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ABSTRACT
In order to mature as a research field, computing education research
(CER) seeks to build a better theoretical understanding of how stu-
dents learn computing concepts and processes. Progress in this
area depends on the development of computing-specific theories
of learning to complement the general theoretical understanding
of learning processes. In this paper we analyze the CER literature
in three central publication venues – ICER, ACM Transactions of
Computing Education, and Computer Science Education – over
the period 2005–2015. Our findings identify new theoretical con-
structs of learning computing that have been published, and the
research approaches that have been used in formulating these con-
structs. We identify 65 novel theoretical constructs in areas such
as learning/understanding, learning behaviour/strategies, study
choice/orientation, and performance/progression/retention. The
most common research methods used to devise new constructs
include grounded theory, phenomenography, and various statisti-
cal models. We further analyze how a number of these constructs,
which arose in computing education, have been used in subsequent
research, and present several examples to illustrate how theoretical
constructs can guide and enrich further research. We discuss the
implications for the whole field.
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1 INTRODUCTION
Computing education research (CER) seeks to build deep under-
standing of the complex phenomena and processes involved in
teaching and learning computing. The field is maturing [80] in
terms of Fensham’s criteria [21] for identifying a research disci-
pline. In the early days most published works were small case
studies presenting novel teaching innovations and practices, often
called practice papers [22]. However, during the past 10–15 years in-
creasing numbers of papers can be characterized as research papers
in the sense that they have clear research questions and rigorous
settings for empirical data collection and analysis, and are informed
by some theoretical framework [49, 80]. These theoretical frame-
works are typically adopted from the social sciences, particularly
educational science and psychology, in addition to some originating
in the computing sciences themselves [55].

One of Fensham’s criteria for an independent field of science
is that the field builds its own domain-specific theories. Malmi
et al. [54] explored the CER literature, covering 308 papers from the
ICER conference and two prestigious journals, ACM Transactions
of Computing Education (TOCE) and Computer Science Education
(CSEd) from 2005–2011. Their main interest was the extent to which
papers published in these venues were building on some theory,
model or framework (TMF), and in which disciplines these con-
structs had been developed. As part of their work they identified 23
TMFs originating in CER itself, only two of which were originally
published in their data pool.

Since that work was carried out, the field has undergone substan-
tial growth, as seen, for example, in the number of papers submitted
to ICER and the corresponding decline in the acceptance rate1. Fur-
ther attention has also been paid to the significance of theories
in CER. Lishinski et al. [49] explored papers published in CSEd
and ICER in 2012–2015. They mainly considered methodological
rigor, but also looked at the use of theories from outside CER. They
reported:

“A significantly higher proportion of articles in our
sample made use of outside theory than in the results
presented by Malmi et al, suggesting that the field is
increasingly reaching into other disciplines to frame
and interpret studies with respect to previous research
in learning theory” (p167).

On the other hand, Nelson and Ko [59] present a critical view of the
role of theories in CER, acknowledging that theories can inform
1See ACM Digital library for details.
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research design, but noting that in some cases theories may inhibit
the design of educational innovations. They call for more work to
build CER domain-specific theories. It is clear that we cannot expect
researchers in social sciences to be able to develop theories on, for
example, how students learn programming or data structures and
algorithms. Deep understanding of the subject domain subject is
needed for such work, and we should seek to establish fruitful
collaboration between the fields.

Inspired by these works, we seek to extend our understanding
of the role of theories in CER. Responding to the call of Lishinski
et al., we focus our investigation specifically on domain-specific
theories. Our work also responds to the question raised by Malmi
et al. [54] concerning whether CER is developing its own theories.
We cover more recent literature than they did, but also focus on
theories that were first published explicitly in our data pool. Our
specific research questions are:

(1) What theoretical constructs concerning learning and educa-
tion in computing have been published in ICER, CSEd, and
JERIC/TOCE2 in 2005–2015?

(2) In what areas are these constructs situated?
(3) What methods were used to derive these constructs?
(4) In what different ways have these constructs been used or

extended in further research?
The last question is particularly interesting, because theoretical

work has limited value unless it is used to inform further research,
which is possible in several different ways.

2 ROLES OF THEORY
There is a wealth of theories used in CER, and a wealth of ways
in which theories can be used in the field. As a young research
discipline, computing education borrows theories and methodolo-
gies from the social sciences, which are themselves not homoge-
neous when it comes to ways of conceptualizing and using theo-
ries. Mjøset [68] distinguishes three theoretical traditions in social
science: standard/natural science, social philosophy, and the con-
textualized view. Each tradition comes with its own background,
customs, and methodological guidelines. For instance, the natural
science tradition sees theory as law-oriented construction, whereas
the social-philosophical tradition sees it as reconstructive or decon-
structive. Across these different theoretical traditions, it is difficult
to offer a single, clear definition of theory and of its role in comput-
ing education. In this paper we have decided to adopt the rather
pragmatic and broad notion of theory proposed by Pears et al. [63,
p2]: a theory is “a way to reason about the nature and structure
of observable learning phenomena, and their operation and inter-
relationships”.

Theory can contribute to educational research in many differ-
ent ways. Suppes [84] describes a number of roles for theories in
educational research: theories help us to notice what is important
and essential in a phenomenon; theories guide us to recognize the
complexity of a phenomenon that at first glance may seem to be
simple; theories may provide tools for making predictions; and,

2The Journal of Educational Resources in Computing (JERIC) was replaced in 2009 by
ACM Transactions on Computing Education (TOCE), bringing about a clear change in
the journal’s profile. Our data pool includes JERIC papers from 2005–2008 and TOCE
papers from 2009–2015, but for convenience we refer to them all as TOCE papers.

most importantly, theories help us to overcome the triviality of
bare empiricism that at its worst provides neither a theoretical
understanding of a phenomenon nor useful practical guidelines.
Similarly, in mathematics education Niss [60] suggests that theories
can serve as an overarching framework to guide the viewpoint from
which we look at a phenomenon; that they may offer a way of or-
ganising a set of specific observations; and that they may offer ideas
for a research methodology or a suitable terminology to discuss a
phenomenon.

To remain useful in these roles, theories often need to evolve
and mature. Tellings [68, 86] suggests four ways that different
theories can be combined. In reduction, one theory is redefined
in terms of another theory; in synthesis, integration of theories
leads to totally new insights; in horizontal addition, theories that
cover different aspects of one domain are combined to give a more
holistic understanding of a phenomenon; and in vertical addition,
different theories that describe different stages of development
are stacked on top of one another. This evolution of theories is of
interest in this project as one of our research questions addresses
how emerging computing education theories have been used or
extended in subsequent studies.

3 METHOD
Our research investigates new theoretical constructs that were
initially published in ICER, CSEd, or TOCE between 2005 and 2015.
These venues were selected because they are known for publishing
high-quality research in the form of long papers that facilitate
the incorporation and discussion of theoretical frameworks. We
considered only full papers published at these venues, not other
works such as editorials and short papers. Because we are interested
in the possible impact of domain-specific theoretical constructs on
subsequent research, we bounded our search at 2015, estimating
that three years beyond the original publication of a construct was
sufficient time to identify the potential impact. This gave us a data
set of 540 papers: 192 from ICER, 172 from CSEd, and 176 from
TOCE.

The terminology concerning theories is used loosely in the CER
literature. Terms such as ‘theory’, ‘model’, and ‘framework’ are
frequently used with no clear distinction between them, and very
few theories have established recognizable names such as Jadud’s
EQ [34] or Robins’s learning edge momentum [70]. Moreover, in-
teresting contributions can be reported without using any of these
terms; for example, studies applying phenomenography generally
call their empirical results ‘outcome spaces’. Recognizing that a
strict definition of theory would be likely to reduce our search
results too much, we defined the concept theoretical construct as
a theory, model, framework, or instrument developed through ap-
plication of some rigorous empirical or theoretical approach. To
implement our search we developed the following guidelines for
identifying theoretical constructs.

First, in quantitative research, we included statistical models,
such as regression, path analysis, factor analysis, structural equation
modelling, and clustering, which have been generated from the data
to explain the relationships between identified concepts. Typically
these includemathematical formulas and/or graphical presentations
of the model. We did not include results that present statistical
evidence for accepting individual hypotheses, unless the results



were further developed to build a more comprehensive explanation
of the investigated phenomenon.

Second, in qualitative research we included grounded theories,
phenomenographical outcome spaces, and other data-driven catego-
rizations that seek to generate a higher-level abstract description of
the data. We excluded simple lists of categories – which often result
from qualitative content analysis – if there was no clear discussion
of their relationships.

Third, we included explanatory models of other types that can
be identified as taxonomies, typologies, figures, formulas, or sets
of categories and the relationships between them. These may be
generated by analyzing data, derived from other theoretical frame-
works adapted to address a specific problem domain, or developed
through logical argumentation.

Fourth, we included validated instruments for the measurement
of particular theory-based concepts.

Finally, we were interested only in theoretical constructs that
were clearly developed to address aspects of computing education,
even if they might later be applied in other fields – as have, for ex-
ample, zone of proximal flow [3] and learning edge momentum [70].

Our study comprised four stages to address our four research
questions.

3.1 Identifying theoretical constructs (TCs)
Our definition of theoretical constructs (TCs) comprises a poten-
tially vast number of forms and labels. Rather than conducting a
systematic search of papers using a predetermined set of terms, we
decided that we would need to closely read each paper in our data
set to identify any new constructs.

Two members of the research team independently read each
paper and recorded the occurrence of any new theoretical construct
reported in the work. They then discussed any differences and
reached agreement as to whether a paper recorded the development
of a new theoretical construct. At the conclusion of this process 65
new theoretical constructs had been identified from the 540 papers.
We call the papers where they were published the source papers.

3.2 Determining areas of focus of TCs
The theoretical constructs that we found have been developed to
address highly varied research questions in many different research
contexts. Seeking a more holistic picture of the results, we catego-
rized the TCs into broad thematic areas, using inductive content
analysis to identify the main focus area of each construct. This
could reveal whether the constructs were related to learning or un-
derstanding some topic, for example, or to students’ progress, or to
students’ attitudes. The categories were devised by a member of the
research team through further reading of the TCs’ source papers.
Two other team members then re-read the papers and reviewed the
categories, leading to minor adjustments.

We also wanted to examine the pool of TCs from the point of
view of instructional processes. For this we used the didactic tri-
angle [35] as a lens to investigate how widely the TCs address the
central actors and their relationships in the process. The didactic
triangle is a simple model, drawn as a triangle, whose vertexes are
the three most relevant actors, aspects of teaching and learning
(teacher, student, and learning content), and whose edges are the

relationships between the actors (teacher-student, teacher-content,
and student-content). Studying and learning take place within the
student-content relationship and are influenced by teachers’ peda-
gogical actions. Kinnunen et al. [40] added a further relationship,
students’ perceptions of a pedagogical action such as student feed-
back. Together these actors and relationships cover the central
aspects of the instructional process. Our goal with this analysis was
to find out whether the TCs we had identified focused on particular
aspects of the instructional process or covered it more broadly.

The analysis based on the triangle was carried out by two re-
searchers who independently categorized all source papers, then
compared their results and reached agreement. For this research the
categorization was based solely on the paper’s use of the theoretical
construct. As a TC can address more than one aspect within the
triangle, such as the teacher’s pedagogical actions and the student-
content relationship, two or more aspects could be recorded as the
result for a single TC.

3.3 Identifying methods used to develop TCs
We sought to determine the foundations of the theoretical con-
structs and how they had been developed. One member of the
research team assessed whether each construct was completely
new or was developed from an existing construct, and identified
the approach and methods used to develop the construct. This anal-
ysis was then reviewed by another team member and agreement
was reached.

3.4 Exploring how TCs are used
In the final stage of our work we investigated how some of the the-
oretical constructs we identified have been used, seeking to find out
whether theoretical constructs are actually used to guide further
research or are simply cited as related work. Using Google Scholar,
we searched for each original source paper in which a TC was
presented, and counted the papers listed under ‘cited by’, which we
call citation papers. Overall we found 3200 citation papers, clearly
rendering complete analysis beyond our resources. We therefore
limited this phase of the analysis to two selected focus areas, learn-
ing/understanding and learning behavior/strategies, and for most
source papers in these focus areas we downloaded every citation
paper that we could access. For those few source papers that have
a large number of citation papers, we considered only the citations
from recent years. These reductions left us with 516 citation papers
to examine.

Within the citation papers we searched for mentions of the
source paper, or of the TC if it had a name. We then tagged each
citation paper according to whether 1) the source paper was simply
described as related work, possibly with an explanation of the TC;
2) the citation paper applied the TC, for example, for developing
a data collection or analysis method or for explaining results; 3)
the citation paper modified or extended the original TC; or 4) the
citation paper reported on a study to validate the TC or applied it
in a novel context.

We found several cases where the citation paper did not cite the
source paper at all, presumably due to errors in Google Scholar.
There were also a few cases in which we were unable to access the



citation paper, and a few citation papers written in languages other
than English, which we were unable to analyze.

4 RESULTS
4.1 What TCs have been developed?
Our analysis of publications in ICER, CSEd, and TOCE from 2005
to 2015 found 65 papers reporting new TCs. Table 1 shows the
distribution of these source papers across the venues, along with a
summary of their citation numbers. We examined the data by year
of publication to check for possible trends, but none were apparent.

Table 1: Papers reporting the development of a theoretical
construct (TC) in ICER, CSEd, and TOCE from 2005 to 2015
and their citations

Venue Total Papers reporting Average Citation
papers a new TC citationsa rangea

ICER 192 38 (20%) 53 1–288
CSEd 172 21 (12%) 42 5–182
TOCE 176 6 (3%) 51 5–150

a. According to Google Scholar, 31 March 2019

4.2 What are the areas of focus of TCs?
As indicated in section 3.2, we grouped the 65 TCs into related
areas of focus. Table 2 shows these focus areas, along with the
number of TCs in each, and the source paper for each TC. Almost
a third of the TCs focus on learning/understanding, followed by
study choice/orientation, performance/progression/retention, and
learning behavior/strategies. The remaining categories each have
three or four TCs.

The table shows, not surprisingly, that theory development has
been most active in areas dealing with aspects of students’ learning
process, learning results, and other relationships between students
and the learning content or study field. But students do not learn
in isolation: teachers have a major impact on the learning process.
To investigate how well the TCs cover the teaching aspect, we
conducted a closer analysis based on the didactic triangle [35],
which provides a clear theoretical framework for identifying various
aspects of the instructional process.

Recalling that a single TC can cover more than one aspect of the
triangle, we identified 75 instances of a TC covering some aspect of
the triangle. Two-thirds of TCs cover one aspect only, while most
of the rest cover two or more aspects. The distribution of these
aspects is very skewed. In 52 cases of the 75, the TC focuses on
the student-content relationship. Half of these concern students’
understandings or attitudes to the content, and the other half their
learning activities and learning results or motivational changes.
The next most common aspect (10 cases) addresses teachers’ peda-
gogical actions, followed by six cases focusing on the content itself,
three cases for the teacher-content relationship, two cases for the
teacher-student relationship, and one case each for teachers and
student feedback. None of the 65 TCs addresses students as such.
Finally, three TCs [40, 55, 79] were not related to the didactic trian-
gle as their source papers analyzed computing education research
literature in general.

4.3 How were TCs developed?
We identified 18 different approaches to developing the TCs in our
data set, as shown in Table 3.

We identified eight theoretical constructs that were developed
by adapting an existing theory and five that were developed by
extending an existing theory. The remaining 80% were new TCs
that may have drawn on but were not built on or adapted from
existing theories.

In more than a third of the cases the TC was developed by fol-
lowing the formal qualitative methodologies of grounded theory
or phenomenography. The most common quantitative approach,
used in 12% of the cases, was regression. In more than a third of
the cases a combination of methods was used, typically involving
combinations of literature review, argumentation, empirical studies,
qualitative analysis, and quantitative analysis. Of course argumen-
tation is an integral part of every analysis, but we recorded it only
if it played a substantial role in the analysis in which the construct
was derived.

Table 4 lists the 20 TCs in the area of learning/understanding and
the approach that was used to derive each of them. Space limitations
mean that we cannot to do the same for the other areas of focus,
but we hope that these 20 cases provide a reasonable idea of the
nature of the findings.

4.4 How are TCs used?
Of the 516 citation papers that we analyzed, the great majority (91%)
make no use at all of the TCs from the source papers. In many cases
(65%) the citation typically refers to the source paper in a group
of references, or at most writes a sentence or two describing what
the source paper is about. Readers of the citation paper gain little
from such a reference, and in most cases we could not determine
whether the TC was genuinely relevant to the citing paper. Far
less frequently (21%), we found citation papers that summarize
the main points of the source paper’s contribution and explain
its relevance to the citation paper. And in very rare cases (5%)
we found critical discussion on the TC or a comparison of it with
other works. Examples of this include critiques on Robins’s learning
edge momentum theory [70] by Luxton-Reilly [52] and Petersen
et al. [64]. The latter, for example, accepts Robins’s contention
that programming concepts are highly interdependent, but cites
evidence to question the assumption that in typical programming
courses these concepts are introduced in a clear linear sequence.

Notwithstanding the overall picture, we did find a number of
cases (10%) where theoretical constructs were used to inform further
research. In a couple of cases these papers also included critical
discussion or comparison of the TC with other works. We shall
present several examples of how this was done in order to illustrate
how future research in CER can benefit from theories developed in
CER.We do not distinguish here between cases where the continued
development is carried out by the original authors or, more rarely,
by somebody else.

4.4.1 Using theory to discuss results. Niss [60] notes that theories
can be used to explain observed phenomena. However, a theory or
model is always a hypothesis or simplification of reality, and the
same observations may have different interpretations in real life.
In the natural sciences empirical observations are widely used to



Table 2: Areas of focus of the theoretical constructs and the source papers

Area of Focus Count Source Papers
learning/understanding 20 [3, 6, 8, 9, 11, 19, 31, 46, 50, 58, 70, 73, 74, 77, 82, 83, 87, 89, 96, 97]
study choice/orientation 8 [7, 18, 26, 28, 29, 47, 51, 72]
performance/progression/retention 7 [4, 5, 25, 39, 48, 65, 85]
learning behavior/strategies 6 [10, 14, 23, 33, 43, 99]
contents/curriculum/learning goals 4 [17, 24, 56, 57]
emotion/beliefs/attitudes/self-efficacy 4 [41, 42, 71, 76]
teaching/pedagogical content knowledge 4 [12, 32, 81, 92]
assessment/self-assessment 3 [1, 53, 78]
computing education research 3 [40, 55, 79]
errors/misconceptions 3 [34, 62, 93]
perceptions of computer science/computing 3 [27, 75, 98]
Total 65

Table 3: Approaches used to develop the theoretical constructs

Approach Count Source Papers
phenomenography 12 [6, 8–10, 12, 19, 39, 82, 83, 87, 89, 92]
grounded theory or grounded theory based 10 [23, 27–29, 40, 42, 47, 56, 75, 97]
regression 8 [4, 5, 7, 18, 26, 71, 72, 85]
argumentation + empirical study 7 [14, 33, 50, 70, 77–79]
adapted an existing theory + empirical study 6 [1, 3, 11, 57, 58, 76]
empirical study 5 [17, 34, 43, 46, 98]
extended an existing theory + argumentation 3 [40, 55, 81]
extended an existing theory + empirical study 2 [31, 74]
literature analysis + argumentation 2 [25, 73]
literature analysis + argumentation + empirical study 2 [48, 93]
adapted an existing theory + grounded theory 1 [62]
adapted an existing theory + structural equation modeling 1 [51]
apply an existing theory + empirical study 1 [99]
delphi study 1 [24]
literature analysis + empirical study 1 [65]
path analysis 1 [96]
used a theory + argumentation 1 [53]
used a theory + literature analysis + argumentation 1 [32]
Total 65

support or counter a theory; but in education the settings may be
more complex, with numerous intervening contextual variables,
and strong conclusions can rarely be justified. However, this does
not undermine the search for better explanations for empirical data.
Different TCs can be used as lenses to interpret the data in order
to deepen and broaden our understanding of the case itself and of
potentially conflicting factors in existing explanations.

This point is nicely illustrated by Porter and Zingaro [66], who
analyzed peer instruction and exam data to explore relationships
between in-class assessments and performance in mid-term and
final exams in CS1. They analyzed correlations between the factors
during a course, with the goal of identifying good predictors for final
results. Considering student performance in weeks 3 and 4 of the
course, they note that their findings could provide equal support for
the competing theories of the ‘geek gene’, learning edgemomentum,
and stumbling points. But moving further on in the course, they
observe that their findings for later weeks appear troublesome for

each of those three theories. Such discussion encourages researchers
to build new settings, where different theories can be tested against
the same data, so as to tease out the factors behind the observed
conflicts between theories and data.

4.4.2 Using theory to predict results. Another use of theory, closely
related to the previous one, is predicting what can happen [60],
which is a natural way to test theories and their explanatory power.

Carter et al. [14] analyzed students’ programming process and de-
veloped a normalized programming state model (NPSM) to describe
various states of program correctness (syntactic or semantic) and
transitions between these states. They speculated that the relative
time spent in correct and incorrect states could be an indicator for
students’ overall course performance. This makes intuitive sense:
students who are struggling with syntax errors are likely to have
their programs in incorrect states for most of the time, whereas
students who are working to resolve runtime errors are likely to



Table 4: Theoretical constructs with a focus on learning and understanding

Year Theoretical construct Approach Citationsa

2005 Refining/extending Good’s schema to extract information about novice programmers’
comprehension of concurrent programs and confidence in the captured knowledge
[31]

extended an existing theory
+ empirical

8

2005 A model of factors that are important for non-majors’ learning of programming [96] path analysis 148
2005 Categorizing novice programming students’ understanding of what it means to learn

to program [19]
phenomenography 107

2006 Categorizing students’ learning aims in an international project-based course [6] phenomenography 23
2006 Role plan analysis model to evaluate students’ mental models of programming

concepts [11]
adapted an existing theory +
empirical

15

2006 Categorizing novice programming students’ understanding of what it means to learn
how to program and their understanding of program correctness [83]

phenomenography 27

2008 Hierarchical model of programming skills [50] argumentation + empirical 182
2009 Categorizing students’ understanding of a Java interface and their understanding of

software systems [8]
phenomenography 6

2010 The notion of the learning edge momentum effect to explain the patterns of intro-
ductory programming course outcomes [70]

argumentation + empirical 161

2011 Categorizing practitioners’ understanding of an object-oriented program [89] phenomenography 1
2012 Categorizing graduating students’ understanding of class diagrams [9] phenomenography 10
2012 The notion of threshold skills [74] extended an existing theory

+ empirical
23

2013 Categorizing novice programmers’ perceptions of learning through visual program
simulation [82]

phenomenography 15

2013 Extending the definition of threshold concepts [73] literature + argumentation 10
2013 Zones of proximal flow pedagogical framework to promote intrinsic motivation and

leverage student learning experiences [3]
adapted an existing theory +
empirical

36

2013 Progression of early computational thinking (PECT) model for understanding and
assessing computational thinking of primary school students [77]

argumentation + empirical 92

2014 Computer science cognitive load component survey instrument for measuring cog-
nitive load in an introductory programming context [58]

empirical 50

2014 Categorizing graduating students’ understanding of what it means to ‘produce a
design’ [87]

phenomenography 7

2014 Taxonomy for describing how students understand recursion [46] empirical 14
2014 Model of students’ computational thinking processes while learning to program [97] grounded theory 5

a. According to Google Scholar, 31 March 2019

be working with and testing programs that are correct, at least
syntactically. The study compares the explanatory power of NPSM
with the predictions generated by two previous theories, Jadud’s
EQ [34] and Watson score [95]. NPSM explained a larger share of
variance than the other measures. However, their results for the
other measures differed significantly from earlier published results,
and Carter et al. discuss possible reasons for this. Such discussion
is important to help the research community to better understand
the limitations and contextual factors for different TCs. In this case
the principal contextual factors are the programming language and
environment: NPSM was initially developed for C++ programming
using Visual Studio. Further work by Richards and Hunt [69] in-
vestigates the model in a different context to determine whether it
can be applied with BlueJ despite some clear differences between
the two environments. Their work is still inconclusive with regard
to the predictive power of NPSM, but it is important to investigate
whether the initial reported success was tied to a specific context.

In later work, Carter et al. investigated more closely the transi-
tion patterns between different states of NPSM [13], finding differ-
ences between the observed patterns of low- and high-performing
students. In further work [15] they combined the previous model
with a measure of students’ social participation in a social program-
ming environment and compared this to students using a traditional
environment. This investigation was motivated by social learning
theory [44], which emphasizes regular participation in a learning
community. The results suggest that for all models (EQ, Watson
score, and NPSM), complementing them with a measure of social
activity improves their predictive power on course performance.
The improved model, SNPSM, is thus a nice example of Telling’s
horizontal addition of theories: covering more aspects of the phe-
nomenon improves explanatory power [86].

4.4.3 Using theory to inform pedagogy and testing the results. Theo-
ries are valuable if they can be used to inform practical pedagogical
decisions to improve learning results or learning experience.



Hoda andAndreae [30] applied learning edgemomentum (LEM)3
to inform pedagogy. Essentially, LEM claims that CS1 programming
concepts are tightly connected, and that failure or success to un-
derstand a concept may have a cumulative negative or positive
effect on the learning of closely related concepts. This results in the
supposedly bimodal distributions often seen in CS1 final exams.

In their LEM-based pedagogical approach for CS1, Hoda and
Andreae apply the following strategies: 1) minimizing early com-
plexities in the course; 2) minimizing dependencies between early
components of the course; 3) maximizing chances of mastery of
the early concepts and skills; and 4) maximizing opportunities for
early recovery. For example, they revised assignments to reduce
their interdependency, and introduced intermediate assignments
to enable mastery of individual constructs and to build bridges
between concepts. Their results were promising, with consider-
able reduction of failure rates in all student cohorts from several
different backgrounds.

While we do not claim that their work provides compelling
evidence to support LEM, the paper serves as an interesting example
of how theory can inform practice and how practice can be used to
test and possibly validate theory.

Another example of using TCs to inform pedagogy is the work of
Thota [90], which discusses how phenomenographical TCs can be
used in course design. She explains how phenomenography can in-
form us about what students find relevant in the learning situation,
and how variation theory can be used to design experiences that
support students’ awareness of the differences in understandings
among their peers when dealing with the same object of learning.
She provides a concrete example of course design to demonstrate
how the guidelines can be implemented.

4.4.4 Using a TC as a data analysis framework. In section 4.4.1 we
discussed how theory can be used to interpret results. A closely
related case is the use of a TC as a tool to support data analysis.

Table 4 includes several TCs that categorize students’ under-
standings of some topic or concept; these can be used as tools for
further research.

Thomas et al. [87] analyzed final-year students’ understanding
of software design by giving them a requirement specification for
a ‘super alarm clock’ and asking them to produce a design that
others could work from. They classified the resulting designs into
a phenomenographical outcome space with six categories rang-
ing from nothing to a complete design. Later they explored the
design skills of a cohort at the midpoint of their studies in order
to investigate how students’ design skills develop over time [88].
They replicated their previous study with a different design task but
using the same categorization to analyze results. Thus their earlier
work served as a qualitative measure of designs, allowing compari-
son of results between studies. This is a good example of using a
phenomenographical outcome space in subsequent research.

Another example involves the theory of zones of proximal flow
(ZPF) [3, 36], which illustrates Telling’s synthesis of theories [86]
by combining Vygotsky’s zone of proximal development [94] and
Csikszentmihalyi’s flow concept [16]. The general idea of this the-
ory is that students make optimal progress when they work in an

3While LEM has been critiqued, as discussed in section 4.4, it has not been broadly
rejected.

area that lies between anxiety (task is too hard) and boredom (task
is too easy). They should be given tasks that challenge them while
not being too hard. This approach has had an important role in
scalable game design pedagogy. As explained by Repenning et al.
[67, p9], “The project ... is likely to push students to their threshold
of understanding (the Zone of Proximal Development), but ... they
manage to learn the relevant concepts in an optimal way that is
highly engaging.”

In further work, Basawapatna et al. [2] explore how ZPF can be
leveraged in real time to support formative feedback; that is, how
to follow student activities in the classroom and provide feedback
based on indications that a student is lost and needs assistance. This
was implemented with positive results.

Illustrating TCs in the form of validated instruments, Morrison
et al. [58] took an instrument initially developed to measure cogni-
tive load [45], adapted it for computer science, and validated it in
the new context. In terms of Telling’s terminology [86] discussed
in section 2, this is an example of reduction. The new instrument
has subsequently been used by other researchers for measuring
cognitive load in different contexts, such as worked examples in
programming [100], Parsons problems [20], and collaborative algo-
rithms labs [91].

5 DISCUSSION
Overall we found a rich selection of TCs developed in computing
education and first presented in ICER, CSEd, or TOCE. They focus
mainly on the student-content relationship of the didactic trian-
gle, which is no surprise: previous research based on the didactic
triangle has shown that this relationship is the most commonly
researched area, not only in computing education [40] but also in
engineering education [38] and science education [37]. We did find
some theoretical work addressing other aspects, but the results sug-
gest that there is scope for more work to be done. Could we build
theories or models, for example, to explain how computing teach-
ers design and implement their pedagogical actions or how they
teach particular computing topics or skills? Concerning students,
instead of collecting and reporting course feedback, could we seek
to build a deeper understanding of how students experience various
pedagogical actions? These are just examples to illustrate how the
didactic triangle could be used to generate research questions or
TCs in areas other than the student-content relationship.

5.1 Using TCs
Our findings indicate that a considerable amount of theoretical work
is indeed carried out in CER, which from Fensham’s perspective [21]
is one indication of a field’s independence. CER papers are, of course,
also published in many other venues, and our survey reveals only a
part of the big picture. However, we believe that the selected venues
are likely to cover a substantial share of the overall work.

It is clear that theories are of limited value if they are not used.
Here our findings are less promising. Our detailed investigation of
this aspect covers only two of the 11 different focus areas, though
those two comprise a substantial part of the TC pool. Here we found,
as reported in Section 4.4, that almost all citation papers merely
mention the reference to a source paper, and among these it is not
always clear why the reference was given at all. Perhaps the authors



considered the TC related in some way to their own work while not
being close enough tomerit more discussion; or perhaps it was some
other contribution of the source paper that warranted its inclusion
in the reference list. There was seldom sufficient information in the
citation papers to permit such judgements to be made.

This raises the question of why there is so little use of TCs to
inform other work. Our current data does not support analysis of
this phenomenon, but we can speculate on some of the reasons.

First, educational settings for research are notoriously complex
and any theoretical constructs are likely to include hidden assump-
tions about course content, teaching methods or tools, student
population, teachers’ competencies, even personality, etc. These
factors are seldom well enough described in the paper to allow read-
ers to judge whether the context of the contribution is sufficiently
similar to their own settings. This might be remedied somewhat
if the TC authors were to make their contextual assumptions as
visible as possible, and explicitly discuss the transferability of their
construct to other settings.

Second, some TCs might be difficult to implement outside the
original research context. For example, qualitative categorizations
of data, such as phenomenographical outcome spaces, can pro-
vide deep insight into the investigated phenomenon among the
target cohort. However, applying them in other settings, such as
to quantify the distribution of different conceptions in a different
cohort, may entail serious challenges. The work required to ana-
lyze and categorize a larger data pool may be overwhelming, and
there may be a dearth of suitable methodological tools, such as
validated instruments, for carrying out the categorization. Analy-
sis may face problems with inter-rater reliability, as reported by
Parham-Mocello and Ernst [61] when they tried to apply the design
quality categories from Thomas et al. [87]. These challenges are
less serious for the original authors of the source papers due to
their experience in the analysis work, so they are better able to
apply their outcome spaces in their further research.

The difficulties reported by Parham-Mocello and Ernst [61] en-
couraged us to look more broadly at the impact of qualitative work
on subsequent research in computing education. We selected for
further analysis the nine papers in either learning/understanding
or learning behavior/strategies (Table 2) that were developed using
a phenomenographical approach (Table 3), and examined all 200+
citation papers of those nine source papers. We did not find a single
case in which someone other than the original researchers had
used the TC as a data collection and analysis framework, and we
found only few cases in which the TC was used in discussion of
results or in building new pedagogical solutions. This is somewhat
concerning, because there is presumably some valuable work being
done, yet its potential for re-use is not being realized.

In contrast, validated instruments for data collection and analysis
are clearly easier to apply and are being applied by other researchers,
as discussed above in relation to the cognitive load survey instru-
ment of Morrison et al. [58]. It remains an open question whether it
is feasible and practical to develop validated instruments, based on
qualitative TCs, that would support easy quantitative exploration
of students’ understandings or experiences. Such progress would
be a valuable contribution to the field.

Finally, we suggest that the low rate of adoption of TCs might be
due to uncertainty about the overall role of theories in computing

education, or about appropriate ways to apply theories. We hope
that some of the examples we have given will assist the CER com-
munity in this regard. More examples would be even more helpful,
but cannot be reported here due to space limitations.

In summary, the current impact of TCs on continuing research
seem modest. We expected to find more evidence of the impact
of TCs on educational practice, but again we were disappointed,
finding only a small number of papers that directly apply TCs to
inform educational practice. However, this observation probably
reflects the visibility problem of TCs rather than their actual impact.
We hope that there are many teachers who apply results from
literature in their teaching, but do not write papers about their
experiences and observations. It is not possible to evaluate the
scope of this invisible impact. Even when papers do report on
innovations built upon some TC, they might not report the link
explicitly enough for us to have identified it.

5.2 Limitations
Our work covers only three of the publication venues in which TCs
might be published, and the limited time span from 2005 to 2015: this
prevents us from building a complete picture of the development
of theoretical constructs in computing education research. The
exclusion of papers published since 2015 was a deliberate decision
to support our goal of analyzing the usage of theories in subsequent
research. We acknowledge the influence of personal interpretations
in deciding which constructs to include andwhich to exclude, and in
how the TCs were categorized. We increased the trustworthiness of
the results by using three experienced qualitative researchers in this
process (two in the selection phase and three in the categorization
phase) to read the papers and negotiate a consensus for each paper
and TC. Our definition for a TC was deliberately loose to allow us
to discover and make visible a greater amount of work that could
benefit the CER community.

6 CONCLUSION
In this paper our goal has been to survey a substantial portion of
the computing education research literature over 11 years, identi-
fying the development of theories that focus on building deeper
insights into the complex world of teaching and learning computing
concepts and processes. We believe that there is much of value in
this work, which builds domain-specific knowledge to support the
future work of our growing research community, and we want to
enhance its visibility. We have identified a total of 65 theoretical
constructs, noting how each was derived. We have grouped them
into 11 different focus areas, most of which deal with describing or
modelling the rich relationship between students and computing
concepts. We provide a number of different examples to show how
these constructs have been used to inform further research or edu-
cational practice, and we hope that such examples will inspire other
researchers to consider using or extending existing theoretical work
– when they are not developing theories of their own.

In future work, we plan to expand our pool of source papers by
considering more computing education venues, and to extend our
detailed analysis of discipline-specific theoretical constructs beyond
the learning/understanding and learning behavior/strategies areas
of focus that we have addressed in this paper.
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