University of Strathclyde Glasgow

Chemical and biological tests to assess the viability of amendments and *Phalaris arundinacea* for the remediation and restoration of historic mine sites

Benjamin Nunn¹, Richard A Lord¹ and Christine M Davidson²

¹Department of Civil and Environmental Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ (benjamin.nunn@strath.ac.uk),

²WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL

1. The Problem

- Historic metal mining tailings and spoil are typically too physically, chemically and biologically deficient for spontaneous revegetation, allowing the redistribution and mobilisation of contaminated soils [1]
- There are currently over 750 unremediated historic metal mines in the UK
- A previous scoping study by the University of Strathclyde highlighted the contribution of mineral processing areas as sources of particulate and

Table 1: Results of sample analysis of sites WH3 (NY946465) and WH5 (NY948465)

Determined	Unit	WH3	WH5
рН	Value	6.7	7.1
Copper	mg/kg	545	890
Zinc	mg/kg	1852	5150
Lead	mg/kg	13873	9112
Arsenic	mg/kg	40.7	66.2
Cadmium	mg/kg	5.07	6.3
Nitrate Nitrogen	mg/kg	<1	<1
Ammonium Nitrogen	mg/kg	<1	<1
Available Phosphorus	mg/l	<2.5	<2.5

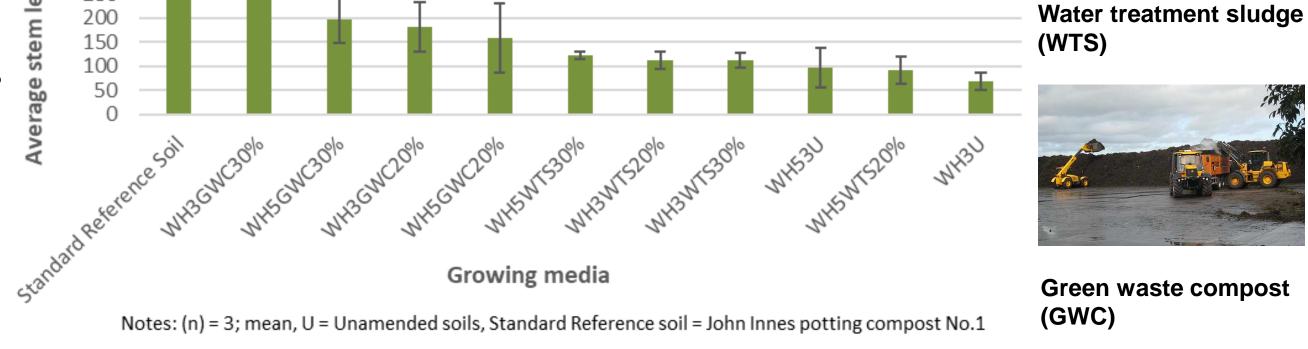

dissolved potentially toxic elements (PTE) entering the Upper Derwent river system

2. Our Approach

- In-situ biological and chemical stabilisation is increasingly considered the best option when managing the risks associated with historic mining [1]. This study aims to trial the use of plants and amendments capable of PTE immobilisation.
- Pot trials using bulk samples and amendments have followed an adapted British Standards (BS/EN 11269-2:2013) method for the effects of PTEs on above ground plant growth.
- Although several recent studies have conducted similar pot trials, very few have applied their results to a field trial, a recommendation commonly made in key literature reviews [1]

Native perennial

Effect of green waste compost (GWC) and water treatment sludge (WTS) on average stem length per pot of reed canary grass grown in two mine soils following 12-week growth period (n=3)



Anticipated effects of soil amendments

Increase in organic matter, nutrients and cation exchange capacity providing better growth

- Able to colonize and stabilize contaminated soils
- Low planting cost, rapid growth and dense rooting habit of RCG make it a useful species for phytostabilisation [2]

Green waste compost

conditions

- Pb & Zn preferentially bind to mineral oxides (WTS), reducing bioaccessibility and leachability [3]
- Cd and Zn preferentially bind to humic acids (WTS and GWC), reducing PTE bioaccessibility and leachability

Acknowledgements

The author would like to thank Northumbrian Water Ltd and University of Strathclyde Faculty of Engineering and Civil and Environmental Engineering Department for supporting this project.

References

[1] Bolan N, et al. Journal of Hazardous Materials. (2014), 266, pp.141-166 [2] Lord RA. Biomass and Bioenergy. (2015), 78, pp.110-125 [3] McCann, C. M et al. Chemosphere. (2015). 138 pp. 211-217 Contact Email:benjamin.nunn@strath.ac.uk Twitter: @BenjaminNunn1

3. Current Work – Field Trial

- The initial results of the pot trial experiments have informed the design of a two year field trial which will commence in Summer 2019
- Two 9m x 9m fenced sites (WH3 & WH5)
- Per site: (9 x blocks, each of 4 x amendments of 9 x individuals) = 324 RCG plants (3 x 9m varieties x 27 individuals per amendment)
- Soil will be unamended or amended with 30% w/w (amendment weight/ soil weight ratio) of WTS, GWC and an equal mix of both

9m			•	Block example (3m grid)		
Block 1 Seed type 1	Block 2 Seed type 2	Block 3 Seed type 3		Unamended	GWC 30%	
Block 4 Seed type 3	Block 5 Seed type 1	Block 6 Seed type 2				
Block 7 Seed type 2	Block 8 Seed type 3	Block 9 Seed type 1		WTS 30%	Mixed @ 15% each 1 RCG plant	