=1

ciDi(t)

]
≤ C

for all ai(·) ∈ Uai , βi(·) ∈ Ubi , and t = 1, . . . , T . Let āi(·) ∈ Uai for all i = 1, . . . , n, we then have:

n∑
i=1

ci

t∑
s=1

r̄si · E [āi(p
s
i (Y

s))] · βi(t− s) ≤ C, ∀ t = 1, . . . , T.

The function āi(·) is affine, and thus we can rewrite the above inequalities as follows:

n∑
i=1

ci

t∑
s=1

r̄si · āi(E [psi (Y
s)]) · βi(t− s) ≤ C, ∀ t = 1, . . . , T.

Finally, given that Pi = [pmin
i , pmax

i ], we have E
[
pti(Y

t)
]
∈ Pi for all i = 1, . . . , n and t = 1, . . . , T .

It shows that pti = E
[
pti(Y

t)
]
, i = 1, . . . , n, t = 1, . . . , T is a feasible solution of (14), which implies

that

min
ai(·)∈Ua

i ,βi(·)∈Ub
i :i=1,...,n

Z∗(a,β) ≤ ZD.

�

Proposition 1 shows that the optimal worst-case expected revenue is bounded by ZD. Affine

acceptance probability functions imply that random reservation prices are uniformly distributed.

The proof techniques, which are similar to those applied in Gallego and van Ryzin (1997), rely

on the concavity of the revenue function as well as the linearity of the capacity constraints, which

in turn depend on āi(·) and ai(·) for i = 1, . . . , n. When the acceptance probability function for

each product is fixed, i.e., Uai = {âi(·)}, we have: āi(·) = ai(·) = âi(·). This allows us to relax the

conditions in Proposition 1. The following corollary provides bounding results for fixed acceptance

probability functions using relaxed conditions, which turn out to be the same as the main regularity

conditions set in Gallego and van Ryzin (1997) and Maglaras and Meissner (2006). Note that we

still consider the distributional ambiguity of random service time in this corollary.
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Corollary 1. Consider the case when acceptance probability functions are fixed, i.e., Uai = {âi(·)}
for all i = 1, . . . , n. Assuming that âi(·) has an inverse function p̂i(·) with the domain Ai =

[amin
i , amax

i ] and the revenue function Ri(a) = a · p̂i(a) is concave in a for all i = 1, . . . , n, then

min
βi(·)∈Ub

i :i=1,...,n
Z∗(â,β) ≤ ZD.

Proof. Changing the decision variables from pti to ati using the inverse function p̂i(·) for i = 1, . . . , n

and t = 1, . . . , T , we obtain the following equivalent formulation of the deterministic relaxation:

max
A

T∑
t=1

n∑
i=1

r̄ti · p̂i(ati) · ati

s.t.

n∑
i=1

ci

(
t∑

s=1

r̄si · asi · βi(t− s)

)
≤ C, ∀βi(·) ∈ Ubi , i = 1, . . . , n,

∀ t = 1, . . . , T,

ati ∈ Ai, ∀ i = 1, . . . , n, t = 1, . . . , T,

(16)

where A denotes the collection of ati, i = 1, . . . , n, and t = 1, . . . , T . Similar to the arguments

used in the proof of Proposition 1 we can claim that ati = E
[
ai(p

t
i(Y

t))
]
∈ Ai for i = 1, . . . , n,

t = 1, . . . , T is a feasible solution of (16). The second inequality is then simply due to the concavity

of the revenue function Ri(a) = a · p̂i(a). �

The upper bound established in this section demonstrates the connection between the determin-

istic approximation and the original stochastic problem in terms of their optimal objective values.

In the next section, we will use it to analyze the asymptotic performance of the proposed heuristic

fixed-price policies.

3.2 Asymptotic Analysis of Heuristic Fixed-Price Policies

To analyze the asymptotic performance of fixed-price policies, we consider a sequence of problems,

indexed by θ ∈ N, in which the resource capacity is θ · C and there are rti(θ) requests for product

i = 1, . . . , n. Similar to the original unscaled problem with θ = 1, we assume that there are at most

θ requests in total in each period t, i.e.,
n∑
i=1

rti(θ) ≤ θ, and E
[
rti(θ)

]
= θ ·r̄ti . Furthermore, we assume

that we can divide each time period into θ sub-periods with rti,s being the number of requests of

product i in sub-period s within time period t such that

n∑
i=1

rti,s ≤ 1, i.e., at most one request

per sub-period, and

θ∑
s=1

rti,s = rti(θ) with E
[
rti,s

]
= r̄ti . We also assume that these requests are

independent. Under these settings, requests in each sub-period are considered exactly as requests

in each period in the original unscaled problem. These assumptions indicate that the demand

process in the original problem is duplicated to generate demand rti(θ) in the scaled problems.

Given the sequence of these problems, we will analyze their feasible pricing policies asymptot-

ically when θ → +∞. These pricing policies are used to determine price pti for each product i in
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each period t as a function of past demand and actions up to time t. To characterize the feasibility

of these pricing policies, let pti,s be the actual price in each sub-period s within time period t. We

impose the condition pti,s ∈ {pti, p̄i} for all s, which makes sure that the prices in sub-periods cannot

be changed (pti,s = pti) unless one has to reject new requests due to insufficient resources (pti,s = p̄i).

In addition to the state variables Y t
i = (yti(0), . . . , yti(τ

max
i − 1)), we need the additional state vari-

able zti,s to account for the amount of actual demand for product i in the first (s− 1) sub-periods

within the time period t, zti,s =
s−1∑
σ=1

di(p
t
i,σ, t, σ) for s ≥ 2, where di(p, t, s) = rti,s · I {p ≤ πi(t, s)} for

s = 1, . . . , θ. Here πi(t, s) is the reservation price for product i of the actual customer in sub-period

s of period t if one arrives in that sub-period. Clearly, zti,1 = 0, and the feasible set Asi (Y t
i, z

t
i,s) of

prices pti,s in each sub-period s within time period t can then be defined as follows:

A1
i (Y

t
i, z

t
i,1) =


Pi, θ · C −

n∑
k=1

ck

τmax
k −2∑
τ=0

yti(τ)

 ≥ ci,
{p̄i} , otherwise,

(17)

and

Asi (Y t
i, z

t
i,s) =


{
pti,1

}
, θ · C −

n∑
k=1

ck

ztk,s +

τmax
k −2∑
τ=0

ytk(τ)

 ≥ ci,
{p̄i} , otherwise,

for s = 2, . . . , θ. (18)

These feasible sets of prices indicate that a single price pti = pti,1 will be set for product i in period

t until new requests cannot be accepted due to insufficient resources. Finally, the total revenue in

the period t can be computed as R(t) =

n∑
i=1

Ri(t) =

n∑
i=1

θ∑
s=1

di(p
t
i,s, t, s) · pti,s with pti,s ∈ Asi (Y t

i, z
t
i,s)

as defined in (17) and (18).

We now consider the deterministic relaxation of these problems. Similar to the original setting,

given a price pti for product i in period t, the expected realized demand is E
[
rti(θ)

]
· ai(pti) =

θ · r̄ti · ai(pti). Furthermore, the expected number of requests for product i remaining in the system

in period t is θ ·
t∑

s=1

r̄si · ai(psi ) · βi(t − s). Given the uncertain functions ai(·) ∈ Uai and βi(·) ∈ Ubi

for i = 1, . . . , n, the deterministic relaxation is given by

max
P

min
ai(·)∈Ua

i :i=1,...,n

T∑
t=1

n∑
i=1

θ · r̄ti · ai(pti) · pti

s.t.
n∑
i=1

ci

(
t∑

s=1

θ · r̄si · ai(psi ) · βi(t− s)

)
≤ θ · C, ∀ ai(·) ∈ Uai , βi(·) ∈ Ubi , i = 1, . . . , n,

∀ t = 1, . . . , T,

pti ∈ Pi, ∀ i = 1, . . . , n, t = 1, . . . , T,

(19)
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which is equivalent to

max
P

θ ·
T∑
t=1

n∑
i=1

r̄ti · ai(pti) · pti

s.t.
n∑
i=1

ci

(
t∑

s=1

r̄si · āi(psi ) · βi(t− s)

)
≤ C, ∀βi(·) ∈ Ubi , i = 1, . . . , n,

∀ t = 1, . . . , T,

pti ∈ Pi, ∀ i = 1, . . . , n, t = 1, . . . , T.

(20)

where ai(·) and āi(·) are defined as mentioned previously.

Let Z∗θ (a,β) be the expected revenue obtained from the optimal policy of the θ-scaled problem

with the resource capacity θ · C and the demand rti(θ), given probability functions ai(·) ∈ Uai and

βi(·) ∈ Ubi . To establish asymptotic results, let us consider a modified pricing problem in which all

requests for product i stay in the system for the maximum duration τmax
i while the uncertainty sets

Uai , i = 1. . . . , n, remain the same. This modified problem has fixed service time for each product,

i.e., Ubi = {β̂(·)} with β̂i(·) ≡ βmax
i (·), where βmax

i (t) = 1 for all t = 0, . . . , τmax
i − 1, i = 1, . . . , n.

Let ZDD be the optimal value of the deterministic relaxation of the original unscaled modified

problem. Furthermore, let Zmθ (a) be the expected revenue obtained from the optimal policy of the

modified θ-scaled problem given probability functions ai(·) ∈ Uai . We are now ready to state the

asymptotic results under the same regularity conditions as discussed previously.

Theorem 1. Assuming that confidence bands of acceptance probability functions are linear, i.e.,

āi(·), ai(·) ∈ Uai are non-increasing affine functions, and P̄i = [pmin
i , pmax

i ] for all i = 1, . . . , n, then

ZDD = lim
θ→∞

1

θ
· min
ai(·)∈Ua

i

Zmθ (a) ≤ lim
θ→∞

1

θ
· min
ai(·)∈Ua

i ,βi(·)∈Ub
i

Z∗θ (a,β) ≤ ZD.

Proof. Let ZDθ and ZDDθ be the optimal value of the deterministic approximation of the θ-scaled

problem and the modified one with fixed service time, respectively. It is clear from (14) and (20)

that ZDθ = θ · ZD and similarly, ZDDθ = θ · ZDD. Any optimal policy of the modified θ-scaled

problem is a feasible policy of the original θ-scaled problem given that requests of product i under

the modified setting stay in the system exactly τmax
i periods, which is the maximum duration, for all

i = 1, . . . , n. We modify this policy for the original θ-scaled problem by computing the remaining

resource capacities under the assumption that all requests of product i stay τmax
i periods regardless

how service time is actually realized. Clearly, the modified policy is still feasible for the original

θ-scaled problem and the expected revenue Zθ(a,β) obtained from this policy given probability

functions ai(·) and βi(·) is the same as Zmθ (a). Thus we have:

min
ai(·)∈Ua

i :i=1,...,n
Zmθ (a) = min

ai(·)∈Ua
i ,βi(·)∈Ub

i :i=1,...,n
Zθ(a,β) ≤ min

ai(·)∈Ua
i ,βi(·)∈Ub

i :i=1,...,n
Z∗θ (a,β).

The second inequality that we need to prove then follows.
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Next, we will prove that min
ai(·)∈Ua

i ,βi(·)∈Ub
i :i=1,...,n

Z∗θ (a,β) ≤ ZDθ . Similar to the argument pre-

sented in the proof of Proposition 1, we are able to show that

pti =
1

θ

θ∑
s=1

E
[
pti,s(Y

t, zts)
]
,

for i = 1, . . . , n, t = 1, . . . , T , is a feasible solution of (20), where Y t = (Y t
1, . . . ,Y

t
n) and zts =

(zt1,s, . . . , z
t
n,s) are all possible states, due to the fact that āi(·) is affine. The concavity of the revenue

function ai(p) · p then implies min
ai(·)∈Ua

i ,βi(·)∈Ub
i :i=1,...,n

Z∗θ (a,β) ≤ ZDθ , which in turn implies the third

inequality that we need to prove. Using the same argument for the modified θ-scaled problem, we

obtain the inequality

min
ai(·)∈Ua

i :i=1,...,n
Zmθ (a) ≤ ZDDθ = θ · ZDD,

which implies

lim
θ→∞

1

θ
· min
ai(·)∈Ua

i :i=1,...,n
Zmθ (a) ≤ ZDD.

To prove the first equality, we construct a policy for the θ-scaled problem as follows. Let pt,∗i be an

optimal solution to the modified unscaled deterministic relaxation problem with Ubi = {βmax
i (·)}.

Clearly, it is also an optimal solution of the modified θ-scaled deterministic relaxation problem.

The proposed policy uses pti as the price of product i in period t and switch to p̄i if the accepted

demand of product i exceeds bθ · r̄ti · āi(p
t,∗
i )c, i.e.,

YH =

Y t |
τmax
i −2∑
τ=0

yi(τ) ≤ bθ · r̄ti · āi(p
t,∗
i )c, i = 1, . . . , n

 .

This is a feasible policy, i.e., YH ⊂ YF , given that the accepted demand in each period t is at most

θ · r̄ti · āi(p
t,∗
i ) and pt,∗i satisfies the capacity constraint in (20) with Ubi = {βmax

i (·)} for i = 1, . . . , n.

The expected revenue under this policy given probability functions ai(·) ∈ Uai is computed as

follows:

Zθ(a) =
T∑
t=1

n∑
i=1

pt,∗i · E

[
min

{
θ∑
s=1

di(p
t,∗
i , t, s), bθ · r̄

t
i · āi(p

t,∗
i )c

}]
.

The random demand di(p
t,∗
i , t, s) for each product i, i = 1, . . . , n, is Bernoulli with the probability

P
(
di(p

t,∗
i , t, s) = 1

)
= r̄ti · ai(p

t,∗
i ) = qi for all s = 1, . . . , θ. These random demand values are

independent, implying that Xi =
θ∑
s=1

di(p
t,∗
i , t, s) is binomial random variable with the mean µi =

θqi and variance σ2
i = θqi(1− qi) ≤

1

4
θ. Let di = bθ · r̄ti · āi(p

t,∗
i )c, we have:

E [min{Xi, di}] =
1

2
E [Xi + di − |Xi − di|] =

1

2
(µi + di − E [|Xi − di|]) .
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Applying Jensen’s inequality, we have: (E [|X|])2 ≤ E
[
X2
]

given the convexity of the quadratic

function f(x) = x2. Therefore, we have:

E [min{Xi, di}] ≥
1

2

(
µi + di −

√
σ2
i + (µi − di)2

)
≥ 1

2
[µi + di − (σi + |µi − di|)] = min{µi, di} −

1

2
σi.

As a result,

Zθ(a) ≥
T∑
t=1

n∑
i=1

pt,∗i ·
(

min{θ · r̄ti · ati(p
t,∗
i ), bθ · r̄ti · āti(p

t,∗
i )c} − 1

4

√
θ

)
Furthermore, taking the minimum over ai(·) ∈ Uai , i = 1, . . . , n, we have:

min
ai(·)∈Ua

i :i=1,...,n
Zmθ (a) ≥ min

ai(·)∈Ua
i :i=1,...,n

Zθ(a)

≥ min
ai(·)∈Ua

i :i=1,...,n

T∑
t=1

n∑
i=1

pt,∗i ·
(

min{θ · r̄ti · ati(p
t,∗
i ), bθ · r̄ti · āti(p

t,∗
i )c} − 1

4

√
θ

)
=

T∑
t=1

n∑
i=1

pt,∗i ·
(

min{θ · r̄ti · ati(p
t,∗
i ), bθ · r̄ti · āti(p

t,∗
i )c} − 1

4

√
θ

)
.

Taking the limit θ →∞, we have:

lim
θ→∞

1

θ
· min
ai(·)∈Ua

i :i=1,...,n
Zmθ (a) ≥ lim

θ→∞

T∑
t=1

n∑
i=1

pt,∗i ·
(

min

{
r̄ti · ati(p

t,∗
i ),

1

θ
· bθ · r̄ti · āti(p

t,∗
i )c

}
− 1

4
√
θ

)
=

T∑
t=1

n∑
i=1

pt,∗i ·
(

min
{
r̄ti · ati(p

t,∗
i ), r̄ti · āti(p

t,∗
i )
})

=

T∑
t=1

n∑
i=1

pt,∗i · r̄
t
i · ati(p

t,∗
i ) = ZDD.

Thus, the first equality is now proved, i.e., lim
θ→∞

1

θ
· min
ai(·)∈Ua

i :i=1,...,n
Zmθ (a) = ZDD. �

Similar to Corollary 1, the conditions in Theorem 1 can be relaxed when the acceptance prob-

ability functions are fixed, i.e., Uai = {âi(·)}, āi(·) = ai(·) = âi(·). The following corollary provides

asymptotic results with those relaxed conditions.

Corollary 2. Consider the case when acceptance probability functions are fixed, i.e., Uai = {âi(·)}
for all i = 1, . . . , n. Assuming that âi(·) has an inverse function p̂i(·) with the domain Ai =

[amin
i , amax

i ] and the revenue function Ri(a) = a · p̂i(a) is concave in a for all i = 1, . . . , n, then

ZDD = lim
θ→∞

1

θ
· Zmθ (â) ≤ lim

θ→∞

1

θ
· min
βi(·)∈Ub

i :i=1,...,n
Z∗θ (â,β) ≤ ZD.

Remark 1. Below we present some remarks of the above results.

i) The asymptotic setting is slightly different from those in Gallego and van Ryzin (1994), Gal-

lego and van Ryzin (1997). Instead of expanding the time horizon in the scaled problems,
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we increase the demand rates in each time period. The effect of this setting on the demand

remains the same given that sub-periods are used. The advantage of this setting is that it

allows us to efficiently analyze the additional time-dependent capacity constraints that are

necessary in our models when service time is involved. Note that these asymptotic results can

also be extended for problems with multiple resources similar to the setting in Gallego and van

Ryzin (1997). We only present here the results for single resource, which are relevant to the

applications discussed, for simplicity and readability of the paper.

ii) The asymptotic results in Theorem 1 as well as the bounds in Proposition 1 can be considered

as a generalization of the results obtained by Gallego and van Ryzin (1994), Gallego and van

Ryzin (1997) and Maglaras and Meissner (2006) when distributional ambiguity of random

demand and especially, service time is considered. Given the ambiguous demand and service

time distributions, the asymptotic results only provide an asymptotic
ZDD

ZD
-approximation

guarantee of the heuristic fixed-priced policy used in the proof, not an asymptotic optimality,

since ZDD < ZD under the general setting. We only achieve the asymptotic optimality result

if the service time is fixed, i.e., U bi = {βmax
i (·)} for all i = 1, . . . , n, which demonstrates the

added complexity of the models in the presence of random service time.

iii) The proposed regularity conditions requires linear confidence bands for uncertain acceptance

probability functions under the general settings. With fixed acceptance probability functions,

we can use the same regularity conditions as discussed in Gallego and van Ryzin (1994),

Gallego and van Ryzin (1997) and Maglaras and Meissner (2006) even with ambiguous dis-

tributions of service time to achieve the bounds and asymptotic results.

The theoretical asymptotic results developed in this section show the quality of the fixed-

price policies in the limit and they require assumptions such as the linearity of confidence bands of

acceptance probability functions. As discussed, this is due to the added complexity of our proposed

model with ambiguity in acceptance probabilities and especially, the consideration of random service

time and its ambiguous distribution as compared to those in Gallego and van Ryzin (1994), Gallego

and van Ryzin (1997) and Maglaras and Meissner (2006). However, in practice, instead of the

theoretical asymptotic results, one might focus more on how to construct fixed-price policies given

a finite time horizon based on the deterministic approximation developed in this section. The

approximation results in a non-linear optimization model (14) in general, whose complexity depends

on ai(·) and āi(·), as well as the structure of Ubi , i = 1, . . . , n. In the next section, we shall investigate

how to construct relevant uncertainty sets of probability functions ai(·) and βi(·), i = 1, . . . , n from

experiments and available historical data using data-driven approaches, which might not necessarily

result in linear confidence bands for acceptance probability functions needed for the theoretical

asymptotic results. We shall instead focus on the tractability of the deterministic approximation

problem with those uncertainty sets, which is essential to the construction of fixed-price policies

in practice. To that aim, we shall develop a tractable formulation with data-driven uncertainty

sets for the deterministic approximation problem in the next section. Furthermore, computational
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approaches including discrete price approximation will be discussed and the resulting fixed-price

policies will be compared with commonly used constant-price policies in Section 5.

4 Data-Driven Formulations

In real-world applications, practitioners often conduct experiments or customer surveys to measure

customer willingness-to-pay, i.e., the acceptance probability function ai(·) for each product i, i =

1, . . . , n (see, e.g., (Breidert et al. 2006)). Given a finite set of prices, Pdi = {pi,1, . . . , pi,Ki} ⊂
[pmin
i , pmax

i ], one can collect samples of customer decisions, i.e., whether the offered price is accepted

or rejected, for each price value pi,k. The proportion of accepted customer is an estimation for

ai(pi,k), and we assume that for p ∈ [pi,k, pi,k+1], ai(p) = ai(pi,k)+
p− pi,k

pi,k+1 − pi,k
(ai(pi,k+1)−ai(pi,k)),

i.e., the function is piecewise linear. Without loss of generality, we assume that pi,1 = pmin
i < pi,2 <

. . . < pi,Ki < pmax
i . Given this set of samples, we would like to construct an uncertainty set

Uai for the acceptance probability function ai : [pmin
i , pmax

i ] → [0, 1] under the assumption that

Pi = [pmin
i , pmax

i ]. According to (14), we would simply need ai(p) and āi(p) for all p ∈ Pi. From

data samples for each price pi,k, k = 1, . . . ,Ki, we can compute nominal values of the acceptance

probability, denoted by âi(pi,k). The lower and upper bounds, ai(pi,k) and āi(pi,k), can be set as

confidence intervals. For the rest of this paper, we set āi(pi,k) and ai(pi,k) according to Wilson’s

confidence interval (see Wilson and Wilson 1927), specified as:

1

1 + 1
mz

2
UL

[
âi(pi,k) +

1

2m
z2
UL ± zUL

√
1

m
âi(pi,k)(1− âi(pi,k)) +

1

4m2
z2
UL

]
,

where m is the number of in-sample instances, UL represents an uncertainty level, such that zUL

is the 1
2(1 + UL) quantile of a standard Normal distribution. (To ensure that āi(pi,k) and ai(pi,k)

correspond to real distributions, we set āi(0) = ai(0) = 1.) For example, for a 95% uncertainty

level, 1
2(1 + UL) = 0.975 and zUL = 1.96. According to Agresti and Coull (1998), the Wilson’s

confidence interval performs better than other types of confidence intervals, especially in terms

of coverage probabilities in general settings. Given a vector a = (a1, . . . , aKi) ∈ [0, 1]Ki , we can

construct fa(·), the piecewise linear function from [pmin
i , pmax

i ] to [0, 1] with Ki− 1 pieces such that

fa(pi,k) = ak for all k = 1, . . . ,Ki. In this paper, we use fa(·) to define the uncertainty set Uai as

follows:

Uai = {fa(·) | ak ∈ [ai(pi,k), āi(pi,k)], k = 1, . . . ,Ki}. (21)

Given this uncertainty set, it is clear that two functions ai and āi required in (14) are fai
and fāi ,

respectively, where ai,k = ai(pi,k) and āi,k = āi(pi,k) for all k = 1, . . . ,Ki. In Figure 1 we show

an example of the piecewise linear acceptance function â and the corresponding ā and a as dashed

lines.

Next, we model uncertainty sets of tail probabilities βi(·) of random service time based on the

idea of statistical analysis of the empirical distribution function F̂i(·) (or equivalently, the empirical

tail probability function β̂i(·) = 1− F̂i(·)) given the historical data of service time. The uniform or
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Figure 1: An example of piecewise linear â(·), ā(·) and a(·)

Kolmogorov distance dK(F̂i, Fi) between F̂i and Fi,

dK(F̂i, Fi) = sup
t∈[0,+∞)

∣∣∣F̂i(t)− Fi(t)∣∣∣ , (22)

is first studied by Kolmogorov (see for example, Shiryayev (1992)), to show the convergence of the

empirical distribution function F̂i to Fi with the convergence rate of 1/
√
Ni, where Ni is the number

of data samples. More specifically, it is shown by Massart (1990) that P
(√

Ni · dK(F̂i, Fi) > λ
)
≤

2e−2λ2 for λ > 0. Similarly, the Kantorovich-Rubinstein or Wasserstein distance dW (F̂i, Fi) between

F̂i and Fi,

dW (F̂i, Fi) =

∫ +∞

t=0

∣∣∣F̂i(t)− Fi(t)∣∣∣dt, (23)

is analyzed by del Barrio et al. (1999), which show the convergence of
√
Ni · dW (F̂i, Fi). Fournier

and Guillin (2015) show that P
(√

Ni · dW (F̂i, Fi) > λ
)
≤ Ce−cλ2 , where C and c are some positive

constants, for Ni > λ > 0 under some technical conditions. Based on these convergence results and

given the fact that
∣∣∣F̂i(x)− Fi(x)

∣∣∣ =
∣∣∣β̂i(x)− βi(x)

∣∣∣ for all x ≥ 0, we can now construct an uncer-

tainty set for βi based on the Kolmogorov and Wasserstein distance measures with some indication

of probabilistic guarantee (Bertsimas et al. 2017). For each product i, let τmax
i be the maximum

service time, which could be determined from historical data. Specifically, for our interested ap-

plications such as cloud computing and car parking, τmax
i can be set by service providers, and the

value may depend on the usage time of past orders, service cost, and the common standard in the

industry. Given the discretized time horizon, we are interested in βi(t) for t = 1, . . . , τmax
i , knowing

that βi(τ
max
i + 1) = 0 and βi(0) = 1. The two distances can be computed (approximately) with

discretized time points

dK(F̂i, Fi) ∼= max
t=1,...,τmax

i

∣∣∣F̂i(t)− Fi(t)∣∣∣ = max
t=1,...,τmax

i

∣∣∣β̂i(t)− βi(t)∣∣∣ ,
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and

dW (F̂i, Fi) ∼=
τmax
i∑
t=1

∣∣∣F̂i(t)− Fi(t)∣∣∣∆t =

τmax
i∑
t=1

∣∣∣β̂i(t)− βi(t)∣∣∣ .
The uncertainty set Ubi can then be constructed using the following constraints:∣∣∣βi(t)− β̂i(t)∣∣∣ ≤ ΓKi , t = 1, . . . , τmax

i , (24)

τmax
i∑
t=1

∣∣∣βi(t)− β̂i(t)∣∣∣ ≤ ΓWi , and (25)

0 ≤ βi(t) ≤ βi(t− 1) ≤ 1, t = 1, . . . , τmax
i , (26)

where ΓKi and ΓWi can be set as functions of
√
Ni, where Ni is the number of data samples, to make

sure these constraints cover all historical data with high probability. For example, the violation

probability of each constraint (24) can be bounded by a small ε > 0 if ΓKi is approximately set to√
−1/(2Ni) ln(ε/2) given the probabilistic inequalities mentioned previously. Note that constraints

(26) ensure that βi(·) is a tail probability distribution.

We are now ready to reformulate (11) given these proposed uncertainty sets under the assump-

tion that pi ∈ Pi = [pmin
i , pmax

i ] for i = 1, . . . , n.

Proposition 2. Given the proposed uncertainty sets Uai and Ubi , the robust deterministic relaxation

problem (11) is equivalent to

max
P

T∑
t=1

n∑
i=1

r̄i(t)

(
Ki−1∑
k=1

(pi,k+1 − pi,k) (ai(pi,k+1)− a(pi,k)) · ν2
i (t, k)+ (27a)

Ki−1∑
k=1

pi,kai(pi,k) · ζi(t, k) + [pi,kai(pi,k+1) + pi,k+1ai(pi,k)− 2pi,kai(pi,k)] · νi(t, k)

)
(27b)

s.t.
n∑
i=1

ci

(
r̄i(t)

(
Ki−1∑
k=1

āi(pi,k) · ζi(t, k) + (āi(pi,k+1)− ā(pi,k)) · νi(t, k)

)
+ (27c)

ΓWi wi(t) + Γ+
i (s)y+

i (t, s) + Γ−i (s)y−i (t, s) +

τi(t)∑
s=1

β̂i(s)
[
x+
i (t, s)− x−i (t, s) + y+

i (t, s)− y−i (t, s)
] ≤ C, ∀ t = 1, . . . , T, (27d)

qi(t, s) = r̄i(t− s)āi(pi(t− s)), ∀ t = 1, . . . , T, s = 1, . . . , τi(t), (27e)[
x+
i (t, s)− x−i (t, s)

]
+
[
y+
i (t, s)− y−i (t, s)

]
− zi(t, s) + zi(t, s− 1) ≥ qi(t, s),

∀ t = 1, . . . , T, s = 1, . . . , τi(t), (27f)

wi(t) ≥ x+
i (t, s) + x−i (t, s), ∀ t = 1, . . . , T, s = 1, . . . , τi(t), (27g)

Ki−1∑
k=1

ζi(t, k) = 1, ∀i = 1, . . . , n, t = 1, . . . , T, k = 1, . . . ,Ki − 1 (27h)

νi(t, k) ≤ ζi(t, k), ∀i = 1, . . . , n, t = 1, . . . , T, k = 1, . . . ,Ki − 1 (27i)
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wi(t) ≥ 0, ∀t = 1, . . . , T, i = 1, . . . , n (27j)

x+
i (t, s), x−i (t, s), y+

i (t, s), y−i (t, s), zi(t, s) ≥ 0, zi(t, 0) = zi(t, τi(t)) = 0,

∀ t = 1, . . . , T, i = 1, . . . , n, s = 1, . . . τi(t), (27k)

ζi(t, k) ∈ {0, 1}, νi(t, k) ∈ [0, 1], ∀ i = 1, . . . , n, t = 1, . . . , T, k = 1, . . . ,Ki − 1, (27l)

where τi(t) = min{t − 1, τmax
i }, Γ+

i (t) = min{1 − β̂i(t),ΓKi ,ΓWi } and Γ−i (t) = min{β̂i(t),ΓKi ,ΓWi }
for t = 1, . . . , τmax

i .

Proof. As previously discussed, the robust deterministic relaxation problem (11) can be rewritten

as in (14) or equivalently,

JDr = max
P

T∑
t=1

n∑
i=1

r̄i(t)ai(pi(t))pi(t)

s.t.

n∑
i=1

ci

(
r̄i(t)āi(pi(t)) + max

βi(·)∈Ub
i

t−1∑
s=1

r̄i(s)āi(pi(s))βi(t− s)

)
≤ C, ∀ t = 1, . . . , T,

pi(t) ∈ [pmin
i , pmax

i ], ∀ i = 1, . . . , n, t = 1, . . . , T,

given the separability of the uncertainty sets Ubi , i = 1, . . . , n. The main constraint involves the

following optimization problem:

max
βi(·)∈Ub

i :i=1,...,n

τi(t)∑
s=1

qi(t, s)βi(s),

where τi(t) = min{t−1, τmax
i } and qi(t, s) = r̄i(t−s)āi(pi(t−s)) for s = 1, . . . , τi(t). The setting of

τi(t) is appropriate given the fact that if t ≥ τmax
i + 1, we only need to consider s ≥ t− τmax

i since

βi(s) = 0 for all s ≥ τmax
i + 1. On the other hand, if t < τmax

i + 1, variables βi(s) for s = t, . . . , tmax
i

can be set to be the nominal values β̂i(s) without affecting the optimal objective value. Specifying

constraints proposed for Ubi , we have

max

τi(t)∑
s=1

qi(t, s)βi(s)

s.t.

τi(t)∑
s=1

∣∣∣βi(s)− β̂i(s)∣∣∣ ≤ ΓWi ,

βi(s) ≤ β̂i(s) + Γ+
i (s), ∀ s = 1, . . . , τi(t),

βi(s) ≥ β̂i(s)− Γ−i (s), ∀ s = 1, . . . , τi(t),

βi(s)− βi(s+ 1) ≥ 0, ∀ s = 1, . . . , τi(t)− 1,

where Γ+
i (s) = min{1−β̂i(s),ΓKi ,ΓWi } and Γ−i (s) = min{β̂i(s),ΓKi ,ΓWi } for s = 1, . . . , τi(t) as men-

tioned previously. These modified parameters guarantee that 0 ≤ βi(s) ≤ 1 for all s = 1, . . . , τi(t).

We define an auxiliary variable γi(s) for replacing each
∣∣∣βi(s)− β̂i(s)∣∣∣, and reformulate the
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above model as a linear program:

max

τi(t)∑
s=1

qi(t, s)βi(s) (28a)

s.t.

τi(t)∑
s=1

γi(s) ≤ ΓWi , (28b)

βi(s)− γi(s) ≤ β̂i(s), ∀ s = 1, . . . , τi(t), (28c)

βi(s) + γi(s) ≥ β̂i(s), ∀ s = 1, . . . , τi(t), (28d)

βi(s) ≤ β̂i(s) + Γ+
i (s), ∀ s = 1, . . . , τi(t), (28e)

βi(s) ≥ β̂i(s)− Γ−i (s), ∀ s = 1, . . . , τi(t), (28f)

βi(s)− βi(s+ 1) ≥ 0, ∀ s = 1, . . . , τi(t)− 1, (28g)

Taking the dual of formulation (28), for each product i and time t, we obtain:

min ΓWi wi +

τi(t)∑
s=1

β̂i(s)
[
x+
i (s)− x−i (s)

]
+ β̂i(s)

[
y+
i (s)− y−i (s)

]
+ Γ+

i (s)y+
i (s) + Γ−i (s)y−i (s)

s.t.
[
x+
i (s)− x−i (s)

]
+
[
y+
i (s)− y−i (s)

]
− zi(s) + zi(s− 1) ≥ qi(t, s), ∀ s = 1, . . . , τi(t),

wi ≥ x+
i (s) + x−i (s), ∀ s = 1, . . . , τi(t),

wi, x
+
i (s), x−i (s), y+

i (s), y−i (s), zi(s) ≥ 0, zi(0) = zi(τi(t)) = 0,

where dual variables wi, x
+
i (s), x−i (s), y+

i (s), y−i (s), zi(s) correspond to constraints (28b), (28c),

(28d), (28e), (28f), and (28g), respectively. The dual constraints are associated with variables

βi(s) and γi(s) for all s = 1, . . . , τi(t) of each product i in period t, for i = 1, . . . , n and t = 1, . . . , T .

Finally, we rewrite the robust deterministic relaxation problem as

max
P

T∑
t=1

n∑
i=1

r̄i(t)pi(t)ai(pi(t)) (29a)

s.t.
n∑
i=1

ci

r̄i(t)āi(pi(t)) + ΓWi wi(t) + Γ+
i (s)y+

i (t, s) + Γ−i (s)y−i (t, s) +

τi(t)∑
s=1

β̂i(s)
[
x+
i (t, s)− x−i (t, s) + y+

i (t, s)− y−i (t, s)
] ≤ C, ∀ t = 1, . . . , T, (29b)

qi(t, s) = r̄i(t− s)āi(pi(t− s)), ∀ t = 1, . . . , T, s = 1, . . . , τi(t), (29c)[
x+
i (t, s)− x−i (t, s)

]
+
[
y+
i (t, s)− y−i (t, s)

]
− zi(t, s) + zi(t, s− 1) ≥ qi(t, s),

∀ t = 1, . . . , T, s = 1, . . . , τi(t), (29d)

wi(t) ≥ x+
i (t, s) + x−i (t, s), ∀ t = 1, . . . , T, s = 1, . . . , τi(t), (29e)

wi(t) ≥ 0, ∀t = 1, . . . , T, i = 1, . . . , n (29f)

x+
i (t, s), x−i (t, s), y+

i (t, s), y−i (t, s), zi(t, s) ≥ 0, zi(t, 0) = zi(t, τi(t)) = 0,

∀ t = 1, . . . , T, i = 1, . . . , n, s = 1, . . . τi(t), (29g)

pi(t) ≥ 0, ∀ i = 1, . . . , n, t = 1, . . . , T, (29h)
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Recall the piecewise linear assumption of the acceptance probability function. For each i =

1, . . . , n, t = 1, . . . , T , we define binary decision variables ζi(t, k), such that ζi(t, k) = 1 if the price

pti lies in [pi,k, pi,k+1], and ζi(t, k) = 0 if not, for each k = 1, . . . ,Ki − 1. We have:

Ki−1∑
k=1

ζi(t, k) = 1

for all i = 1, . . . , n. We also define continuous variables ηi(t, k) ∈ [0, 1], for i = 1, . . . , n, t =

1, . . . , T, k = 1, . . . ,Ki − 1, to compute the value of pti using a convex combination of two end

points of the interval k assuming that ζi(t, k) = 1. We can then compute pti and ai(p
t
i), and the

expected revenue as follows:

pti =

Ki−1∑
k=1

ζi(t, k) · [pi,k + (pi,k+1 − pi,k) · ηi(t, k)] , (30)

ai(p
t
i) =

Ki−1∑
k=1

ζi(t, k) · [ai(pi,k) + (ai(pi,k+1)− a(pi,k)) · ηi(t, k)] , (31)

and

ptia(pti) =

Ki−1∑
k=1

ζi(t, k) · [pi,k + (pi,k+1 − pi,k) · ηi(t, k)] · [ai(pi,k) + (ai(pi,k+1)− a(pi,k)) · ηi(t, k)] .

(32)

Given that ζi(t, k) ∈ {0, 1} and ηi(t, k) ∈ [0, 1], we can linearize the above formulation with a

new decision variable νi(t, k) ∈ [0, 1] to replace ζi(t, k) · ηi(t, k) using the additional constraint

νi(t, k) ≤ ζi(t, k) for all i = 1, . . . , n, t = 1, . . . , T, k = 1, . . . ,Ki − 1. We then have:

pti =

Ki−1∑
k=1

pi,k · ζi(t, k) + (pi,k+1 − pi,k) · νi(t, k), (33)

ai(p
t
i) =

Ki−1∑
k=1

ai(pi,k) · ζi(t, k) + (ai(pi,k+1)− a(pi,k)) · νi(t, k), (34)

and

ptia(pti) =

Ki−1∑
k=1

pi,kai(pi,k) · ζi(t, k) + [pi,kai(pi,k+1) + pi,k+1ai(pi,k)− 2pi,kai(pi,k)] · νi(t, k)+

Ki−1∑
k=1

(pi,k+1 − pi,k) (ai(pi,k+1)− a(pi,k)) · ν2
i (t, k).

(35)

Now, we can substitute ai(p
t
i) from (34) to (27d) and (27e) as well as ptia(pti) from (35) to (29)

with additional decision variables ζi(t, k) ∈ {0, 1} and νi(t, k) ∈ [0, 1] and additional constraints,
Ki−1∑
k=1

ζi(t, k) = 1 and νi(t, k) ≤ ζi(t, k) for all i = 1, . . . , n, t = 1, . . . , T, k = 1, . . . ,Ki− 1 to get the

final formulation. �

Remark 2. The choice of additional decision variables ζi(t, k) and ηi(t, k) (and νi(t, k)) maintains

the concavity of the objective function in terms of these new decision variables given the mono-

tonicity of the acceptance probability functions. It shows that the resulting formulation (27) is a
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mixed-integer quadratic programming (MIQP) problem, whose continuous relaxation is convex. The

problem can be solved by branch-and-bound methods with a convex sub-problem at each node.

5 Numerical Studies

In this section, we consider a cloud computing service pricing application, and use public available

data by the Amazon Web Services (AWS), which is recognized as “a collection of cloud computing

services that make up the on-demand computing platform offered by Amazon.com,” to generate

all the instances to test our approaches. Al-Roomi et al. (2013), Cheng et al. (2016), Xu and

Li (2013), Chen et al. (2019) made recent progress on heuristic-based cloud computing pricing

strategies, where the authors also summarize different pricing schemes companies use in practice.

We investigate the proposed distributionally robust fixed-price policy with YH = YF and compare

it with common pricing strategies such as constant-price policies. We use Python 2.7 and Gurobi

7.0 for solving all the optimization models. The solver terminates when the optimality gap reaches

0.01% or the solving time reaches one hour. We perform all the tests on a 2.2 GHz Intel Core i7

CPU with 16GB RAM.

5.1 Experimental Setup

We arbitrarily select three products, named “m1.small,” “c1.medium,” and “m1.large,” from the

complete list of Amazon Elastic Compute Cloud (EC2) products (see Javadi et al. 2013). We

extract the resource (storage) and the mean price information from Table 1 in Javadi et al. (2013),

and the mean and standard deviation of service time from Table 5 in the same literature. Also, in

Table 5 we observe that the demand for these three products are 3278, 3642 and 2033, respectively,

so follow the proportion, we assume that the mean arrival probabilities are 0.32, 0.36 and 0.20,

respectively. All the information are presented in Table 1.

Table 1: Parameters of three AWS products from Javadi et al. (2013)

Product i m1.small c1.medium m1.large

Storage (GB) ci 160 350 850

Mean arrival (per period) r̄i(t) 0.32 0.36 0.20

On-demand price (in cent) ηi 10 20 40

Mean of service time (in period) µi 22.2 20.0 35.8

Std of service time (in period) σi 35.3 20.9 186.0

In each period t, we generate samples of the random service demand ri(t) of the three products

by following a categorical distribution: 32% probability for Product 1, 36% probability for Product

2, 20% probability for Product 3, and 12% probability for non-arrival. (The values are presented

in the Row “Mean arrival (per period)” in Table 1.) We generate i.i.d. samples of πi(t), the

reservation price, by letting πi(t) = ρi(t)εi(t), where ρi(t) ∼ Uniform[0.2, 1.8] is a scale parameter,

and εi(t) ∼ Exp(ηi) follows a commonly used Exponential distribution (for acceptance probabilities)
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with parameters ηi being 10, 20, and 40 cents as the on-demand prices of the three products in

Table 1. The exponential reservation price corresponds to exponential acceptance probability,

which is common in dynamic pricing and economic literature, e.g., (Gallego and van Ryzin 1994).

The random scale parameter is used to represent the distributional ambiguity to some extent

with deviations from the commonly used Exponential distribution. Similarly, to generate random

samples of the service time τi(t), we consider the commonly used Log-Normal distributions in the

appointment scheduling literature, and set τi(t) = νi(t)Wi(t), where νi(t) ∼ Uniform[0.2, 1.8] scales

the realizations of the random variable Wi(t) ∼ Log-Normal(µi, σi), with µi and σi being the means

and standard deviations of the service durations of product i in Table 1. The log-normal distribution

fits well to service time, see (Gualandi and Toscani 2018). In our computational studies, we set

τmax
i = 40 and truncate all the service time values that are larger than 40. For each product i, we

set ai(·) as a piecewise linear function with five intervals, which are evenly distributed over interval

[0, 3ηi]. The nominal distribution of reservation price and service time are then constructed using

5000 i.i.d. samples of the random variables ri(t), πi(t), and τi(t). We use T = 100 periods in

all our instances. We use 99% uncertainty level for the reservation price distribution. Given the

numbers of orders of three product types in the 5000 samples, we set ΓK = 0.04 for all products

so that approximately, the violation probability of each constraint (24) is less than 1%. We set

ΓW = 5ΓK = 0.20 for all products. Note that, experimentally, we did vary the ratio ΓW /ΓK in a

wide range from 5 to 25 and results are not significantly affected by the change.

We vary the total capacity C as 1500GB, 2500GB and 3500GB shared by all three products

over the finite time horizon. Note that when C = 3500GB, the capacity is in fact unlimited, as the

optimal prices for all periods are the same. We use C = 1500GB and C = 2500GB to represent

moderate and tight capacity limits, respectively. Under these two capacity settings which reflect

situations usually faced by small companies with limited resources, the optimal prices are time-

varying and we shall demonstrate that the resulting policy is better than the common constant-price

policies.

5.2 Computational Results

To construct fixed-price pricing policies, we need to solve the deterministic approximation problem.

In particular, we solve instances of Model (27) directly using an optimization solver Gurobi. Table

2 shows the computational results, where the “Optimality Gap” is provided by Gurobi solver at

the end of the one-hour computational time limit.

Table 2: Optimality gaps and best objective values for different MIQP instances

C = 1500GB C = 2500GB C = 3500GB

Best Obj. Value 453.70 534.12 571.27

Optimality Gap 14.50% 27.05% 25.54%

The results in Table 2 show that the optimality gap obtained from the Gurobi solver is more
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than 14% for all the instances we compute. It indicates that even the convex continuous relaxation

of the MIQP formulation in (27) is very difficult to optimize. Given this computational drawback,

we aim to develop an approximation model with better computational performance. Motivated by

the idea of discrete prices in Gallego and van Ryzin (1994), we now consider the pricing problem

with discrete prices, which can be considered as an approximation to Model (27) by discretizing

the continuous prices. This can be well justified since in practice, prices are usually not be set

arbitrarily but belong to a set of rounded prices. (For example, one can round prices to 0.01-cent

intervals when using this approximation.) The model with discrete prices can be reformulated as a

mixed-integer linear programming (MILP) problem instead of an MIQP formulation as Model (27).

The details of the model with discrete prices are presented in Appendix A as Model (A-1). We

next evaluate the performance of this discrete price approximation both in terms of computational

efficiency and the quality of its solutions.

5.2.1 Performance of Discrete Price Approximation

To investigate the performance of the model with discrete prices as compared to that of Model (27),

we discretize the continuous prices with N price choices for each product, where N varies. The

discrete prices are evenly distributed over the interval [0, 3ηi], and the corresponding acceptance

probabilities are computed from the original continuous acceptance probability functions. In Figure

2, we show acceptance probabilities of 20 discrete prices obtained from the discretization of the

acceptance probability functions previously shown in Figure 1.
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Figure 2: An example of discretized â(·), ā(·) and a(·) with 20 price points

We report the computational times to solve instances of Model (A-1) whenN varies fromN = 10

to N = 100 in Table 3. It shows that the model with discrete prices can be solved to optimality
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(with optimality gap below 0.01%) within the time limit with the maximum solving time of less

than 40 seconds. It shows that the discrete price approximation is much more computationally

efficient than the original MIQP model (27).

Table 3: Computational times for Model (A-1) with different numbers of discrete prices

N 10 20 50 100

Average time (sec) 11.43 12.42 20.39 38.90

Maximum time (sec) 16.91 18.35 33.56 65.44

The performance of Model (A-1) is compared to that of Model (27) using the ratio of their

objectives, ZN/Z, where ZN is the optimal objective value of instances with N discrete prices and

Z is the best objective value achieved for instances of Model (27). Figure 3 shows these ratios for

different instances when N is increased from 10 to 100. We can see that the model with discrete

prices approximate well the model with continuous prices with the ratios ranging from 99.50% (for

N = 10) to 102.69% with better solutions (for N = 100). The ratios almost stay the same for

N > 50, which shows the discretization with N = 100 is good enough for these instances. In

practice, 100 price choices are reasonable for the ranges of prices considered in these instances. It

shows that in terms of the quality of solutions, the discrete price approximation with practically

enough price choices also performs well as compared to the original MIQP model.
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Figure 3: Objective ratios between Model (A-1) and Model (27) for different instances

Given the performance of the discrete price approximation in terms of both computational

efficiency and solution quality, we are going to use Model (A-1) with N = 100 for numerical results

for the rest of this section. Before discussing the performance of the proposed pricing policy, we

briefly analyze the prices obtained from the deterministic approximation.
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5.2.2 Price Dynamics from Deterministic Approximation

Solving the deterministic approximation problem will provide us with the optimal prices pt,∗i for

all i = 1, . . . , n and t = 1, . . . , T . In Figure 4 we show the price dynamics, i.e., the sequences

{pt,∗i }t=1,...,T of optimal prices for different products i = 1, . . . , n, under different time horizons

when C = 1500GB. When T ranges from 40 to 100, the price solutions are generally consistent for

the early stage, which implies the effect of finite time horizons is limited in these numerical tests.
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Figure 4: The price dynamics when T ranges from 40 to 100

Figure 5: The price dynamics for C = 1500GB, C = 2500GB, and C = 3500GB

In Figure 5, we fix T = 100 and show the price dynamics under different capacity constraints.

As the capacity increases, the prices lower down and become smoother. For C = 3500, we could see

that the prices stay unchanged during the whole time horizon, which indicates that the capacity is
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unlimited. These results demonstrate the effect of capacity on the proposed model in which some

capacities should be reserved for demand in later periods by setting appropriate prices in early

periods to make sure the revenue is maximized.

5.2.3 Nominal vs. Robust Policy Performance

Our proposed models consider the ambiguity of acceptance probabilities and distributions of random

service time. Given the parametric uncertainty sets developed in Section 4, the nominal model with

fixed acceptance probabilities and service time distributions can be defined with UL = 0% and

ΓK = ΓW = 0. We analyze the effect of distributional ambiguity by compare the results obtained

from the nominal model with fixed acceptance probabilities and service time distributions and those

of robust ones for which distributional ambiguity is considered. We set UL = 99%, ΓK = 0.04 and

ΓW = 0.20 for the uncertainty sets used in the robust model. For out-of-sample tests, we uses

potential worst-case distributions to generate the testing samples, i.e., the reservation prices are

sampled by using ai(·) and the service time values are generated by using the optimal solution βi(·)
of (28) at t = T , where the parameters qi(t, s) = r̄i(t − s)āi(pi(t − s)) are computed based on the

optimal solution of (A-1).

Table 4: Comparison of policies obtained from robust and nominal models under different capacity

limits

C = 1500GB C = 2500GB C = 3500GB

Robust Nominal Robust Nominal Robust Nominal

Objective ZD 493.21 556.13 548.52 616.87 571.17 622.41

Mean Revenue ZW 320.23 316.70 400.39 385.17 475.67 481.1544

Table 4 shows ZD, the optimal objectives of the deterministic approximations, and ZW , the

mean revenues obtained from out-of-sample tests using fixed-price policies for both nominal and

robust models. The robust model yields smaller optimal objective values as it produces more

conservative pricing solutions to hedge against the worst case. Regarding the mean revenue, when

the capacity is limited (C = 1500GB and C = 2500GB), the robust model outperforms the nominal

model in the out-of-sample test. It shows that the consideration of distribution ambiguity enhances

the fixed-price policies in these instances with limited capacity. On the other hand, when the

capacity is unlimited (C = 3500GB), the fixed-price policy obtained from nominal model performs

better. One explanation could be that when the capacity is unlimited, the distributional ambiguity

of acceptance probabilities does not have much impact on accept-or-reject decisions of customers

given the simple pricing policy based on (constant) greedy prices.

Figure 6 shows the histograms of random revenues obtained from fixed-price policies using

results of both nominal (UL = 0%,ΓK = 0,ΓW = 0) and robust (UL = 99%,ΓK = 0.04,ΓW = 0.20)

models when C = 2500GB in the out-of-sample test. The random revenue obtained from the robust

model has lower frequencies for all low revenue intervals (< 400), while having higher frequencies
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Figure 6: Histograms of random revenues from the out-of-sample test with C = 2500GB

for all the high revenue intervals (> 400). The plots show that robust setting results in higher

revenues systematically in these tests.

5.2.4 Fixed-Price vs. Constant-Price Policy Performance

In this section, we compare our proposed fixed-price policy with the common constant-price policy

with the same out-of-sample test addressed in Section 5.2.3. For constant-price policy, we solve

Model (A-1) with one additional constraint that ui(t, k) = ui(0, k) for all t. For both formulation,

we use the same set of parameters as mentioned above (UL=99%, ΓK = 0.04 and ΓW = 0.20).

Table 5: Comparison of fixed-price (F-P) and constant-price (C-P) policies under different capacity

limits

C = 1500GB C = 2500GB C = 3500GB

F-P C-P F-P C-P F-P C-P

Objective ZD 493.21 449.34 548.52 546.21 571.17 571.17

Mean Revenue ZW 320.23 315.46 400.39 400.14 475.67 475.67

In Table 5 we show the objective values and the mean revenues obtained from the two pricing

policies in the out-of-sample test under different capacity limits. When the capacity is low, the

fixed-price policy has a clear advantage, but such advantage is reduced when the capacity increases.

When C = 3500GB, the solutions from both policies are the same. In Figure 7 we show histograms

of random revenues obtained from these two pricing policies in the out-of-sample test with C =
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1500GB. These results show that the fixed-priced policies outperform the common constant-price

policies when the capacity is limited and they should be adopted under these circumstances.
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Figure 7: Histogram of random revenues from the out-of-sample test with C = 1500GB

6 Conclusion and Future Research

In this paper, we investigate a new revenue management problem, where we dynamically determine

prices for multiple products sharing fixed capacities and aim to maximize the expected revenue over

a finite horizon. Both demand quantities of each product and the service time for completing each

demand arrival are random, inspired by the emerging cloud computing industry, where prices

for different cloud computing products are updated dynamically to meet the random demand

and each demand unit takes random computing time on the servers. Moreover, we recognize the

distributional ambiguity of the distributions of the two uncertainties, for which we formulate robust

optimization models to guarantee the worst-case revenue for any values of the two uncertainties

realized in designed uncertainty sets based on data. Via testing instances generated based on data

of the AWS, we demonstrate the computational efficacy of the fixed-price policies obtained from

the robust approach and compare its results with those from the nominal model under various

parameter settings. In general, the robust approach yields better average revenue in the out-of-

sample tests under limited resource capacity. We also demonstrate that under limited resource

capacity, the proposed fixed-priced policies perform better than the commonly-used constant-price

policies in out-of-sample tests, which shows the relevance of our approach.

For future research, one direction is to consider distributionally robust or robust continuous-time

control and pricing models for the proposed revenue management problem with relevant uncertainty
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set design to reflect the practical applications more closely.
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APPENDIX

A Reformulation of Model (14) With Discrete Prices

Consider the case when every product has a discrete set of allowable prices and for notation sim-

plicity, let Pi = Pdi , ∀i = 1, . . . , n. We define binary variables ui(t, k) ∈ {0, 1} for all t = 1, . . . , T ,

k = 1, . . . ,Ki to model the pricing decisions, such that ui(t, k) = 1 if the price pti is set to pi,k in

period t, and ui(t, k) = 0 otherwise.
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The deterministic model (14) can be reformulated as follows:

max

T∑
t=1

n∑
i=1

r̄ti

Ki∑
k=1

ai(pi,k)pi,kui(t, k) (A-1a)

s.t.

n∑
i=1

ci

(
r̄ti

Ki∑
k=1

ai(pi,k)ui(t, k) + max
βi(·)∈Ub

i

t−1∑
s=1

r̄si

Ki∑
k=1

āi(pi,k)ui(s, k)βi(t− s)

)
≤ C, ∀ t = 1, . . . , T, (A-1b)

Ki∑
k=1

ui(t, k) = 1, ∀ i = 1, . . . , n, t = 1, . . . , T, (A-1c)

ui(t, k) ∈ {0, 1}, ∀ i = 1, . . . , n, k = 1, . . . ,Ki, t = 1, . . . , T. (A-1d)

The additional constraints (A − 1c) of binary decision variables ui(k, t) ensure that we select one

price for each product in each period from the discrete allowable price sets. Here we only need

to compare Ki values, ai(pi,k) for k = 1, . . . ,Ki, instead of optimizing over the functions ai(·) for

i = 1, . . . , n.

Proposition 3. When Pi = Pdi , given the proposed uncertainty sets Uai , Ubi , the robust determin-

istic relaxation problem (11) with discrete prices can be reformulated as follows:

max

T∑
t=1

n∑
i=1

r̄i(t)

Ki∑
k=1

pi,kai(pi,k)ui(t, k) (A-2a)

s.t.

n∑
i=1

ci

(
r̄i(t)

Ki∑
k=1

āi(pi,k)ui(t, k) + ΓWi wi(t) + Γ+
i (s)y+

i (t, s) + Γ−i (s)y−i (t, s)+

τi(t)∑
s=1

β̂i(s)
[
x+
i (t, s)− x−i (t, s) + y+

i (t, s)− y−i (t, s)
] ≤ C, ∀ t = 1, . . . , T, (A-2b)

qi(t, s) = r̄i(t− s)
Ki∑
k=1

āi(pi,k)ui(t− s, k), ∀ t = 1, . . . , T, s = 1, . . . , τi(t), (A-2c)

Ki∑
k=1

ui(t, k) = 1, ∀ i = 1, . . . , n, t = 1, . . . , T, (A-2d)

[
x+
i (t, s)− x−i (t, s)

]
+
[
y+
i (t, s)− y−i (t, s)

]
− zi(t, s) + zi(t, s− 1) ≥ qi(t, s),

∀ t = 1, . . . , T, s = 1, . . . , τi(t), (A-2e)

wi(t) ≥ x+
i (t, s) + x−i (t, s), ∀ t = 1, . . . , T, s = 1, . . . , τi(t), (A-2f)

wi(t) ≥ 0, ∀t = 1, . . . , T, i = 1, . . . , n, (A-2g)

x+
i (t, s), x−i (t, s), y+

i (t, s), y−i (t, s), zi(t, s) ≥ 0, zi(t, 0) = zi(t, τi(t)) = 0,

∀ t = 1, . . . , T, i = 1, . . . , n, s = 1, . . . τi(t), (A-2h)

ui(t, k) ∈ {0, 1}, ∀ i = 1, . . . , n, k = 1, . . . ,Ki, t = 1, . . . , T, (A-2i)

where τi(t) = min{t − 1, τmax
i }, Γ+

i (t) = min{1 − β̂i(t),ΓKi ,ΓWi } and Γ−i (t) = min{β̂i(t),ΓKi ,ΓWi }
for t = 1, . . . , τmax

i .
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The proof of Proposition 3 is identical to the one of Proposition 2, except that for each product

i at period t, we replace the price variables pti with the sum of the products of the discrete Ki prices

and binary variables ui(t, k).

36


	Introduction
	Problem Description and Formulations
	Deterministic Approximation
	blackDeterministic Revenue as an Upper Bound
	Asymptotic Analysis of Heuristic Fixed-Price Policies

	Data-Driven Formulations
	Numerical Studies
	Experimental Setup
	Computational Results
	Performance of Discrete Price Approximation
	Price Dynamics from Deterministic Approximation
	Nominal vs. Robust Policy Performance
	Fixed-Price vs. Constant-Price Policy Performance


	Conclusion and Future Research
	Reformulation of Model (14) With Discrete Prices

